1. Trang chủ
  2. » Trung học cơ sở - phổ thông

cong thuc tinh nhanh vat li 10 nang cao cong thuc tinh nhanh vat li 10 nang cao

11 209 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 592,15 KB

Nội dung

Gia sư Thành Được www.daythem.edu.vn CÔNG THỨC TÍNH NHANH VẬT10 HỌC KỲ I (NÂNG CAO) I Chuyển động thẳng đều: Vận tốc trung bình s a Trường hợp tổng quát: v tb  t v1t1  v t   v n t n b Công thức khác: v tb  t1  t   t n c Một số toán thường gặp: Bài toán 1: Vật chuyển động đoạn đường thẳng từ địa điểm A đến địa điểm B phải khoảng thời gian t vận tốc vật nửa đầu khoảng thời gian v1 nửa cuối v2 vận tốc trung bình đoạn đường AB: v tb  v1  v 2 Bài toán 2:Một vật chuyển động thẳng đều, nửa quãng đường đầu với vận tốc v1, nửa quãng đường lại với vận tốc v2 Vận tốc trung bình quãng đường: 2v1v v v1  v 2 Phương trình chuyển động chuyển động thẳng đều: x = x0 + v.t Dấu x0 Dấu v x0 > Nếu thời điểm ban đầu v > Nếu v chất điểm vị thí thuộc phần 0x chiều 0x x0 < Nếu thời điểm ban đầu v < Nếu v ngược chất điểm vị thí thuộc phần 0x, chiều 0x x0 = Nếu thời điểm ban đầu chất điểm gốc toạ độ Bài toán chuyển động hai chất điểm phương: Xác định phương trình chuyển động chất điểm 1: x1 = x01 + v1.t (1) Xác định phương trình chuyển động chất điểm 2: x2 = x02 + v2.t (2) Lúc hai chất điểm gặp x1 = x2  t t vào (1) (2) xác định vị trí gặp Khoảng cách hai chất điểm thời điểm t d  x 01  x 02   v01  v02  t II Chuyển động thẳng biến đổi Vận tốc: v = v0 + at at 2 Quãng đường : s  v0 t  Hệ thức liên hệ : v2  v02  2as v2  v02 v2  v02 ;s  2s 2a Phương trình chuyển động : x  x  v0 t  at 2  v  v02  2as;a  Dấu x0 Dấu v0 ; a x0 > Nếu thời điểm ban đầu v0; a > Nếu v;a chất điểm vị thí thuộc phần 0x chiều 0x x0 < Nếu thời điểm ban đầu v ; a < Nếu v;a chất điểm vị thí thuộc phần 0x, x0 = Nếu thời điểm ban đầu ngược chiều 0x chất điểm gốc toạ độ Chú ý: Chuyển động thẳng nhanh dần a.v > 0.; Chuyển động thẳng chậm dần a.v < Bài toán gặp chuyển động thẳng biến đổi đều: - Lập phương trình toạ độ chuyển động : a t2 a t2 x1  x 02  v02 t  ; x  x02  v02 t  2 - Khi hai chuyển động gặp nhau: x1 = x2 Giải phương trình để đưa ẩn toán Khoảng cách hai chất điểm thời điểm t d  x1  x Một số toán thường gặp: Bài toán 1: Một vật chuyển động thẳng nhanh dần đoạn đường s1và s2 hai khoảng thời gian liên tiếp t Xác định vận tốc đầu gia tốc vật Giải hệ phương trình  at v  s1  v0 t    a s  s  2v t  2at 1 Bài toán 2: Một vật bắt đầu chuyển động thẳng nhanh dần Sau quãng đường s1 vật đạt vận tốc v1 Tính vận tốc vật quãng đường s2 kể từ vật bắt đầu chuyển động s v  v1 s1 Bài toán 3:Một vật bắt đầu chuyển động nhanh dần không vận tốc đầu: - Cho gia tốc a quãng đường vật giây thứ n: a s  na  Gia sư Thành Được www.daythem.edu.vn - Cho quãng đường vật giây thứ n gia tốc xác định bởi: s a n Bài toán 4: Một vật chuyển động với vận tốc v0 chuyển động chầm dần đều: - Nếu cho gia tốc a quãng đường vật dừng v2 hẳn: s  2a - Cho quãng đường vật dừng hẳn s , gia v2 tốc: a  2s v - Cho a thời gian chuyển động:t = a - Nếu cho gia tốc a, quãng đường vật giây cuối a cùng: s  v0  at  - Nếu cho quãng đường vật giây cuối s , s gia tốc : a  t Bài