1. Trang chủ
  2. » Giáo án - Bài giảng

elastic expansion in university

40 96 0
Tài liệu được quét OCR, nội dung có thể không chính xác

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 40
Dung lượng 18,9 MB

Nội dung

Trang 2

„ Perturbative construction of higher-dimensional black holes Effective action for higher-dimensional black holes (blackfolds)

Generic perturbations of black branes (viscous + elastic)

.More general theories of hydrodynamics (confined fluids) .Fluid membranes | Cellular membranes

Trang 3

An observation:

yal? + fry Ne?

Trang 7

Hetfrich-Canham propose in the 70's an additional piece:

Vi (ot KK) and many more! (se review by fer (1537)

Polyakov and Kleinert make the same proposal for an action of QCD

Trang 9

y implies:

Therefore the action for non-extremal branes:

and hence the stress-energy tensor

Trang 10

Along worldvolume directions the brane behaves like a fluid:

Trang 13

Val = ty?VaV-D° + DR oie A(K)KUK, 5 Aa(k)K% Kaye, Aa( Kuch KG, T° Kap! = nÏ,VuVyD*%? + DS RE, Ma(K)K°K?’ Kay Ki, As (K)K"OKK Kas" Ket De Dah Er — A(k)kEivfv — 404) KỲ 2àkhy9Kt AE; |_ 3aÂ)£y°—Aj(l)kEsueu® — 43s(k)K*s,KỲ2 Daath) Aalkes | Av ar — Xjk)kE°v)— 2À(k)k'k”K*, 2rs(hWKO KD!

Trang 14

Val = ty?VaV-D° + DR oie A(K)KUK, 5 Aa(k)K% Kaye, Aa( Kuch KG, T° Kap! = nÏ,VuVyD*%? + DS RE, Ma(K)K°K?’ Kay Ki, As (K)K"OKK Kas" Ket De Dah Er — A(k)kEivfv — 404) KỲ 2àkhy9Kt AE; |_ 3aÂ)£y°—Aj(l)kEsueu® — 43s(k)K*s,KỲ2 Daath) Aalkes | Av ar — Xjk)kE°v)— 2À(k)k'k”K*, 2rs(hWKO KD!

Trang 15

The bending moment can be written as: where the Young modulus is:

aaah Aaah Ag

Trang 17

For codimension-1 surfaces we need to add a piece: qx" = Me V7 (800K + Ba(lMMKPK Va Ki)

The hydrodynamics modes are coupled to the elastic modes ‘through the Gauss-Codazzi equation:

Raved = Reabea — Kac' Kodi + Kod Koei

Trang 18

‘Summary of the transport coefficients:

3 hydrodynamic, 3 elastic and 1 spin transport coefficient for codimension > 1 surfaces

3 hydrodynamic and 5 elastic transport coefficients for codimension-1 surfaces

Ld 1 hydrodynamic and 4 elastic for fluid membranes in 3-dimensional flat space (hydrodamic transport

coefficient and 2 elastic have not been measured yet)

Trang 19

Take the general equations of motion:

V7 = uụ0VạV.D99t + D2 R gi, + 80,08

n!,V„V,Ð*t + DOI B 35 +2nt, Ty (Syi°K%,) + SY Rags

nig VS =0 Impose positivity of the entropy current:

Trang 20

make the following assumptions:

We assume a spinless fluid

We assume the existence of a worlvolume entropy

current

We consider a first order dissipative theory for

codimension-1 surfaces and a non-dissipative theory to second order for codimension higher than one

We assume the first law of thermodynamics and the

Gibbs-Duhem relations

ý

tỷ

Trang 21

Under these assumptions the equations of motion are:

VaT® = mp!D°iVaKac? —2Va(D“KM)

TY Kap! = nh VaVeD™ + DM Rian,

DK ay!) =0

Need to classify the following structures to second order:

J.Armas , arXiv:1312.0597

Trang 22

\We classify all on-shell independent terms ta second order in the Landau gauge and in a specific choice of surface:

