1. Trang chủ
  2. » Giáo án - Bài giảng

Bootstrapping the 3d ising model

20 68 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 356,73 KB

Nội dung

Bootstrapping the 3D Ising Model David Simmons-Duffin IAS Strings 2014 with S El-Showk, M Paulos, F Kos, D Poland, S Rychkov, A Vichi The Conformal Bootstrap Polyakov ’70: classify/solve CFTs using: • conformal symmetry • unitarity • associativity of the OPE Progress in d = throughout 80’s and 90’s Huge revival for d > a few years ago CFT Review • Local operators O1 (x), O2 (x), • Scaling dimensions Oi (x)Oi (y) = |x − y|−2∆i • Operator Product Expansion (OPE) fijk x∆k −∆i −∆j (Ok (0) + ) Oi (x)Oj (0) = k i j = ∑ k k • Unitarity: ∆i bounded from below, fijk are real Bootstrap Revival • φ(x): a real scalar primary operator • It has the OPE fφφO x∆O −2∆φ (O(0) + ) φ(x)φ(0) = O Rattazzi, Rychkov, Tonni, Vichi ’08: Bootstrap constraints on φφφφ imply universal bounds on • OPE coefficients fφφO • Dimensions, spins ∆O , O Conformal Blocks & Crossing Symmetry φ(x1 )φ(x2 )φ(x3 )φ(x4 ) = O ❆ ❆ ✁ ✁ O ✁ ✁ ❆ ❆ Crossing Symmetry O ❆ ❆ ✁ ✁ O ✁ ✁ ❆ ❆ 1❍ ✟ ❍✟ − = O ✟❍ ❍ ✟ fφφO v ∆φ g∆, (u, v) − u∆φ g∆, (v, u) O F∆, (u, v) = Bounds from Crossing Symmetry fφφO F∆, (u, v) = F0,0 (u, v) + O • Make an assumption about spectrum of ∆, ’s • Try to find a linear functional α such that α(F0,0 ) > α(F∆, ) ≥ (convex optimization problem) • If α exists, assumption is ruled out Outline Bounds in 3d CFTs Mixed Correlators Future Directions Outline Bounds in 3d CFTs Mixed Correlators Future Directions Universal Bound in 3d CFTs [El-Showk, Paulos, Poland, Rychkov, DSD, Vichi ’12] 1.8 Ε 78 comp 3d Ising ? 1.6 1.4 1.2 1.0 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64 Σ • ≡ lowest dimension scalar in σ × σ • Assumes only bootstrap constraints for σσσσ 3d O(N ) Vector Models [Kos, Poland, DSD ’13] ∆|φ|2 O(20) O(10) 2.2 O(6) 1.8 O(4) 1.6 O(2) Ising 1.4 1.2 75 10.5 0.51 0.52 0.53 ∆φ Fractional Spacetime Dimensions [El-Showk, Paulos, Poland, Rychkov, DSD, Vichi ’13] γ ≡ ∆ − (d − 2) vs γσ ≡ ∆σ − d−2 2 1.0 2.25 0.8 2.5 0.6 ΓΕ 2.75 0.4 3.25 0.2 3.5 ΓΕ 2ΓΣ 3.7 3.8 3.9 0.0 0.00 0.02 0.04 0.06 0.08 ΓΣ 0.10 0.12 c-Minimization • Perhaps σσσσ in 3d Ising lies on the boundary of the space of unitary, crossing-symmetric 4-pt functions Natural conjecture: Ising minimizes c ∝ Tµν Tρσ [El-Showk, Paulos, Poland, Rychkov, DSD, Vichi ’14] CT CT free 1.25 1.20 1.15 1.10 1.05 1.00 0.95 0.50 0.52 0.54 0.56 0.58 0.60 Σ c/cfree c at High Precision 0.9473 c lower bound (153,190,231 comp.) 0.94660 0.9472 0.9471 0.94655 0.9470 0.9469 0.9468 0.51815 0.51820 0.9467 0.9466 0.9465 0.5179 0.5180 0.5181 0.5182 0.5183 0.5184 0.5185 ∆(σ) Spectrum from c-Minimization [El-Showk, Paulos, Poland, Rychkov, DSD, Vichi ’14] year 1998 1998 2002 2003 2010 Method ν η ω -exp 0.63050(250) 0.03650(500) 0.814(18) 3D exp 0.63040(130) 0.03350(250) 0.799(11) HT 0.63012(16) 0.03639(15) 0.825(50) MC 0.63020(12) 0.03680(20) 0.821(5) MC 0.63002(10) 0.03627(10) 0.832(6) c-min 0.62999(5) 0.03631(3) 0.8303(18) Critical exponents: ∆σ = 1/2 + η/2, ∆ = − 1/ν, ∆ = 3+ω Outline Bounds in 3d CFTs Mixed Correlators Future Directions Mixed Correlators [Kos, Poland, DSD ’14] • So far, bootstrap studies have focused on 4-pt function of identical operators φφφφ • Full bootstrap requires crossing-symmetry & unitarity for all 4-pt functions • Mixed correlator: σσ in 3d Ising • Consequences of unitarity are trickier: σσ = fσσO f O g∆, O fσσO f O not necessarily positive (u, v) Positivity for Mixed Correlators • Consider σσσσ , σσ , together Crossing symmetry says: (1,1) fσσO f O O (1,2) F∆, (u, v) F∆, (u, v) (2,1) (2,2) F∆, (u, v) F∆, (u, v) fσσO f O +··· = • Look for functionals α : F (u, v) → R such that (1,1) (1,2) α(F∆, ) α(F∆, ) (2,1) (2,2) α(F∆, ) α(F∆, ) is positive semidefinite Analog of α(F∆, ) ≥ Mixed Correlator Bound for CFT3 w/ Z2 ∆ǫ 1.6 1.4135 1.4 1.4125 1.2 1.4115 0.5 0.52 0.5181 0.54 0.5182 0.56 0.5183 0.58 ∆σ 0.6 • Monte-Carlo, c-min conjecture, rigorous bound • Assuming σ, are only relevant scalars Outline Bounds in 3d CFTs Mixed Correlators Future Directions Future Directions • Improve optimization algorithms/precision • Find more boundary-dwelling CFTs ([3d, 5d: Nakayama, Ohtsuki] [4d N = 2, 4, 6d N = (2, 0): Beem, Lemos, Liendo, Peelaers, Rastelli, van Rees] [4d N = Alday, Bissi] [3d N = 8: Chester, Lee, Pufu, Yacoby]) • Mixed correlators in other theories • Four-point functions of operators with spin (stress tensor, symmetry currents) • Nonlocal operators [Liendo, Rastelli, van Rees ’12] [Gaiotto, Mazac, Paulos ’13] • Analytic results, new consistency conditions ... 0.10 0.12 c-Minimization • Perhaps σσσσ in 3d Ising lies on the boundary of the space of unitary, crossing-symmetric 4-pt functions Natural conjecture: Ising minimizes c ∝ Tµν Tρσ [El-Showk, Paulos,... 1.8 Ε 78 comp 3d Ising ? 1.6 1.4 1.2 1.0 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64 Σ • ≡ lowest dimension scalar in σ × σ • Assumes only bootstrap constraints for σσσσ 3d O(N ) Vector Models [Kos,... assumption is ruled out Outline Bounds in 3d CFTs Mixed Correlators Future Directions Outline Bounds in 3d CFTs Mixed Correlators Future Directions Universal Bound in 3d CFTs [El-Showk, Paulos, Poland,

Ngày đăng: 27/09/2017, 09:45

TỪ KHÓA LIÊN QUAN

w