Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 28 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
28
Dung lượng
10 MB
Nội dung
Cõu 782 (THPT KIM LIấN H NI Ln nm 2017) Hm s no sau õy nghch bin trờn Ă ? A y = cot x B y = C x + D y = x + x x Cõu 783 (THPT KIM LIấN H NI Ln nm 2017)Cho hm s y = x2 Chn khng nh x +1 ỳng A Hm s nghch bin trờn Ă B Hm s ng bin trờn tng khong xỏc nh C Hm s ng bin trờn Ă D Hm s cú nht mt cc tr Cõu 784 (THPT KIM LIấN H NI Ln nm 2017)Cho hm s y = f ( x ) cú th hm s nh hỡnh v Khng nh no sai ? A Hm s nghch bin khong ( 0;1) B Hm s t cc tr ti cỏc im x = v x = C Hm s ng bin trờn cỏc khong ( ;0 ) v ( 1; + ) D Hm s ng bin trờn khong ( ;3) Cõu 785 (THPT KIM LIấN H NI Ln nm 2017)S im cc tr ca hm s y = x x + bng A B C D 2x Cõu 786 (THPT KIM LIấN H NI Ln nm 2017)Tỡm giỏ tr ln nht ca hm s y = x + e trờn on [ 0;1] y = 2e A max [ 0;1] y = e2 + B max [ 0;1] y = D max [ 0;1] y = e2 C max [ 0;1] 2x +1 v x +1 ng thng d : y = x m Tỡm tt c cỏc giỏ tr thc ca tham s m ng thng d ct Cõu 787 (THPT KIM LIấN H NI Ln nm 2017)Gi ( C ) l th hm s y = th ( C ) ti hai im phõn bit? A < m < C m > B m < hoc m > D m < Cõu 788 (THPT KIM LIấN H NI Ln nm 2017)Hm s y = x + x + t cc tiu ti A x = B x = C x = D x = Cõu 789 (THPT KIM LIấN H NI Ln nm 2017)Cho hm s f ( x ) = x + x 10 Khng nh no di õy l khng nh sai? A th hm s i qua A ( 0; 10 ) B th hm s cú im cc tr to thnh mt tam giỏc cõn C lim f ( x ) = + v lim f ( x ) = + x + x y Cõu 790 (THPT KIM LIấN H NI Ln nm 2017)ng cong hỡnh bờn l th ca mt bn hm s c lit kờ bn phng ỏn A, B, C, D di õy Hi hm s ú l hm s no ? D Hm s y = f ( x ) cú mt cc tiu O x A y = x x + B y = x + x C y = x + x + D y = x + x Cõu 791 (THPT KIM LIấN H NI Ln nm 2017)Khng nh no sau õy l khng nh ỳng? 2x +1 A Hm s y = cú mt im cc tr x B Hm s y = x x + cú mt im cc tr C Hm s y = 3x + 2016 x + 2017 cú hai im cc tr D Hm s y = x cú hai im cc tr x +1 Cõu 792 (THPT KIM LIấN H NI Ln nm 2017) th hm s no di õy cú ng tim cn ngang? x 10 x2 + A y = B y = C y = x x + D y = x x + x +2 x 10 Cõu 793 (THPT KIM LIấN H NI Ln nm 2017)Tỡm tt c cỏc giỏ tr thc ca tham s m th hm s y = A ỏp ỏn khỏc 4x cú tim cn ng nm bờn phi trc Oy xm B m < C m > D m Cõu 794 (S GD&T B RA VNG TU- Ln nm 2017) Hm s y = x + nghch bin trờn khong no ? A ( 0; + ) B ; ữ C ; + ữ D ( ;0 ) Cõu 795 (S GD&T B RA VNG TU- Ln nm 2017) Giỏ tr cc tiu yCT ca hm s y = x x + l: A yCT = B yCT = C yCT = D yCT = Cõu 796 (S GD&T B RA VNG TU- Ln nm 2017) Cho hm s y = f ( x ) liờn tc trờn on [ 1;3] v cú bng bin thiờn Khng nh no sau õy l khng nh ỳng ? A Giỏ tr nh nht ca hm s trờn on [ 1;3] bng B Giỏ tr nh nht ca hm s trờn on [ 1;3] bng C Giỏ tr nh nht ca hm s trờn on [ 1;3] bng D Giỏ tr nh nht ca hm s trờn on [ 1;3] bng Cõu 797 (S GD&T B RA VNG TU- Ln nm 2017) th hm s y = 3x cú ng x +1 tim cn ngang l A y = B y = C x = D x = Cõu 798 (S GD&T B RA VNG TU- Ln nm 2017) S giao im ca ng thng y = x + v ng cong y = x + l: A B C D Cõu 799 (S GD&T B RA VNG TU- Ln nm 2017) ng cong hỡnh bờn (Hỡnh 1) l th ca mt hm s bn hm s c lit kờ bn phng ỏn A, B, C, D di õy Hi ú l hm s no? A y = x3 + 3x + B y = x3 + x D y = x x + B y = x 3x + Cõu 800 (S GD&T B RA VNG TU- Ln nm 2017) Gi M , m ln lt l giỏ tr ln nht x v giỏ tr nh nht ca hm s f ( x ) = e ( x ) x trờn on [ 0; 2] Khng nh no sau õy ỳng? A M + m = e C M + m = e2 ln 2 + ln B M + m = e ln 2 + ln D M + m = e ln 2 + ln Cõu 801 (S GD&T B RA VNG TU- Ln nm 2017) Tỡm tt c cỏc giỏ tr ca tham s m hm s y = x mx + x + ng bin trờn Ă l A m B m C m D m Cõu 802 (S GD&T B RA VNG TU- Ln nm 2017) Cho hm s y = f ( x ) cú o hm cp hai trờn ( a; b ) v x0 ( a; b ) Khng nh no sau õy l khng nh ỳng? A Nu hm s t cc i ti im x0 thỡ f ( x0 ) = v f ( x0 ) > B.Nu f ( x0 ) = v f ( x0 ) < thỡ x0 l im cc tiu ca hm s C Nu x0 l im cc tr ca hm s thỡ f ( x0 ) = v f ( x0 ) D Nu f ( x0 ) = v f ( x0 ) < thỡ x0 l im cc i ca hm s Cõu 803 (S GD&T B RA VNG TU- Ln nm 2017) Giỏ tr nh nht ca hm s y = x x