toán 5: Một vật chuyển động thẳng biến đổi với gia tốc a, vận tốc ban đầu v0: - Vận tốc trung bình vật từ thời điểm t1 đến thời điểm t2: t  t a vTB  v0  2 - Quãng đường vật từ thời điểm t1 đến thời điểm t2: t 22  t12  a  s  v  t  t1   Bài toán 6: Hai xe chuyển động thẳng đường thẳng với vận tốc không đổi Nếu ngược chiều nhau, sau thời gian t khoảng cách xe giảm lượng a Nếu chiều nhau, sau thời gian t khoảng cách xe giảm lượng b Tìm vận tốc xe: Giải hệ phương trình:  v1  v2  a.t a  b t ; v  a  b t  v1   2  v2  v1  b.t III Sự rơi tự do:Chọn gốc tọa độ vị trí rơi, chiều dương hướng xuông, gốc thời gian lúc vật bắt đầu rơi Vận tốc rơi thời điểm t v = gt Quãng đường vật sau thời gian t : s = gt 2 Công thức liên hệ: v = 2gs Phương trình chuyển động: y  gt 2 Một số toán thường gặp: Bài toán 1: Một vật rơi tự từ độ cao h: 2h - Thời gian rơi xác định bởi: t  g - Vận tốc lúc chạm đất xác định bởi: v  2gh - Quãng đường vật rơi giây cuối cùng: g s  2gh  Bài toán 2: Cho quãng đường vật rơi giây cuối cùng: s s -Tthời gian rơi xác định bởi: t   g g - Vận tốc lúc chạm đất: v  s  2 g  s  - Độ cao từ vật rơi: h      g 2 Bài toán 3: Một vật rơi tự do: - Vận tốc trung bình chất điểm từ thời điểm t1 đến thời điểm t2: t  t g vTB  2 - Quãng đường vật rơi từ thời điểm t1 đến thời điểm t2: t 22  t12  g  s IV Chuyển động ném đứng từ lên từ mặt đất với vận tốc ban đầu v0: Chọn chiểu dương thẳng đứng hướng lên, gốc thời gian lúc ném vật Vận tốc: v = v0 - gt gt 2 Quãng đường: s  v0 t  2 Hệ thức liên hệ: v  v0  2gs Phương trình chuyển động : y  v0 t  gt 2 Một số toán thường gặp: Bài toán 1: Một vật ném thẳng đứng lên cao từ mặt đất với vận tốc đầu v0: v2 - Độ cao cực đại mà vật lên tới: h max  2g Gia sư Thành Được www.daythem.edu.vn 2v0 g Bài toán 2: Một vật ném thẳng đứng lên cao từ mặt đất Độ cao cực đại mà vật lên tới h max - Vận tốc ném : v0  2gh max - Thời gian chuyển động vật : t  - Vận tốc vật độ cao h1: v   v02  2gh1 V Chuyển động ném đứng từ lên từ độ cao h0 với vận tốc ban đầu v0: Chọn gốc tọa độ mặt đất chiểu dương thẳng đứng hướng lên, gốc thời gian lúc ném vật Vận tốc: v = v0 - gt gt 2 Quãng đường: s  v0 t  2 Hệ thức liên hệ: v  v0  2gs Phương trình chuyển động : y  h  v0 t  gt 2 Một số toán thường gặp: Bài toán 1: Một vật độ cao h0 ném thẳng đứng lên cao với vận tốc đầu v0: v2 - Độ cao cực đại mà vật lên tới: h max  h  2g - Độ lớn vận tốc lúc chạm đất v  v02  2gh - Thời gian chuyển động : v02  2gh t g Bài toán 2: Một vật độ cao h0 ném thẳng đứng lên cao Độ cao cực đại mà vật lên tới hmax : - Vận tốc ném : v0  2g  h max  h  - Vận tốc vật độ cao h1: v   v02  2g  h  h1  - Nếu toán chưa cho h0 , cho v0 hmax : v2 h  h max  2g VI Chuyển động ném đứng từ xuống : Chọn gốc tọa độ vị trí ném ; chiểu dương thẳng đứng hướng vuống, gốc thời gian lúc ném vật Vận tốc: v = v0 + gt gt 2 Quãng đường: s  v0 t  Hệ thức liên hệ: v2  v02  2gs gt Phương trình chuyển động: y  v0 t  Một số toán thường gặp: Bài toán 1: Một vật độ cao h ném thẳng đứng hướng xuống với vận tốc đầu v0: - Vận tốc lúc chạm đất: vmax  v02  2gh - Thời gian chuyển động vật t  v02  2gh  v0 g - Vận tốc vật độ cao h1: v  v02  2g  h  h1  