Trang 23

Classify all terms: first order data Ist order data | Before imposing EOM | EOM Tndependent data, Sealars fluid (1) 199,7, 0 0 Vectors tid (1) pey,T at | PyWar™=0 “ at a KR äÊuPNuẾ ‘Tensors fluid (1) ot Sealars elastic (1) K Vectors elastic (2) | uy, ut yom, ut

Kem utube Ko utube

KE ueuleK mK! ueuleK bi

‘Tensors elastic (4)

Trang 25

Classify all terms: third order data Srd order data Before imposing EOM Independent data Sealars uid-elastie (9) 6K, , 0° K„, Our Ke Ris 0 Kos | OM Ka Ks ou Kae Kha ww Ky!K, , au Ke Kc WKAR UK PR WK VaK™ , wT Ki cK VK cK Wal web KOT Kod WKN (T*K a!) OK Kis oul Kac Kia UKM TK ek Tam ` Out Ke Kies 5 0% Kas! Ki

Trang 26

Codimension-1 surfaces to first order:

= TE} +n0% + €0P% + or KP® + a2P°P Koa

De = yy"

J2 = su? + 6,0u% + Boa? + B3Kut + ByubKy*

Trang 27

For higher codimension and to second arder we have: = Ti + no® + oP” H+TP* (n2R 7 rome = oR <> guPut + nạo 52+ mại asta!) + ns Reaueu® — naweaw + 750°)

JP (ar KK; + oak" Koa + agu'u' Ke! Kay)

PPh (aK RE + aK TRY, bull KEK)

PK + Ag KM + Azul),

Trang 28

Summarizing:

For codimension-1 surfaces and to 1st order we have 2+1 independent transport coefficients (dissipative)

=P For codimension higher we have 10+3 independent

transport coefficients (non-dissipative)

The constraints match those obtained from

equilibrium partition functions

Trang 30

To connect with gravity we need an equivalent formulation in terms of space-time tensors: rea) = VasileVojnovi,arXic07075395 where: TIP = ugg”)? + ubabe™ + apts

Th conga nortan ObeT SN TTTOTESS

Trang 31

Action formulation and mul ipole expansion are equivalent provided: rot es 42d KY,, de 1a, aXWed506.773 the dipole moment is the bending moment: 5

Trang 32

We take a Schwarzschild black brane and bend it:

(ig ta? + Pant oath

Trang 33

‘The dipole moment takes the form: ‘The Young modulus is: "+? +EP()tín) (4°! ~n (vê +ueu8ye)) 3#* = — P(k)r(k)&ín) (aro "` mu

TA Camps.harnadc One 2211220 4035 Camps, Emparan, 2tXiv1201.3505

Pe) fe et) 3+?) Pe) fle) (0) kế

` AE)

8n =4 PÚ9rÏ(k)ö0)

a = Ae) _ i

Trang 34

Aring embedded in flat space:

Trang 35

Corrected phase diagram expressed in physical quantities:

Trang 36

Empatan,Hamiai, Niatchos, 08ers, Rodrigues,3Xt:0708 1182 Dia, Santos, Way, arkv:1402.6345

1A 2 Harmar, arXiv 402.6350

Trang 37

The same can be done for charged branes:

TAs Cath, Ober aXN209 2200 5157 RL,arXiv2307504

Decompose the dipole correction as:

Split the gauge field as:

= A ADO 3 T4 +12— || vá” —ierenssa, s96) , „

Trang 38

The electric dipole moment is of the form:

for charged dilatonic branes from KK reduction

exlonr§ (25.009 + EIPaP)

TA Gath, Obers, P1208 5197, ark 307 504

Trang 39

‘Asummary of the results:

=> => —> <

Generic effective action of fluid branes to second order

First order dissipative theory of (confined) hydrodynamics and second order non-dissipative theory

Measurement of transport coefficients from gravity

Systematic method for finding corrections to black hole charges, good to compare with numerics Can also study stability

Future directions:

Wy

ydy AdS/CFT interpretation of the Young modulus | bending D3-brane Including backreaction corrections in the effective theory Anomalous couplings, Chern-Simons terms

Universality of transport coefficients

Full dissipative theory and non-relativistic theory

Ngày đăng: 26/09/2017, 16:44

TỪ KHÓA LIÊN QUAN