l A B C.1 D Cõu 804 (S GD&T B RA VNG TU- Ln nm 2017) Gi ( C ) l th ca hm s y= x +1 v M l mt im thuc ( C ) cú tung bng Ta ca im M l x A ( 2;3) B ( 4;3) C ( 3;3) D ( 0;3) Cõu 805 (S GD&T B RA VNG TU- Ln nm 2017) Tt c cỏc giỏ tr ca tham s m phng trỡnh x x + = m cú nghim thc phõn bit l m > A m < B < m < C < m < D < m < Cõu 806 (S GD&T B RA VNG TU- Ln nm 2017) Cho ( C ) l th hm s y = x x + x + v l tip tuyn ca ( C ) cú h s gúc nh nht Trong cỏc im sau õy, im no thuc A M (0;3) B N (1; 2) C P (3;0) D Q (2; 1) Cõu 807 (THPT TRN PH HI PHềNG Ln nm 2017)Tỡm tt c giỏ tr ca m hm s y= ( m + 1) x xm A m ng bin trờn tng khong xỏc nh m > B m < C < m < m D m Cõu 808 (THPT TRN PH HI PHềNG Ln nm 2017) th hỡnh bờn l ca hm s no cỏc hm s sau? x +3 x+2 A y = B y = x x +1 x 2x +1 C y = D y = x +1 x +1 Cõu 809 (THPT TRN PH HI PHềNG Ln nm 2017)Cho hm s y = 3x + Khng nh 2x no sau õy NG? A th hm s cú tim cn ng l x = B th hm s cú tim cn ngang l y = C th hm s cú tim cn ngang l y = D th hm s khụng cú tim cn ngang Cõu 810 (THPT TRN PH HI PHềNG Ln nm 2017)S im cc i ca th hm s y = x + 100 l A B C D Cõu 811 (THPT TRN PH HI PHềNG Ln nm 2017)Cho hm s y = x3 + mx + ( 3m + ) x + Tỡm tt c giỏ tr ca m hm s nghch bin trờn Ă m > m A B C m D < m < m < m Cõu 812 (THPT TRN PH HI PHềNG Ln nm 2017)Cho hm s y = 3sin x 4sin x Giỏ tr ln nht ca hm s trờn khong ; ữ bng: 2 A B C D Cõu 813 (THPT TRN PH HI PHềNG Ln nm 2017) th hỡnh bờn l ca hm s no? Chn mt khng nh NG A y = x 3x + x3 B y = + x + C y = x x + D y = x x + Cõu 814 (THPT TRN PH HI PHềNG Ln nm 2017)Hm s y = x x A Nhn im x = lm im cc i B Nhn im x = lm im cc i C Nhn im x = lm im cc tiu D Nhn im x = lm im cc tiu Cõu 815 (THPT TRN PH HI PHềNG Ln nm 2017)Cho hm s y = ( C ) Tỡm tt c giỏ tr ca m ( C ) A m = x2 3x + m cú th xm khụng cú tim cn ng B m = C m = D m = hoc m = Cõu 816 (THPT TRN PH HI PHềNG Ln nm 2017)Cho hm s y = x x Cỏc y khong ng bin ca hm s l A ( 2;0 ) v ( 2; + ) B ( 2;0 ) v ( 0; ) C ( ; ) v ( 0; ) D ( ; ) v ( 2; + ) O x Cõu 817 (THPT TRN PH HI PHềNG Ln nm 2017) th hỡnh bờn l ca hm s y = x + x Tỡm tt c giỏ tr ca m phng trỡnh x x + m = cú hai nghim phõn bit? Chn mt khng nh NG A m = hoc m = B m = C < m < D m = Cõu 818 (THPT TRN PH HI PHềNG Ln nm 2017)Giỏ tr ln nht ca hm s y = x + 3x 12 x + trờn on [ 1; 2] l: A B 11 C 10 D 15 Cõu 819 (THPT TRN PH HI PHềNG Ln nm 2017)Tỡm tt c giỏ tr ca m th hm s y = x + 2mx 2m + i qua im N ( 2; ) A B 17 C 17 D Cõu 820 (THPT NINH GIANG HI DNG Ln nm 2017)Gi ( C ) l th hm s y= x Khi ú phng trỡnh ca tim cn ng v tim cn ngang ca th ( C ) ln lt x +1 l: A x = 1; y = B x = 1; y = C x = 1; y = D x = 1; y = Cõu 821 (THPT NINH GIANG HI DNG Ln nm 2017)Cho hm s y = 2x cú th 3x + (C ) Khng nh no l sai? A (C ) cú tim cn ng x = B (C ) i qua im A 1; ữ C (C ) cú tõm i xng I 2; ữ D (C ) cú tim cn ngang y = Cõu 822 (THPT NINH GIANG HI DNG Ln nm 2017)Phng trỡnh tip tuyn ca th x +1 ti im M ( 2;3) l: x A y = x C y = x hm s y = B y = x + D y = x + Cõu 823 (THPT NINH GIANG HI DNG Ln nm 2017)Hm s no cỏc hm s sau ng bin trờn Ă ? 4x +1 A y = x + x + B y = x 2sin x C y = D y = tan x x+2 Cõu 824 (THPT NINH GIANG HI DNG Ln nm 2017)Cho hm s y = mt khng nh ỳng cỏc khng nh bờn di y =0 y = A y = B max C [ 1;0] 2 [ 1;2] [ 3;5] x +1 Hóy chn 2x D max y = [ 2;1] Cõu 825 (THPT NINH GIANG HI DNG Ln nm 2017)Honh cỏc giao im ca th hm s y = x = A x = 2x (C ) v ng thng d : y = x l x+2 x = B x = x = 1+ C x = x = D x = 3 Cõu 826 (THPT NINH GIANG HI DNG Ln nm 2017)Cho hm s y = x x + im cc i ca th hm s l A ( 1;0 ) B ( 0;1) C ( 0; ) D ( 2; 3) Cõu 827 (THPT NINH GIANG HI DNG Ln nm 2017) Cho hm s y = f ( x) cú bng bin thiờn nh sau Chn phỏt biu sai ? 