Bài toán 2: Một vật độ cao h ném thẳng đứng hướng xuống với vận tốc đầu v0 (chưa biết) Biết vận tốc lúc chạm đất vmax: - Vận tốc ném: v0  v2max  2gh v 2max  v02 - Nếu cho v0 vmax chưa cho h độ cao: h  2g Bài toán 3: Một vật rơi tự từ độ cao h Cùng lúc vật khác ném thẳng đứng xuống từ độ cao H (H> h) với vận tốc ban đầu v0 Hai vật tới đất lúc: Hh v0  2gh 2h VI Chuyển động ném ngang: Chọn gốc tọa độ vị trí ném, Ox theo phương ngang, Oy thẳng đứng hướng xuống Các phương trình chuyển động: - Theo phương Ox: x = v0t - Theo phương Oy: y = gt 2 g Phương trình quỹ đạo: y  x 2v0 Vận tốc: v  v02   gt  4.Tầm bay xa: L = v0 2h g Vận tốc lúc chạm đất: v  v02  2gh IV Chuyển động vật ném xiên từ mặt đất: Chọn gốc tọa độ vị trí ném, Ox theo phương ngang, Oy thẳng đứng hướng lên Các phương trình chuyển động: gt x  v0 cos .t; y  v0 sin .t  g x 2 Quỹ đạo chuyển động y  tan .x  2 2v0 cos  Gia sư Thành Được www.daythem.edu.vn Vận tốc: v   v0 cos     v0 sin   gt  2 v02 sin  2g v sin 2 Tầm bay xa: L  g VII Chuyển động tròn đều: Vectơ vận tốc chuyển động tròn - Điểm đặt: Trên vật điểm xét quỹ đạo - Phương: Trùng với tiếp tuyến có chiều chuyển động s - Độ lớn : v  = số t 2r Chu kỳ: T  v Tần số f: f  T Tầm bay cao: H   t s  Tốc độ dài: v =  r = r t t Liên hệ tốc độ góc với chu kì T hay với tần số f 2r 2 ; v  r   2f T T Tốc độ góc:   Gia tốc hướng tâm a ht - Điểm đặt: Trên chất điểm điểm xét quỹ đạo - Phương: Đường thẳng nối chất điểm với tâm quỹ đạo - Chiều: Hướng vào tâm v2 - Độ lớn: a ht   2 r r Chú ý: Khi vật có hình tròn lăn không trượt, độ dài cung quay điểm vành quãng đường Một số toán thường gặp: Bài toán 1: Một đĩa tròn quay quanh trục qua tâm đĩa bán kính đĩa R So sánh tốc độ góc  ; tốc độ dài v gia tốc hướng tâm aht điểm A điểm B nằm đĩa; điểm A nằm mép đĩa, điểm B nằm đĩa cách tâm đoạn R R1  n - Tốc độ góc điểmA điểm B A  B - Tỉ số Tốc độ dài điểmA điểm B: v A R R   n v B R1 R n - Tỉ số gia tốc hướng tâm điểmA điểm B: a A R B v 2A   n  n a B R A v 2B n Bài toán 2: Kim phút đồng hồ dài gấp n lần kim - Tỉ số tốc độ dài đầu kim phút kim giờ: v p R p Tg   12n vg R g Tp - Tỉ số tốc độ góc đầu kim phút kim giờ: p Tg   12 g Tp - Tỉ số gia tốc hướng tâm đầu kim phút kim giờ:  p  R g    144n a g  g  R p VIII Tính tương đối chuyển động: Công thức vận tốc v1,3  v1,2  v2,3 Một số trường hợp đặc biệt: a Khi v1,2 hướng với v 2,3 : v1,3 hướng với v1,2 v 2,3 v1,3  v1,2  v2,3 ap b Khi v1,2 ngược hướng với v 2,3 : v1,3 hướng với vec tơ có độ lớn lơn v1,3  v1,2  v2,3 c Khi v1,2 vuông góc với v 2,3 : 2 v1,3  v1,2  v2,3 v1,3 hớp với v1,2 góc  xác định v tan   2,3   v1,2 Một số toán thường gặp: Bài toán 1:Một ca nô chạy thẳng xuôi dòng chảy từ A đến B hết thời gian t1, chạy ngược lại từ B A phải thời gian t2 Thời gian để ca nô trôi từ A đến B ca nô tắt máy: 2t t s t  12 v 23 t  t1 Gia sư Thành Được www.daythem.edu.vn Bài toán 2:Một ca nô chạy thẳng xuôi dòng chảy từ A đến B hết thời gian t1, chạy ngược lại từ B A phải t2 Cho vận tốc ca nô nước v12 tìm v23; AB s s Khi xuôi dòng: v13  v12  v23  = (1) t1 s , Khi ngược dòng: v13  v12  v23  (2) t2 Giải hệ (1); (2) suy ra: v23; s IX Tổng hợp phân tích lực