0+0+00++00+ A Hm s t cc i ti x = B Hm s ó cho l hm s y = f ( x) = x x C th hm s ó cho c biu din nh hỡnh bờn D Hm s ng bin trờn cỏc khong ( 1;0 ) v ( 1; + ) Cõu 828 (THPT NINH GIANG HI DNG Ln nm 2017)Tỡm cỏc giỏ tr ca tham s m th hm s y = mx + (2m 1) x + m ch cú mt cc i v khụng cú cc tiu m A m m C m > B m D m Cõu 829 (THPT NINH GIANG HI DNG Ln nm 2017)Cú bao nhiờu giỏ tr nguyờn ca tham s m th hm s y = x x ct ng thng y = m ti ba im phõn bit A Cõu 830 (THPT C B NINH GIANG HI DNG D Ln nm 2017)Hm s m x x + ( m + 3) x + m luụn ng bin trờn Ă thỡ giỏ tr m nh nht l: A m = B m = C m = D m = y= Cõu 831 (THPT H HUY TP H TNH Ln nm 2017) Cho hm s y = f ( x) xỏc nh trờn Ă \ { 1;1} , liờn tc trờn mi khong xỏc nh v cú bng bin thiờn nh sau: x + y + + + y Khng nh no sau õy l khng nh sai? A th hm s cú hai tim cn ng l cỏc ng thng x = v x = B th hm s cú tim cn ngang l ng thng y = C Hm s khụng cú o hm ti x = nhng võn t cc tr ti x = D Hm s t cc tiu ti im x = Cõu 832 (THPT H HUY TP H TNH Ln nm 2017) Cho hm s y = x + x , cú th ( C ) Tỡm tt c cỏc giỏ tr ca m ng thng d: y = mx + m ct th ( C ) ti ba im phõn bit? m < A m m < B m m > C m m > D m Cõu 833 (THPT H HUY TP H TNH Ln nm 2017) Ta giao im ca th hm s y = x + x + v ng thng y = x + l: A (0;3) B (0; 2) C (2;0) D (0; 2) Cõu 834 (THPT H HUY TP H TNH Ln nm 2017) Tp tt c cỏc giỏ tr m hm s m+2 x (m + 2) x (3m 1) x + ng bin trờn Ă l: 1 A m < B < m C < m < 4 y= D m Cõu 835 (THPT H HUY TP H TNH Ln nm 2017) Cho hm s y = nht ca hm s ú trờn on [ 3; 4] l: A B C x Giỏ tr nh x D Cõu 836 (THPT H HUY TP H TNH Ln nm 2017) Tỡm tt c cỏc giỏ tr ca m tim x+m l ng thng y = ? x3 B m = C m cn ngang ca th hm s y = A m = D m Cõu 837 (THPT H HUY TP H TNH Ln nm 2017) Tỡm cỏc giỏ tr ca m hm s y = (m + 2) x (m 1) x + cú ỳng mt cc tiu? A m < B m C m D m < Cõu 838 (THPT H HUY TP H TNH Ln nm 2017) Hm s no sau õy nghch bin trờn Ă ? x +1 A y = x x + B y = x + x + C y = x 3x D y = 2x Cõu 839 (THPT H HUY TP H TNH Ln nm 2017) im cc i ca hm s y = x + x + l: A x = B (2;7) C x = D (0;3) Cõu 840 (THPT H HUY TP H TNH Ln nm 2017) Hm s y = 2( x 3) + ng bin khong no sau õy ? A (3; +) B ( ;3) C ( ;3] D [ 3; + ) Cõu 841 (THPT H HUY TP H TNH Ln nm 2017) th ca hm s no bn hm s sau cú ng tim cn ngang? x2 + x+2 x + y = x x + A y = B y = C D y = x + 2x + x+4 x2 + Cõu 842 (THPT H HUY TP H TNH Ln nm 2017) Phng trỡnh tip tuyn ca th hm x vuụng gúc vi ng thng d : y = 3x + l: x+2 1 11 1 11 A y = x v y = x B y = x v y = x + 3 3 3 3 1 11 1 11 C y = x v y = x + D y = x v y = x + 3 3 3 3 s y = y Cõu 843 (THPT H HUY TP H TNH Ln nm 2017) th hỡnh bờn l ca hm s no di õy? A y = x x o x B y = x + x + C y = x + x D y = x + x + Cõu 844 (THPT H HUY TP H TNH Ln nm 2017) S giao im ca th hm s x2 vi trc honh l: 4x A B y= C D Cõu 845 (THPT H HUY TP H TNH Ln nm 2017) Giỏ tr ln nht v giỏ tr nh nht ca hm s y = x + x ln lt l: A 2 v B 2 v C 2 v 2 D v Cõu 846 (THPT H HUY TP H TNH Ln nm 2017) Phng trỡnh tip tuyn ca th hm s y = x + x ti im M (1;1) l: A y = x B y = x C y = x + D y = x Cõu 847 ( MINH HO - BGD Ln nm 2017) ng thng no di õy l tim cn ng ca th hm s y = A x = 2x +1 ? x +1 B y = C y = D x = Cõu 848 ( MINH HO - BGD Ln nm 2017) th ca hm s y = x x + v th ca hm s y = x + cú tt c bao nhiờu im chung? A B C D Cõu 849 ( MINH HO - BGD Ln nm 2017) Cho hm s y = f ( x ) xỏc nh, liờn tc trờn on [ 2; 2] v cú th l ng cong hỡnh v bờn Hm s f ( x ) t cc i ti im no di õy? A x = B x = C x = D x = Cõu 850 ( MINH HO - BGD Ln nm 2017) Cho hm s y = x x + x + Mnh no di õy ỳng? A Hm s nghch bin trờn khong ;1ữ C Hm s ng bin trờn khong ;1ữ B Hm s nghch bin trờn khong ; ữ D Hm s nghch bin trờn khong ( 1; + ) Cõu 851 ( MINH HO - BGD Ln nm 2017) Cho hm s y = f ( x ) xỏc nh trờn Ă \ { 0} , liờn tc trờn mi khong xỏc nh v cú bng bin thiờn nh sau Tỡm hp tt c cỏc giỏ tr ca tham s thc m cho phng trỡnh f ( x ) = m cú ba nghim thc phõn bit A [ 1; 2] B ( 1; ) C ( 1; 2] D ( ; 2] Cõu 852 ( MINH HO - BGD Ln nm 2017) Cho hm s y = x2 + Mnh no di õy x +1 ỳng? A Cc tiu ca hm s bng B Cc tiu ca hm s bng C Cc tiu ca hm s bng D Cc tiu ca hm s bng Cõu 853 ( MINH HO - BGD Ln nm 2017) Mt vt chuyn ng theo quy lut s = t + 9t vi t (giõy) l khong thi gian tớnh t lỳc bt u chuyn ng v y ( 2) = 22 (một) l quóng ng vt i c khong thi gian ú Hi khong thi gian 10 giõy, k t lỳc bt u chuyn ng, tc ln nht ca vt t c bng bao nhiờu? A 216 ( m /s ) B 30 ( m /s ) C 400 ( m /s ) D 54 ( m /s ) Cõu 854 ( MINH HO - BGD Ln nm 2017) Tỡm tt c cỏc tim cn ng ca th hm s 2x x2 + x + y= x2 5x + A x = v x = B x = C x = v x = D x = Cõu 855 (THPT HI HU A NAM NH Ln nm 2017) Hm s no sau õy ng bin trờn Ă A y = x x 3x + B y = x x + x + C y = x 10 x2 D y = x + x + 2000 Cõu 856 (THPT HI HU A NAM NH Ln nm 2017) th hm s f ( x) = bao nhiờu ng tim cn? A B C D x2 4x + cú x4 4x2 + 0+0+00++11+ Khng nh no sau õy l sai? A M ( 0; ) c gi l im cc i ca hm s B Hm s ng bin trờn cỏc khong ( 1;0 ) v ( 1; + ) C x0 c gi l im cc tiu ca hm s D f ( 1) c gi l giỏ tr cc tiu ca hm s Cõu 880 (THPT CHUYấN VNH PHC Ln nm 2017) Cho hm s y = x x cú th ( C ) Phng trỡnh tip tuyn ca ( C ) ti giao im ca ( C ) vi trc tung l A y = x + B y = x + C y = x D y = x Cõu 881 (THPT CHUYấN VNH PHC Ln nm 2017) Cho hm s y = x x + cú th ( C ) Gi d l ng thng i qua A ( 3; 20 ) d ct ( C ) ti im phõn bit A m < 15 , m 24 B m 15 v cú h s gúc m Giỏ tr ca m ng thng C m > 15 , m 24 D m < 15 Cõu 882 (THPT CHUYấN VNH PHC Ln nm 2017) Cho hm s y = x x + x ( C ) ng thng i qua im A ( 1;1) v vuụng gúc vi ng thng i qua hai im cc tr ca ( C) l: A y = x+ 2 B y = x+ 2 C y = x + D x y = Cõu 883 (THPT CHUYấN VNH PHC Ln nm 2017) Tỡm tt c cỏc giỏ tr m hm s mx y = x + x + 2017 ng bin trờn Ă A 2 m 2 B m 2 C 2 m D 2 < m < 2 Cõu 884 (THPT CHUYấN VNH PHC Ln nm 2017) Tụng ca giỏ tr ln nht v giỏ tr nh nht ca hm s y = x x + trờn on [ 2; 4] l: A 22 C 18 B D 14 Cõu 885 (THPT CHUYấN VNH PHC Ln nm 2017) Tỡm giỏ tr ln nht ca hm s y = x x x trờn on [ 1;3] y = A max [ 1;3] B max y = [ 1;3] 176 27 y = C max [ 1;3] y = D max [ 1;3] Cõu 886 (THPT CHUYấN VNH PHC Ln nm 2017) th hỡnh bờn di l mt hm s bn hm s c lit kờ bn phng ỏn A, B, C, D di õy Hi hm s ú l hm s no? x+2 x x +1 C m = x A y = 2x +1 x x+2 D y = x B m = Cõu 887 (THPT CHUYấN VNH PHC Ln nm 2017) Tỡm tt c cỏc giỏ tr ca tham s m phng trỡnh x + x + + 2m = cú nghim phõn bit: 3 < m < A m B < m < C < m < D 2 Cõu 888 (THPT CHUYấN VNH PHC Ln nm 2017) Tỡm tt c cỏc giỏ tr m hm s mx y= x + x + 2017 ng bin trờn Ă : A m 2 B 2 m 2 C 2 < m < 2 D 2 m Cõu 889 (THPT CHUYấN VNH PHC Ln nm 2017)Cho hm s y = f ( x ) cú th nh hỡnh v bờn Xỏc nh tt c cỏc giỏ tr ca tham s m phng trỡnh f ( x ) = m cú ỳng nghim thc phõn bit A m > 4; m = B < m < C < m < D < m < Cõu 890 (THPT CHUYấN VNH PHC Ln nm 2017) th hỡnh bờn di l th ca mt hm s bn hm s c lit kờ bn phng ỏn A, B, C, D di õy Hi hm s ú l hm s no ? x+2 2x +1 A y = B y = x x x +1 x+2 C y = D y = x x Cõu 891 (THPT CHUYấN VNH PHC Ln nm 2017) H thc liờn h gia giỏ tr cc i yCé v giỏ tr cc tiu yCT ca th hm s y = x x l: A yCT + yCé = B yCT = yCé C yCT = yCé D yCT = yCé Cõu 892 (THPT CHUYấN VNH PHC Ln nm 2017) Cho hm s y = x x + cú th ( C ) Gi d l ng thng i qua A ( 3; 20 ) d ct ( C ) ti im phõn bit l A m < 15 , m 24 B m 15 v cú h s gúc m Giỏ tr ca m ng thng C m > 15 , m 24 D m < 15 Cõu 893 (THPT CHUYấN VNH PHC Ln nm 2017) Cho hm s y = x x cú th ( C ) Phng trỡnh tip tuyn ca ( C ) ti giao im ca ( C ) vi trc tung l: A y = x B y = x C y = x + D y = x + Cõu 894 (THPT CHUYấN VNH PHC Ln nm 2017) Cho hm s y = f ( x ) xỏc nh, liờn tc trờn Ă v cú bng bin thiờn 0+0+00+++ Khng nh no sau õy l sai ? A M ( 0; ) c gi l im cc i ca hm s B f ( 1) c gi l giỏ tr cc tiu ca hm s C Hm s ng bin trờn cỏc khong ( 1; ) v ( 1; + ) D x0 = c gi l im cc tiu ca hm s Cõu 895 (THPT CHUYấN VNH PHC Ln nm 2017) Tỡm tt c cỏc giỏ tr ca tham s m phng trỡnh x + x + + 2m = cú nghim phõn bit? 3 < m < A m B < m < C < m < D 2 Cõu 896 (THPT CHUYấN VNH PHC Ln nm 2017) Cho hm s y = x x + x ( C ) ng thng i qua im A ( 1; 1) v vuụng gúc vi ng thng i qua hai im cc tr ca ( C) l: A y = x + 2 B y = x+ 2 C y = x + D x y = Cõu 897 (THPT CHUYấN VNH PHC Ln nm 2017) Tỡm giỏ tr ln nht ca hm s y = f ( x ) = x x2 ? f ( x ) = f A max ữ ữ= [ 1;1] f ( x ) = f