Điều kiện cân chất điểm Tổng hợp lực F  F1  F2  Phương pháp chiếu: Chiếu lên Ox, Oy : Fx  F1x  F2x  F  Fx2  Fy2   Fy  F1y  F2y F hợp với trục Ox góc α xác định bởi: F F tan   1y 2y   F1y  F2y  Phương pháp hình học: a F1 hướng với F2 : F hướng với F1 ; F = F1 + F2 b F1 ngược hướng với F2 : F hướng với vectơ lực có độ lớn lớn F  F1  F2 c F1 vuông góc với F2 : F  F12  F22 F hợp với F1 góc  xác định tan   F2 F1 d Khi F1 hợp với F2 góc  bất kỳ: F  F12  F22  2FF cos Điều kiện cân băng chất điểm: a Điều kiện cân tổng quát: F1  F2   Fn  b Khi có lực: Muốn cho chất điểm chịu tác dụng hai lực trạng thái cân hai lực phải giá, độ lớn ngược chiều F1  F2  c Khi có lực: Muốn cho chất điểm chịu tác dụng ba lực trạng thái cân hợp lực hai lực cân với lực thứ ba F1  F2  F3  X Các định luật Niu tơn Định luật Newton Nếu không chịu tác dụng cuả lực chịu tác dụng lực có hợp lực vật giữ nguyên trạng thái đứng yên hay chuyển động thẳng F Định luật II Newton a  Hoặc là: F  m.a m Trong trường hợp vật chịu tác dụng nhiều lực gia tốc vật xác định bời F1  F2   Fn  m.a Định luật III Newton Khi vật A tác dụng lên vật B lực, vật B tác dụng trở lại vật A lực Hai lực hai lực trực đối FAB  FBA Một số toán thường gặp: Bài toán 1: Một vật cân chịu tác dụng n lực: F1  F2   Fn  Chiếu lên Ox; Oy: F1x  F2x   Fnx   F1x  F2x   Fnx  Giải hệ suy đại lượng vật lý cần tìm Bài toán 2: Một bóng chuyển động với vận tốc v0 đập vuông góc vào tường, bóng bật ngược trở lại với vận tốc v, thời gian va chạm t Lực tường tác dụng vào bóng có độ lớn.: v  v0 Fm t Bài toán 3: Lực F truyền cho vật khối lượng m1 gia tốc a1; lực F truyền cho vật khối lượng m2 gia tốc a2: a m Ta có hệ thức liên hệ:  a1 m Bài toán 4: Lực F truyền cho vật khối lượng m1 gia tốc a1; lực F truyền cho vật khối lượng m2 gia tốc a2: - Lực F truyền cho vật khối lượng m1 + m2 gia tốc a: 1   a a1 a - Lực F truyền cho vật khối lượng m1 - m2 gia tốc a: 1   a a1 a Gia sư Thành Được www.daythem.edu.vn Bài toán 5: Dưới tác dụng lực F nằm ngang, xe lăn có khối lượng m chuyển động không vận tốc đầu, quãng đường s thời gian t Nếu đặt thêm vật có khối lượng Δm lên xe xe quãng đường s, thời gian t Bỏ qua ma sát m  m s Ta có mối liên hệ:  , m s Bài số 6: Có hai cầu mặt phẳng nằm ngang Quả cầu chuyển động với vận tốc v0 đến va chạm với cầu nằm yên Sau va chạm hai cầu chuyển động theo hướng cũ cầu với vận tốc v m v Ta có mối liên hệ:  m2 v  v0 Bài số 7: Quả bóng A chuyển động với vận tốc v1 đến đập vào bóng B đứng yên (v2 = 0) Sau va chạm bóng A dội ngược trở lại với vận tốc v1, , bóng B chạy tới với vận tốc v,2 Ta có hệ thức liên hệ: m1 v,  , m v1  v1 Bài số 8: Quả bóng khối lượng m bay với vận tốc v0đến đập vào tường bật trở lại với vận α tốc có độ lớn không đổi (hình vẽ) Biết thời α gian va chạm t Lực tường tác dụng vào bóng có độ lớn: 2mv0cos F t Bài số 9: Hai bóng ép sát vào mặt phẳng ngang Khi buông tay, hai bóng lăn quãng đường s1 s2 dừng lại Biết sau dời nhau, hai bóng chuyển động chậm dần với gia tốc Ta có hệ thức:  m2  s1     m1  s XI Các lực học: Lực hấp dẫn - Điểm đặt: Tại chất điểm xét - Phương: Đường thẳng nối hai chất điểm - Chiều: Là lực hút mm - Độ lớn: Fhd  G 2 r -11 2 G = 6,67.10 N.m /kg : số hấp dẫn Trọng lực: - Điểm đặt: Tại trọng tâm vật - Phương: Thẳng đứng - Chiều: Hướng xuống - Độ lớn: P = m.g Biểu thức gia tốc rơi tự M - Tại độ cao h: g h  G R  h M - Gần mặt đất: g  G R g  R  - Do đó: h    g Rh Lực đàn hồi lò xo - Phương: Trùng với phương trục lò xo - Chiều: Ngược với chiều biến dạng cuả lò xo - Độlớn: Tỉ lệ thuận với độ biến dạng lò xo Fđh  k.l k(N/m) : Hệ số đàn hồi (độ cứng) lò xo l : độ biến dạng lò xo (m) Lực căng dây: - Điểm đặt: Là điểm mà đầu dây tiếp xúc với vật - Phương: Trùng với sợi dây - Chiều: Hướng từ hai đầu dây vào phần sợi dây (chỉ lực kéo) Lực ma sát nghỉ - Giá cuả Fmsn nằm mặt phẳng tiếp xúc hai vật - Fmsn ngược chiều với ngoại lực tác dụng vào vật - Lực ma sát nghỉ cân với ngoại lực tác dụng lên vật Fmns = F Khi F tăng dần, Fmsn tăng theo đến giá trị FM định vật bắt đầu trượt FM giá trị lớn lực ma sát nghỉ Fmsn  FM ; FM  n N Với  n : hệ số ma sát nghỉ Fmsn  FM ;Fmsn  Fx Fx thành phần ngoại lực song song với mặt tiếp xúc Lực ma sát trượt - Lực ma sát trượt tác dụng lên vật phương ngược chiều với vận tốc tương đối vật vật - Độ lớn cuả lực ma sát trượt không phụ thuộc vào diện tích mặt tiếp xúc, không phụ thuộc vào tốc độ vật mà phụ thuộc vào tính chất mặt tiếp xúc - Lực ma sát trượt tỉ lệ với áp lực N: Fmst  t N  t hệ số ma sát trượt Lực ma sát lăn Gia sư Thành Được www.daythem.edu.vn Lực ma sát lăn tỷ lệ với áp lực N giống lực ma sát trượt, hệ số ma sát lăn nhỏ hệ số ma sát trượt hàng chục lần Lực quán tính - Điểm đặt : Tại trọng tâm vật - Hướng : Ngược hướng với gia tốc a hệ quy chiếu - Độ lớn : Fqt = m.a Lực hướng tâm - Điểm đặt: Trên chất điểm điểm xét quỹ đạo - Phương: Dọc theo bán kính nối chất điểm với tâm quỹ đạo - Chiều: Hương vào tâm quỹ đạo v2 - Độ lớn: Fht  ma ht  m  m2 r r Lực quán tính li tâm - Điểm đặt: Trên chất điểm điểm xét quỹ đạo - Phương: Dọc theo bán kính nối chất điểm với tâm quỹ đạo - Chiều: Hướng xa tâm quỹ đạo v2 - Độ lớn: Flt  m  m2 r r XII Phương pháp động lực học Bài toán thuận : Biết lực tác dụng : F1 , F1 , Fn Xác định chuyển động : a, v, s, t Phương pháp giải : - Bước : Chọn hệ quy chiếu thích hợp - Bước : Vẽ hình – Biểu diễn lực tác dụng lên vật - Bước : Xác định gia tốc từ định luật II Newton Fhl  F1  F2   ma (1) F Chiếu (1) lên trục toạ độ suy gia tốc a a  hl ( ) m - Bước : Từ (2), áp dụng kiến thức động học, kết hợp điều kiện đầu để xác định v, t, s Bài toán ngược: Biết chuyển động : v, t, s Xác định lực tác dụng Phương pháp giải : - Bước : Chọn hệ quy chiếu thích hợp - Bước : Xác định gia tốc a dựa vào chuyển động cho (áp dụng phần động học ) - Bước : Xác định hợp lực tác dụng vào vật theo định luật II Niutơn Fhl = ma - Bước : Biết hợp lực ta suy lực tác dụng vào vật Một số toán thường gặp: Bài toán 1:(Chuyển động vật mặt phẳng ngang lực kéo) Một ô tô chuyển động với vận tốc v0 hãm phanh; biết hệ số ma sát trượt ô tô sàn μ: Gia tốc ô tô là: a = -μg Bài toán 2: :(Chuyển động vật F mặt phẳng ngang có lực kéo F) Cho hệ hình vẽ Cho lực kéo F, khối lượng vật m - Nếu bỏ qua ma sát gia tốc vật là: F a m - Nếu hệ số ma sát vật sàn  gia tốc vật là: F  mg a m