C max ữ ữ= [ 1;1] f ( x ) = f B max [ 1;1] f ( x ) = f D max R ữ= ữ 2 ữ= ữ Cõu 898 (THPT CHUYấN VNH PHC Ln nm 2017) Tụng ca giỏ tr ln nht v giỏ tr nh nht ca hm s y = x x + trờn on [ 2; 4] l: A 22 B 18 C D 14 Cõu 899 (THPT CHUYấN VNH PHC Ln nm 2017) Tỡm giỏ tr ln nht ca hm s y = x x x trờn on [1;3] y = A max [1;3] y = C max [1;3] 176 [1;3] 27 y = D max [1;3] B max y = Cõu 900 (THPT CHUYấN VNH PHC Ln nm 2017) Mt on tu chuyn ng thng hnh t mt nh ga Qung ng s (một) i c ca on tu l mt hm s ca thi gian t (phỳt), hm s ú l s = 6t t Thi im t (giõy) m ti ú tc v (m/s) ca chuyn ng t giỏ tr ln nht l: A t = 3s B t = 6s C t = 2s D t = 4s Cõu 901 (THPT CHUYấN VNH PHC Ln nm 2017) Cho hm s y = x x x cú hai im cc tr l x1 , x2 Hi tụng x1 + x2 l bao nhiờu ? A x1 + x2 = 12 B x1 + x2 = C x1 + x2 = Cõu 902 (THPT CHUYấN VNH PHC Ln nm 2017) Cho hm s y = D x1 + x2 = 2x +1 cú th l ( C ) x2 Phng trỡnh tip tuyn ca ( C ) cú h s gúc bng l: A y = x + v y = x 22 C y = x + v y = x + 22 B y = x v y = x + 22 D y = x + v y = x + 22 Cõu 903 (THPT CHUYấN VNH PHC Ln nm 2017) th hỡnh bờn di l th ca hm s y = x + x Da vo th bờn di hóy tỡm t c cỏc giỏ tr thc ca tham s m cho phng trỡnh x x + m = cú ỳng hai nghim thc phõn bit A m < B m < 2, m = C m < 0, m = D m < Cõu 904 (THPT CHUYấN VNH PHC Ln nm 2017) Cho hm s y = x x + cú th ( C ) Gi d l ng thng i qua A ( 3; 20 ) d ct ( C ) ti im phõn bit l A m > 15 , m 24 B m 15 v cú h s gúc m Giỏ tr ca m ng thng C m < 15 D m < 15 , m 24 Cõu 905 (THPT CHUYấN VNH PHC Ln nm 2017) Tỡm tt c cỏc giỏ tr thc ca tham s m cho tim cn ngang ca th hm s y = A m = B m = mx + i qua im M ( 10; 3) x +1 C m = D m = Cõu 906 (THPT CHUYấN VNH PHC Ln nm 2017) ng cong hỡnh bờn l th ca mt hm s bn hm s lit kờ bn phng ỏn A, B, C, D di õy Hi hm s ú l hm s no? A y = x x B y = x x C y = x x + D y = x + x + Cõu 907 (THPT CHUYấN VNH PHC Ln nm 2017) Hm s y = x + x ng bin trờn khong no sau õy? A ( ; 1) B ( ; 1) C ( 1; 1) D ( 1; + ) Cõu 908 (THPT CHUYấN VNH PHC Ln nm 2017) Hm s y = trờn on [ 0; 3] l A B x 3x cú giỏ tr ln nht x +1 D C Cõu 909 (THPT CHUYấN NGUYN TRI HI DNG Ln nm 2017) th ca hm s y = 3x x x + 12 x + t cc tiu ti M ( x1 ; y1 ) Tớnh tụng x1 + y1 B 11 A C D Cõu 910 (THPT CHUYấN NGUYN TRI HI DNG Ln nm 2017) Cho hm s f ( x ) = v lim f ( x ) = Khng nh no sau õy l khngnh ỳng? y = f ( x ) cú xlim + x A th hm s ó cho cú ỳng mt tim cn ngang B th hm s ó cho cú hai tim cn ngang l cỏc ng thng x = v x = C th hm s ó cho cú hai tim cn ngang l cỏc ng thng y = v y = D th hm s ó cho khụng cú tim cn ngang Cõu 911 (THPT CHUYấN NGUYN TRI HI DNG Ln nm 2017) Hm s y = x + x + nghch bin trờn mi khong no sau õy? ( C ( ) 2;0 ) ; ( ( A 2; ) ( B 3;0 ; 2; + ) ) 2; + D ( 2; + ) Cõu 912 (THPT CHUYấN NGUYN TRI HI DNG Ln nm 2017) Tỡm xỏc nh ca hm s y = x +1 ` x A Ă \ { 1} B Ă \ { 1} C Ă \ { 1} D ( 1; + ) Cõu 913 (THPT CHUYấN NGUYN TRI HI DNG Ln nm 2017) Cho hm s f ( x ) ng bin trờn tps thc Ă , mnh no sau õy l ỳng? A Vi mi x1 > x2 Ă f ( x1 ) < f ( x2 ) B Vi mi x1 , x2 Ă f ( x1 ) > f ( x2 ) C Vi mi x1 , x2 Ă f ( x1 ) < f ( x2 ) D Vi mi x1 < x2 Ă f ( x1 ) < f ( x2 ) Cõu 914 (THPT CHUYấN NGUYN TRI HI DNG Ln nm 2017) Tỡm giỏ tr nh nht ca hm s y = x2 + trờn on [ 2; 4] x 19 y = B [2;4] A y = [2;4] y = C [2;4] y = D [2;4] Cõu 915 (THPT CHUYấN NGUYN TRI HI DNG Ln nm 2017) Hm s y = x3 x t cc tr ti cỏc im no sau õy? A x = B x = C x = 0, x = D x = 0, x = Cõu 916 (THPT CHUYấN NGUYN TRI HI DNG Ln nm 2017) thcahms y= x +1 cú bao nhiờu tim cn ? x + 2x A B C D Cõu 917 (THPT CHUYấN NGUYN TRI HI DNG Ln nm 2017) Tỡm phng trỡnh ng tim cn ng ca th hm s y = A x = B x = x x+2 C y = D x = Cõu 918 (THPT LNG DAC BANG THANH HO Ln nm 2017) Trong cỏc hm s sau hm no ng bin trờn Ă ? x +1 A y = x + x B y = C y = x + D y = x + x x+3 Cõu 919 (THPT LNG DAC BANG THANH HO Ln nm 2017) Vi giỏ tr no ca m thỡ phng trỡnh x x m = cú ba nghim phõn bit A < m < B < m < C m < D m < Cõu 920 (THPT LNG DAC BANG THANH HO Ln nm 2017) Gi