Bài toán 3:(Chuyển động vật mặt phẳng ngang phương lực kéo hợp với phương ngang góc α) Cho hệ hình vẽ Cho lực kéo F, khối lượng vật F m, góc α α - Nếu bỏ qua ma sát gia tốc Fcos  vật là: a  m - Nếu hệ số ma sát vật sàn μ gia tốc vật là: Fcos     mg  Fsin   a m Bài toán (Vật trượt mặt phẳng nghiêng từ xuống): Một vật bắt đầu trượt từ đỉnh mặt phẳng nghiêng , góc nghiêng α, chiều dài mặt phẳng nghiêng l:  Nếu bỏ qua ma sát - Gia tốc vật: a = gsinα - Vận tốc chân mặt phẳng nghiêng: v  2g sin .l  Nếu ma sát vật mặt phẳng nghiêng μ - Gia tốc vật: a = g(sinα - μcosα) - Vận tốc chân mặt phẳng nghiêng: v  2g  sin   cos .l Bài toán (Vật trượt mặt phẳng nghiêng từ lên): Một vật chuyển động với vận tốc v0 theo phương ngang trượt lên phẳng nghiêng, góc nghiêng α:  Nếu bỏ qua ma sát - Gia tốc vật là: a = - gsinα v02 - Quãng đường lên lớn nhất: s max  2g sin   Nếu hệ số ma sát vật mặt phẳng nghiêng μ - Gia tốc vật là: a  g  sin   cos  Gia sư Thành Được www.daythem.edu.vn - Quãng đường lên lớn nhất: v 2g  sin   cos  Bài toán ( Chuyển động hệ hai vật mặt phẳng ngang):: Cho hệ hình vẽ Cho F, m1, m2 m1 m2 F  Nếu bỏ qua ma sát Gia tốc vật F là: a  m1  m F - Lực căng dây nối: T = m2 m1  m  Nếu ma sát m1; m2 với sàn μ1 μ2: F  1m1 g  2 m2 g - Gia tốc m1 m2: a  m1  m2 F  1m1g   m2g - Lực căng dây nối: T  m2 m1  m2 Bài toán 7:(Chuyển động hệ vật vắt qua ròng rọc cố định chuyển động theo hai phương khác nhau) Cho hệ hình vẽ Cho khối lượng m1; m2 m2  Nếu bỏ qua ma sát - Gia tốc m1, m2 là: m1g m1 a m1  m m1g - Lực căng dây nối: T  m2 m1  m  Nếu hệ số ma sát m2 sàn μ  m  m2  g - Gia tốc m1, m2 là: a  m1  m2 s max  - Lực căng dây nối: T  m2  m1  m2  g m1  m2 Chú ý : m1 đổi chỗ cho m2:  Nếu bỏ qua ma sát m2g - Gia tốc m1, m2 là: a  m1  m m2g - Lực căng dây nối: T  m1 m1  m  Nếu hệ số ma sát m1 sàn μ  m  m1  g - Gia tốc m1, m2 là: a  m1  m2 - Lực căng dây nối: T  m2  m2  m1  g m1  m2 Bài toán 8: (Chuyển động hệ vật nối với ròng rọc số định chuyển động phương): Cho hệ hình vẽ Biết m1, m2  m  m2  g m2 - Gia tốc m1: a1  m1  m2 m1 - Gia tốc m2: a   m2  m1  g m1  m2 2m12g m1  m Bài toán 9: (Hệ hai vật nối với ròng rọc cố định mặt phẳng nghiêng)  Nếu bỏ qua ma sát: m1 Trường hợp 1: Nếu m2 m1gsinα > m2g m1 xuống m2 lên g  m1 sin   m  - Gia tốc m1; m2 là: a  m1  m2 - Lực căng dây nối: T   m sin   m2  - Lực căng dây nối: T  m2g 1   m1  m2   Trường hợp 2: Nếu m1gsinα < m2g m1 lên m2 xuống g  m2  m1 sin   - Gia tốc m1; m2 là: a  m1  m2  m  m1 sin   - Lực căng dây nối: T  m2g 1   m1  m2    Nếu hệ số ma sát m1 sàn μ Trường hợp 1: Nếu m1gsinα > m2g m1 xuống m2 lên - Gia tốc m1; m2 là: g  m1 sin   m2cos  m2  a m1  m2 - Lực căng dây nối:  m sin   m2cos  m2  T  m2g 1   m1  m2   Bài toán 10: Cho hệ m1 F hình vẽ Cho m1; m2,  Bỏ qua ma sát: m2 - Gia tốc m1 m2: F a (với a1=-a2 =a) m1  m Gia sư Thành Được www.daythem.edu.vn F m1  m2  Cho hệ số ma sát m1 m2 1 , m2 sàn μ2 Gia tốc m1 m2: F  21m1g  2 m2g (với a1 = -a2 = a) a m1  m2 Bài toán 11: Cho hệ hình vẽ Cho m1, m2, F  Nếu bỏ qua ma sát Gia tốc m1 m2: m1 F F m2 a m1  m với a2= -a1 = a F - Lực căng dây nối: T  m1 m1  m2  Cho hệ số ma sát m1 m2 1 , m2 sàn μ2 Gia tốc m1 m2: F  21m1g  2 m2g (với a2 = -a1 = a) a m1  m2 Bài toán 12: Cho hệ hình vẽ m2 F cho F,m1, m2  Bỏ qua ma sát: m1 Trường hợp: F>m1g  m1 lên - Gia tốc m1, m2: F  m1g a m1  m - Lực căng dây nối: T  m2  F  m1g  - Lực căng dây nối: T  m1  g   m1  m   Trường hợp 2: F < m1g  m1 xuống m gF - Gia tốc m1, m2: a  m1  m  m gF  - Lực căng dây nối: T  m1  g   m1  m    Hệ số ma sát m2 sàn μ Trường hợp: F > m1g  m1 có xu hướng lên - Gia tốc m1, m2: F  m1g  m 2g a m1  m2  F  m1g  m2g  - Lực căng dây nối: T  m1  g   m1  m2   Trường hợp 2: F < m1g  m1 xuống - Gia tốc m1, m2: a  m1g  F  m2g m1  m2  m g  F  m2g  - Lực căng dây nối: T  m1  g   m1  m2   Bài toán 13:(Chuyển động hệ vật hai mặt phẳng nghiêng): Cho hệ hình vẽ, Biết m1, m2, α, β:  Bỏ qua ma sát: m2 Trường hợp 1: m1gsinα > m2gsinβ m1  m1 xuống β α Gia tốc m1; m2 là:  m sin   m2 sin   g a m1  m2 Trường hợp 2: m1gsinα < m2gsinβ  m2 xuống Gia tốc m1; m2 là:  m2 sin   m1 sin   g a m1  m2  Hệ số ma sat m1, m2 với mặt phẳng nghiêng μ1, μ2 Trường hợp 1: m1gsinα > m2gsinβ  m1 có xu hướng xuống., m2 lên, Gia tốc m1; m2 là:  m sin   m2 sin   1m1cos  2m2cos  g a m1  m2 Trường hợp 2: m1gsinα < m2gsinβ  m1 có xu hướng lên., m2 xuống Gia tốc m1; m2 là:  m sin   m1 sin   1m1cos  2 m2cos  g a m1  m2 Bài số 14:Cho hệ hình vẽ Cho m1, m2 α  Bỏ qua ma sát: Trường hợp 1: m1 > m2 : Thì m1 xuống m2 lên m1 Gia tốc m1, m2: m2  m  m2  sin  g a m1  m2 α Với a1 = - a2 = a Trường hợp 2: m1 < m2: Thì m1 lên, m2 xuống Gia tốc m1, m2:  m2  m1  sin  g a m1  m2 Với a2 = - a1 = a  Hệ số ma sát m2 sàn μ1, m1 m2 μ2 Gia sư Thành Được www.daythem.edu.vn Trường hợp 1: m1 > m2 : Thì m1 xuống m2 lên Gia tốc m1, m2: Ta có a1 = - a2 = a Với a xác định  m  m2  sin    21  2  cos g a m1  m2 Trường hợp 2: m1 < m2: Thì m1 lên, m2 xuống Gia tốc m1, m2:  m2  m2  sin    21  2  cos g a m1  m2 Với a2 = - a1 = a Bài số 15: (Chuyển động hệ vật nối qua ròng rọc động) Cho hệ hình vẽ cho m1, m2 -Gia tốc m1, m2:  m  m2  g a1  m1  4m 2  m2  m1  g a2  m2 m1 m1  4m2 Bài số 16: (lực tương tác hai vật chuyển động mặt phẳng nghiêng) Cho m1, m2, μ1, μ2, α - Gia trị nhỏ α m1 hai vật trượt xuống: m2  m   m2 tan   1  m1  m2 α - Lực tương tác m1 m2 chuyển động: m m      g cos  F m1  m2 Bài toán 17: (Tính áp lực nén lên cầu vồng lên điểm cao nhất)  v2  N  mg  g R  m: khối lượng vật nặng; R: bán kính cầu Bài toán 18: (Tính áp lực nén lên cầu lõm xuống điểmthấp nhất)  v2  N  mg  g R  M: khối lượng vật nặng; R: bán kính cầu Bài toán 19: (Tính áp lực nén lên cầu vồng lên vị trí bán kính nối vật với tâm hợp với phương thẳng đứng góc α)  v2  N  m  gcos   R  Bài toán 20: (Tính áp lực nén lên cầu lõm vị trí bán kính nối vật với tâm hợp với phương thẳng đứng góc α)  v2  N  m  gcos   R  Bài toán 21: Một lò xo có độ cứng k Đầu cố định đầu treo vật có khối lượng m: mg - Cho k, m tìm độ biến dạng lò xo: l  k - Cho m, k chiều dài ban đầu Tìm chiều dài lò xo cân mg bằng: lCB  l0  k Bài toán 22: Một lò xo có độ cứng k, chiều dài l cắt thành lo xo có chiều dài l1, l2 Độ cứng lò xo cắt: l l k1  k ; k  k l1 l2 Bài toán 23: (Ghép lò xo) Cho hai lò xo có độ cứng k1, k2 tìm độ cứng tương đương - Ghép nối tiếp: k = k1 + k2 - Ghép song song: 1   k k1 k Bài toán 24: Vật có khối lượng m gắn vào đầu lò xo nhẹ Lò xo có chiều dài ban đầu l0 độ cứng k Người ta cho vật lò xo quay tròn mặt sàn nằm ngang, trục quay qua đầu lò xo Tính tốc độ góc để lò xo dãn đoạn x kx  m  l0  x  Bài toán 25: Lò xo có độ cứng k, chiều dài tự nhiên l0 đầu cố định đầu treo vật có khối lượng m Quay lò xo quanh trục thẳng đứng qua đầu lò xo Vật vạch đường tròn nằm ngang, có trục quay hợp với trục lò xo góc  : mg - Chiều dài lò xo lúc quay: l  l0  k cos  g - Tốc độ góc:   mg l0cos  k Bài toán 26: Hai lò xo: Lò xo dài thêm đoạn x1 treo m1, lò xo dài thêm x2 treo m1 ta có: k1 m1 x  k m x1 Bài toán 27:(Lực quán tính tác dụng vào vật treo xe chuyển động theo phương ngang) Một vật nặng khối lượng m, kích thước 10 Gia sư Thành Được www.daythem.edu.vn không đáng kể treo đầu sợi dây xe chuyển động theo phương ngang với gia tốc a - Cho gia tốc a  Góc lệch dây treo so với phương thẳng a đứng: tan     g - Cho góc lệch α  gia tốc xe: a = gtanα Bài toán 28: (Chuyển động vòng xiếc) Xét xe đáp qua điểm cao vòng xiếc Điều kiện để xe không rơi: v  gR Bài toán 29: (Lực căng dây vật chuyển động tròng mặt phẳng thẳng đứng) Một cầu khối lượng m treo đầu A sợi dây OA dài l Quay cho cầu chuyển động tròn với tốc độ dài v mặt phẳng thẳng đứng quanh tâm O  v2  - Lực căng dây cực đại: Tmax  m   g   l  Trường hợp 2: Thang máy chuyển động nhanh dần lên , chuyển động chậm dần xuống với gia tốc a N = m(g + a) Trường hợp 3: Thang máy chuyển động chậm dần lên , chuyển động nhanh dần xuống với gia tốc a N = m(g - a)  v2  - Lực căng dây cực tiểu: Tmin  m   g   l  - Lực căng dây A vị trí thấp O OA hợp với phương  v2  thẳng đứng góc  : T  m  gcos    l  - Lực căng dây A vị trí cao O OA hợp với phương  v2  thẳng đứng góc  : T  m  gcos    l  Bài 30: (Tính độ biến dạng lò xo treo vào thang máy chuyển động thẳng đứng) Treo vật nặng có khối lượng m vào đầu lò xo có độ cứng k, đầu lò xo gắn vào thang máy Trường hợp 1: Thang máy chuyển động thẳng mg l  k Trường hợp 2: Thang máy chuyển động nhanh dần lên , chuyển động chậm dần xuống với gia tốc a m g  a  l  k Trường hợp 3: Thang máy chuyển động chậm dần lên , chuyển động nhanh dần xuống với gia tốc a m g  a  l  k Bài 31: (Áp lực nén lên sàn thang máy) Một vật có khối lượng m đặt sàn máy Trường hợp 1: Thang máy chuyển động thẳng : N = mg 11

Ngày đăng: 18/09/2017, 07:05

HÌNH ẢNH LIÊN QUAN

Chú ý: Khi vật có hình tròn lăn không trượt, độ dài cung quay - cong thuc tinh nhanh vat li 10 nang cao cong thuc tinh nhanh vat li 10 nang cao
h ú ý: Khi vật có hình tròn lăn không trượt, độ dài cung quay (Trang 4)
như hình vẽ. Biết m1, m2. - cong thuc tinh nhanh vat li 10 nang cao cong thuc tinh nhanh vat li 10 nang cao
nh ư hình vẽ. Biết m1, m2 (Trang 8)
Bài toán 11: Cho cơ hệ như hình vẽ. Cho m1, m2, F - cong thuc tinh nhanh vat li 10 nang cao cong thuc tinh nhanh vat li 10 nang cao
i toán 11: Cho cơ hệ như hình vẽ. Cho m1, m2, F (Trang 9)
Bài toán 12: Cho cơ hệ như hình vẽ - cong thuc tinh nhanh vat li 10 nang cao cong thuc tinh nhanh vat li 10 nang cao
i toán 12: Cho cơ hệ như hình vẽ (Trang 9)

TỪ KHÓA LIÊN QUAN

w