M v m ln lt l giỏ tr ln nht v giỏ tr nh nht ca hm s: y = 2sin x cos x + Khi ú tớch M m l: A M m = B M m = 25 C M m = 25 D M m = Cõu 921 (THPT LNG DAC BANG THANH HO Ln nm 2017) ng thng qua hai x x l : B y = C x = im cc tiu ca th hm s y = A y = D y = Cõu 922 (THPT LNG DAC BANG THANH HO Ln nm 2017) th hm s y = x + cú bao nhiờu im cc tr? A B C x D Cõu 923 (THPT LNG DAC BANG THANH HO Ln nm 2017) Cho hm s: y = x x Khng nh no sau õy sai ? A o hm ca hm s l: y = 3x 2x C Hm s ng bin trờn khong ( ;1) B Hm s cú mt im cc tr D Hm s nghch bin trờn khong ( 1; + ) Cõu 924 (THPT LNG DAC BANG THANH HO Ln nm 2017) th hm s 2x cú ng tim cn ng, tim cn ngang l : x A x = 1; y = B x = 1; y = C x = 1; y = y= D x = 2; y = Cõu 925 (THPT LNG DAC BANG THANH HO Ln nm 2017)y Xỏc nh cỏc h s a , b , c th hm s : y = ax + bx + c cú th nh hỡnh v x 1 A a = ; b = 3; c = O B a = 1; b = 2; c = C a = 1; b = 3; c = D a = 1; b = 3; c = Cõu 926 (THPT LNG DAC BANG THANH HO Ln nm 2017) Hm s y = cc i ti: A x = B x = C x = x2 t x2 D x = Cõu 927 (THPT LNG DAC BANG THANH HO Ln nm 2017) Cho hm s ( C ) : y = x x + Tỡm m A m = 164 ng thng d : y = 60 x + m tip xỳc vi ( C ) B m = C m = 60 D ỏp ỏn khỏc Cõu 928 (THPT LNG DAC BANG THANH HO Ln nm 2017) Trờn khong ( 0; + ) thỡ hm s y = x + x + : A Cú giỏ tr nh nht l y = C Cú giỏ tr ln nht l max y = B Cú giỏ tr ln nht l max y = D Cú giỏ tr nh nht l y = Cõu 929 (THPT LNG DAC BANG THANH HO Ln nm 2017) Vi giỏ tr no ca m thỡ th hm s: y = x x + m ct trc honh ti im phõn bit A m = B m > hoc m < C m < D < m < Cõu 930 Phng trỡnh tip tuyn vi th hm s y = f ( x ) = x 3x + ti im cú honh x = A y = x + B y = x C y = x D y = x + Cõu 931 (THPT QUNG XNG THANH HO Ln nm 2017) Tt c cỏc giỏ tr ca m phng trỡnh x x m = cú nghim phõn bit l: A m B m C < m < D < m < Cõu 932 (THPT QUNG XNG THANH HO Ln nm 2017) Cho hm s y = x 3x Tớch cỏc giỏ tr cc i v cc tiu ca hm s bng: A B 12 C 20 D 12 Cõu 933 (THPT QUNG XNG THANH HO Ln nm 2017) Bit ng thng y = x ct th hm s y = 2x +1 ti hai im phõn bit A , B cú honh ln lt x A , xB Khi ú x x A + xB l: A x A + xB = C x A + xB = B x A + xB = D xA + xB = Cõu 934 (THPT QUNG XNG THANH HO Ln nm 2017) th sau õy l th ca hm s no ? A y = x x + B y = x x C y = x + x D y = x + x + Cõu 935 (THPT QUNG XNG THANH HO Ln nm 2017) Bng bin thiờn di õy l ca hm s no? 00 A y = x x + x B y = x x + x C y = x + x + x + D y = x + x x + Cõu 936 (THPT QUNG XNG THANH HO Ln nm 2017) Cho hm s y = 2x + x +1 Khng nh no sau õy l ỳng? A Hm s nghch bin trờn cỏc khong ( ; 1) v (1; +) B Hm s luụn luụn nghch bin trờn Ă \ { 1} C Hm s ng bin trờn cỏc khong ( ; 1) v (1; +) D Hm s luụn luụn ng bin trờn Ă \ { 1} Cõu 937 (THPT QUNG XNG THANH HO Ln nm 2017) Gi M v m tng ng l x3 + x + x giỏ tr ln nht v giỏ tr nh nht ca hm s y = Khi ú M m bng: (x + 1)2 A B C D 2 Cõu 938 (THPT QUNG XNG THANH HO Ln nm 2017)ng cong hỡnh bờn l th hm s y = ax + bx + cx + d Xột cỏc phỏt biu sau: a = ad < ad > d = a + c = b + S phỏt biu sai l: A B C D Cõu 939 (THPT QUNG XNG THANH HO Ln nm 2017) Tt c cỏc giỏ tr m hm s y = mx + mx + (m 1) x ng bin trờn Ă l: A m < B m C m D < m < Cõu 940 (THPT QUNG XNG THANH HO Ln nm 2017) S cỏc ng tim cn ng ca th hm s y = A x+3 l: x2 B C Cõu 941 (S GD&T BC NINH Ln nm 2017) Cho hm s y = 1) Hm s ó cho ng bin trờn ( - Ơ ;1) ẩ ( 1; +Ơ ) D x- Xột cỏc mnh sau: x- 2) Hm s ó cho ng bin trờn Ă \ {1} 3) Hm s ó cho ng bin trờn tng khong xỏc nh 4) Hm s ó cho ng bin trờn cỏc khong ( - Ơ ;- 1) v ( - 1; +Ơ ) S mnh ỳng l A B C D Cõu 942 (S GD&T BC NINH Ln nm 2017) Hm s y = x + 5x + cú bao nhiờu im cc tr? A B C D 2 Cõu 943 (S GD&T BC NINH Ln nm 2017) Cho hm s y = x - m x - m cú th (C ) Tỡm tt c cỏc giỏ tr thc ca tham s m tip tuyn ca th (C ) ti im cú honh x0 = song song vi ng thng d : y = - 5x A m = ộm = C ờm = - B m = - D Khụng cú giỏ tr ca m Cõu 944 (S GD&T BC NINH Ln nm 2017) Phng trỡnh ng tim cn ng v tim cn x +1 ln lt l x- B y = 2;x = C x = 2;y = - ngang ca th hm s y = A x = 2;y = D x = - 2;y = Cõu 945 (S GD&T BC NINH Ln nm 2017)Cho hm s y = f ( x) cú th nh hỡnh bờn Tỡm tt c cỏc giỏ tr thc ca tham s m phng trỡnh f ( x) - m + = cú bn nghim phõn bit A - < m < B - < m < C - Ê m Ê D - Ê m Ê - 3 Cõu 946 (S GD&T BC NINH Ln nm 2017) Cho hm s y = f ( x) xỏc nh trờn D Trong cỏc mnh sau mnh no sai? f ( x) nu f ( x) m vi mi x thuc D v tn ti x0 ẻ D cho f ( x0 ) = m A m = D f ( x) nu f ( x) > m vi mi x thuc D B m = D f ( x) nu f ( x) Ê M vi mi x thuc D v tn ti x0 ẻ D cho f ( x0 ) = M C M = max D f ( x) thỡ f ( x) Ê M vi mi x thuc D D Nu M = max D Cõu 947 (S GD&T BC NINH Ln nm 2017) Hm s y = - x + 3x - cú im cc i bng A B C D M ( 2;3) Cõu 948 (S GD&T BC NINH Ln nm 2017) S giao im ca th hm s y = x3 - 4x + v ng thng d :y = l A B C D Cõu 949 (S GD&T BC NINH Ln nm 2017)ng cong hỡnh bờn l th ca mt hm s bn hm s c lit kờ bn phng ỏn A, B, C, D di õy Hi ú l hm s no? A y = x4 - 4x2 + B x4 - 4x2 - C y = x4 + 4x2 + D y = - x4 + 4x2 + Cõu 950 (S GD&T BC NINH Ln nm 2017) Hm s y = - x - 2x + cú my im cc tr? A B C D x2 + Cõu 951 (S GD&T BC NINH Ln nm 2017) Tỡm giỏ tr ln nht ca hm s y = x ự trờn on ộ ở1;4ỳ ỷ 25 y = 11 y = 10 y = max y = A max B C max D max ộ1;4ự ộ1;4ự ộ1;4ự ỷ ỳ ỷ ỳ ỷ ỳ ộ1;4ự ở ỷ ỳ Cõu 952 (S GD&T BC NINH Ln nm 2017) Xột cỏc mnh sau: 1) th hm s y = cú mt ng tim cn ng v mt ng tim cn ngang 2x - 2) th hm s y = x + x + x + cú hai ng tim cn ngang v mt ng tim cn ng x 3) th hm s y = x- S mnh ỳng l A 2x - cú mt ng tim cn ngang v hai ng tim cn ng x - B C D Cõu 953 (S GD&T BC NINH Ln nm 2017) Hm s y = x - 3x - ng bin trờn cỏc khong no sau õy? A ( - Ơ ;- 1) ẩ ( 1; +Ơ ) B ( - 1; +Ơ ) C ( - Ơ ;- 1) v ( 1;+Ơ ) D ( - 1;1) Cõu 954 (S GD&T BC NINH Ln nm 2017) Cho hm s f ( x) = x - 3x + S nghim ( ( x) ) = l? ca phng trỡnh ff A B C D Cõu 955 (S GD&T BC NINH Ln nm 2017) Cho cỏc hm s y = x - x + 2x ; y = x3 + 1; y = - x3 - 4x - 4sin x Trong cỏc hm s trờn cú bao nhiờu hm s ng bin trờn xỏc nh ca chỳng A B C D Cõu 956 (THPT CHUYấN THI BèNH Ln nm 2017)Hm s no di õy ng bin trờn Ă ? A y = x + B y = x + C y = x + D y = x + Cõu 957 (THPT CHUYấN THI BèNH Ln nm 2017)Cho hm s f ( x ) xỏc nh trờn Ă v cú th hm s y = f ( x ) l ng cong hỡnh bờn Mnh no di õy ỳng ? A Hm s f ( x ) ng bin trờn khong ( 1; ) B Hm s f ( x ) nghch bin trờn khong ( 0; ) C Hm s f ( x ) ng bin trờn khong ( 2;1) D Hm s f ( x ) nghch bin trờn khong ( 1;1) Cõu 958 (THPT CHUYấN THI BèNH Ln nm 2017)Tp hp tt c cỏc giỏ tr thc ca m th hm s y = ( x + 1)(2 x mx + 1) ct trc honh ti ba im phõn bit l ( C m ( ) ( 2) ) ( ) ( D m ( ; 2 2; ) B m ; 2 2; + \ { 3} A m ; 2 2; + ) 2; + \ { 3} Cõu 959 (THPT CHUYấN THI BèNH Ln nm 2017)Cho hm s y = x Mnh no di õy ỳng? A Hm s ng bin trờn khong (0; +) B Hm s ng bin trờn ( ; + ) C Hm s ng bin trờn khong ( 1; + ) D Hm s nghch bin trờn khong ( ;0 ) Cõu 960 (THPT CHUYấN THI BèNH Ln nm 2017)Cho hm s y = f ( x) liờn tc trờn tng khong xỏc nh v cú bng bin thiờn sau: Tỡm m phng trỡnh f ( x) + m = cú nhiu nghim thc nht m m > m < A B C m 15 m < 15 m > 15 m D m 15 Cõu 961 (THPT CHUYấN THI BèNH Ln nm 2017)Giỏ tr ln nht M ca hm s f ( x ) = sin x 2sin x l A M = B M = 3 C M = D M = 3 Cõu 962 (THPT CHUYấN THI BèNH Ln nm 2017)Cho hm s y = 4x cú th ( C ) 2x + Mnh no di õy sai? A th ( C ) cú tim cn ng B th ( C ) cú tim cn ng v tim cn ngang C th ( C ) cú tim cn ngang D th ( C ) khụng cú tim cn Cõu 963 (THPT CHUYấN THI BèNH Ln nm 2017)ng cong hỡnh bờn l th ca mt bn hm s c lit kờ bờn di Hi hm s ú l hm s no? A y = x + x + B y = x + C y = x + D y = x + x + Cõu 964 (THPT CHUYấN THI BèNH Ln nm 2017)Hi th hm s y = c bao nhiờu tim cn (gm tim cn ng v tim cn ngang)? A B C 3x + cú tt 2x +1 x D Cõu 965 (THPT HNG QUANG HI DNG Ln nm 2017) Cho hm s y = ax4 +bx2 + c vi ab Mnh no sau õy ỳng: A Hm s cú im cc tiu v im cc i vi mi giỏ tr ca a, b B Hm s cú im cc tr ab < C Vi mi giỏ tr ca a, b , th hm s cú im cc tr l nh ca mt tam giỏc cõn D Hm s cú im cc tr ab > Cõu 966 (THPT HNG QUANG HI DNG Ln nm 2017) th hm s y= x2 - 3x + x2 - 5x + cú bao nhiờu ng tim cn: A tim cn ngang v ng tim cn ng B tim cn ngang v tim cn ng C tim cn ngang v tim cn ng D tim cn ngang v tim cn ng Cõu 967 (THPT HNG QUANG HI DNG Ln nm 2017) Bit rng hm s y = x3 - 3x2 + m A cú giỏ tr nh nht trờn on B m=4 ộ0; 1ự ỷ ỳ bng C m=0 Khi ú giỏ tr ca m l: D m=2 m=6 Cõu 968 (THPT HNG QUANG HI DNG Ln nm 2017) Tỡm giỏ tr ln nht ca hm s y= A 2x - x +1 trờn on max y = ộ1; 2ự ỳ ỷ ộ1; 2ự ỷ ỳ B max y = ộ1; 2ự ỷ ỳ C max y = ộ1; 2ự ỷ ỳ D max y = ộ1; 2ự ỷ ỳ Cõu 969 (THPT HNG QUANG HI DNG Ln nm 2017) Gi I l tõm i xng ca th hm s y= 2x + 3x Mnh no sau õy ỳng: A I thuc gúc phn t th hai C I thuc gúc phn t th nht B I thuc trc tung D I thuc trc honh Cõu 970 (THPT HNG QUANG HI DNG Ln nm 2017) Cho hm s Chn phng ỏn sai: A Hm s khụng cú cc tr ổ B th hm s nhn im U ỗỗỗỗố2; - ữ 2ữ ữ ữ lm ứ y = 2x3 - 3x2 + 5x - tõm i xng C Hm s cú mt im cc i v mt im cc tiu D Hm s n iu trờn Ă Cõu 971 (THPT HNG QUANG HI DNG Ln nm 2017) Cho hm s y = ax3 + bx2 + cx + d (a 0) cú th (C), tip tuyn ca th (C) cú h s gúc t giỏ tr ln nht khi: A Honh tip im l C a0 v honh tip im l Cõu 972 (THPT HNG QUANG HI DNG Ln nm 2017)Cho hm s x =- y = f (x) b 3a cú xỏc nh l Ă \ { - 1} v liờn tc trờn mi khong xỏc nh, cú bng bin thiờn nh hỡnh v bờn Mnh no sau õy ỳng: A Bt phng trỡnh f (x) > vụ nghim B Bt phng trỡnh f (x) > m cú nghim nht vi mi m > C Bt phng trỡnh f (x) < m cú nghim vi mi giỏ tr ca m D Bt phng trỡnh f (x) < cú ỳng nghim phõn bit Cõu 973 (THPT HNG QUANG HI DNG Ln nm 2017)Cho hm s nh hỡnh v bờn Mnh no sau õy ỳng: A Phng trỡnh f (x) = m luụn cú nghim B Phng trỡnh f (x) = m cú nghim phõn bit m > C Phng trỡnh f (x) = m cú nghim phõn bit m D Phng trỡnh f (x) = m vụ nghim m Ê - y = f (x) Cõu 974 (THPT C TH - H TNH Ln nm 2017) Tỡm xỏc nh ca hm s y = A Ă B Ă \ { 2} C Ă \ { 2} D ( 2; + ) cú th x2 x+2 Cõu 975 (THPT C TH - H TNH Ln nm 2017) Tỡm im cc tiu ca th hm s y= x x + 3x + A ( 3;1) B x = C 1; ữ D x = Cõu 976 (THPT C TH - H TNH Ln nm 2017) Tỡm cỏc khong ng bin ca hm s y = x4 + 2x2 A ( 1;0 ) v ( 1; + ) B ( ; 1) v ( 0;1) C ( 0; + ) D ( ;0 ) Cõu 977 (THPT C TH - H TNH Ln nm 2017) Tỡm tt c cỏc giỏ tr thc ca tham s m cho th hm s y = A m > C m = x 3x + m khụng cú tim cn ng xm B m D m = v m = Cõu 978 (THPT C TH - H TNH Ln nm 2017) Cho hm s y = f ( x ) xỏc nh v liờn tc trờn D = Ă \ { 1} v cú bng bin thiờn: x y' y + + + + + Da vo bng bin thiờn ca hm s y = f ( x ) Khng nh no sau õy l khng nh sai? A Giỏ tr nh nht ca hm s trờn on [ 1;8] bng B Phng trỡnh f ( x ) = m cú nghim thc phõn bit m > C Hm s t cc tiu ti x = D Hm s nghch bin trờn khong ( ;3) Cõu 979 (THPT C TH - H TNH Ln nm 2017) S giao im ca ng thng y = x + v th hm s y = A 3x l x B C D Cõu 980 (THPT C TH - H TNH Ln nm 2017) Tỡm giỏ tr ln nht, giỏ tr nh nht ca x2 + trờn on [ 0;3] x +1 A y = 1; max y = [ 0;3] [ 0;3] C y = + 2; max y = [ 0;3] [ 0;3] hm s y = B y = 2; max y = [ 0;3] [ 0;3] D y = 1; max y = [ 0;3] [ 0;3] Cõu 981 (THPT C TH - H TNH Ln nm 2017) ng thng no di õy l tim cn x ? 2x +1 B y = ngang ca th hm s y = A x = C y = D x = Cõu 982 (THPT C TH - H TNH Ln nm 2017) th hỡnh bờn l th ca hm s no? x +1 x A y = B y = x x +1 2x x C y = D y = x x Cõu 983 (THPT C TH - H TNH Ln nm 2017) Xỏc nh cỏc h s a , b , c th hm s y = ax + bx + c , bit im A ( 1; ) , B ( 0; 3) l cỏc im cc tr ca th hm s B a = ; b = 3; c = D a = 1; b = 2; c = A a = 1; b = 0; c = C a = 1; b = 3; c = Cõu 984 (THPT NGễ S LIấN Ln nm 2017)Cho hm s y = f ( x ) xỏc nh trờn Ă \ { 3} , liờn tc trờn mi khong xỏc nh v cú bng bin thiờn nh bờn Phng trỡnh f ( x ) = m cú ỳng hai nghim thc phõn bit v ch A m hoc m = B m > C m > D m Cõu 985 (THPT NGễ S LIấN Ln nm 2017) S ng tim cn ca th hm s y= A 2x x + x l B C D Cõu 986 (THPT NGễ S LIấN Ln nm 2017) Cho hm s y = x 3x + Mnh no sau õy sai? A Hm s ng bin trờn khong ;+ ữ ữ B Hm s nghch bin trờn khong ; ữ 2ữ C Hm s ng bin trờn khong ;0ữ ữ D Hm s nghch bin trờn khong 0; ữ 2ữ