A member of Penguin Group (USA) Inc A member of Penguin Group (USA) Inc ALPHA BOOKS Published by the Penguin Group Penguin Group (USA) Inc., 375 Hudson Street, New York, New York 10014, USA Penguin Group (Canada), 90 Eglinton Avenue East, Suite 700, Toronto, Ontario M4P 2Y3, Canada (a division of Pearson Penguin Canada Inc.) Penguin Books Ltd., 80 Strand, London WC2R 0RL, England Penguin Ireland, 25 St Stephen’s Green, Dublin 2, Ireland (a division of Penguin Books Ltd.) Penguin Group (Australia), 250 Camberwell Road, Camberwell, Victoria 3124, Australia (a division of Pearson Australia Group Pty Ltd.) Penguin Books India Pvt Ltd., 11 Community Centre, Panchsheel Park, New Delhi—110 017, India Penguin Group (NZ), 67 Apollo Drive, Rosedale, North Shore, Auckland 1311, New Zealand (a division of Pearson New Zealand Ltd.) Penguin Books (South Africa) (Pty.) Ltd., 24 Sturdee Avenue, Rosebank, Johannesburg 2196, South Africa Penguin Books Ltd., Registered Offices: 80 Strand, London WC2R 0RL, England Copyright © 2009 by W Michael Kelley All rights reserved No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher No patent liability is assumed with respect to the use of the information contained herein Although every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions Neither is any liability assumed for damages resulting from the use of information contained herein For information, address Alpha Books, 800 East 96th Street, Indianapolis, IN 46240 ISBN: 1-101-15010-6 Library of Congress Catalog Card Number: 2006926601 Note: This publication contains the opinions and ideas of its author It is intended to provide helpful and informative material on the subject matter covered It is sold with the understanding that the author and publisher are not engaged in rendering professional services in the book If the reader requires personal assistance or advice, a competent professional should be consulted The author and publisher specifically disclaim any responsibility for any liability, loss, or risk, personal or otherwise, which is incurred as a consequence, directly or indirectly, of the use and application of any of the contents of this book Contents Introduction Chapter 1: Displaying Descriptive Statistics HjbbVg^o^c\YViV^ciVWaZh!X]Vgih!VcY\gVe]h H]dl^c\ndjgYViV^cViVWaZ Frequency Distributions H]dl^c\ndjg[gZfjZcXnY^hig^Wji^dc^cVX]Vgi Histograms H]dl^c\ndjgXViZ\dg^XVaYViV^cVX]Vgi Bar Charts H]dl^c\ndjgXViZ\dg^XVaYViV^cVX^gXaZ Pie Charts 14 H]dl^c\ndjgYViVdkZgi^bZ^cVX]Vgi Line Charts 19 H]dl^c\gZaVi^dch]^ehWZilZZcildkVg^VWaZh^cVX]Vgi Scatter Charts 21 ;^cY^c\i]ZXZciZgd[i ] Chapter 2: Calculating Descriptive Statistics: Measures of Central Tendency ZYViV 25 I]ZVkZgV\Z Mean 26 G^\]ihbVX`^ci]Zb^YYaZ Median 30 =Va[lVnWZilZZci]ZZcYed^cih Midrange 32 ;^cY^c\i]Zbdhi[gZfjZcikVajZ Mode 33 DcVhXVaZ[gdb&id&%% Percentile 36 6kZgV\^c\jh^c\Y^[[ZgZcilZ^\]ih Weighted Mean 42 6kZgV\^c\Y^hXgZiZYViV Mean of a Frequency Distribution 45 8VaXjaVi^c\i]ZbZVcd[\gdjeZYYViV 47 Mean of a Grouped Frequency Distribution 9ZiZgb^c^c\i]ZY^heZgh^d cd[i]ZYViV Chapter 3: Calculating Descriptive Statistics: Measures of Variation 51 =dll^YZ^hndjgYViV4 Range 52 ;^cY^c\i]Zb^YYaZ*%eZgXZcid[i]ZYViV Interquartile Range 54 HZeVgVi^c\i]Z\ddYYViV[gdbi]ZWVY Outliers 58 7dm"VcY"l]^h`ZgeadihVcYY^hig^Wji^dcY^V\gVbh Visualizing Distributions 62 I]ZÓdlZgedlZgd[YViV Stem-and-Leaf Plot 66 I]ZbdhiXdbbdclVnhidbZVhjgZY^ heZgh^dc 71 Variance and Standard Deviation of a Population 8VaXjaVi^c\Y^heZgh^dch [dg[gZfjZcXnY^hig^Wji^dch 81 Variance and Standard Deviation for Grouped Data Ejii^c\i]ZhiVcYVgYYZk^Vi^dcidldg` Chebyshev’s Theorem 85 I]Z=jbdc\djh7dd`d[6a\ZWgVEgdWaZbh iii Table of Contents Chapter 4: Introduction to Probability L]ViVgZi]ZX]VcXZh4 89 HiVgi^c\l^i]i]ZWVh^Xh Types of Probability 90 8dbW^c^c\egdWVW^a^i^Zhjh^c\ÆdgÇ Addition Rules for Probability 98 EgdWVW^a^i^Zhi]ViYZeZcYdcdi]ZgZkZcih Conditional Probability 106 IlddgbdgZZkZcihdXXjgg^c\Vii]ZhVbZi^bZ The Multiplication Rule for Probability 116 6cdi]ZglVnidXVaXjaViZXdcY^i^dcVaegdWVW^a^i^Zh Bayes’ Theorem .120 Chapter 5: Counting Principles and Probability Distributions DYYhndjXVcXdjcidc 123 =dlegdWVWaZ^h^ii]ViildhZeVgViZZkZcihdXXjg4 Fundamental Counting Principle 124 =dlbVcnlVnhXVcndjVggVc\ZVXdaaZXi^dcd[i]^c\h4 Permutations 127 L]Zci]ZdgYZgd[dW_ZXih^hcdi^bedgiVci Combinations 129 EgdWVW^a^injh^c\Y^hXgZiZYViV Probability Distributions 135 Chapter 6: Discrete Probability Distributions 7^cdb^Va!Ed^hhdc!VcY]neZg\ZdbZig^X 141 Jh^c\XdZ[ÒX^Zcihi]ViVgZXdbW^cVi^dch Binomial Probability Distribution 142 9ZiZgb^c^c\egdWVW^a^i^ZhdkZgheZX^ÒX^ciZgkVah Poisson Probability Distribution 149 6W^cdb^Vah]dgiXji The Poisson Distribution as an Approximation to the Binomial Distribution 156 9ZiZgb^c^c\egdWVW^a^i^Zhl ]ZcZkZcihVgZcdi^cYZeZcYZci Hypergeometric Probability Distribution 159 GVcYdbkVg^VWaZhi] ViVgZcÉil]daZcjbWZgh 165 Chapter 7: Continuous Probability Distributions 7ZaaXjgkZhVcYo"hXdgZh Normal Pobability Distribution 166 DcZ!ild!VcYi]gZZhiVcYVgYYZk^Vi^dch[gdbi]ZbZVc The Empirical Rule 179 6cdi]ZgW^cdb^VaegdWVW^a^inh] dgiXji Using the Normal Distribution to Approximate the Binomial Distribution .182 cigdYjX^c\i]ZHijYZciÉhi"Y^hig^Wji^dc Confidence Intervals for the Mean with Small Samples and Sigma Unknown 229 LZaXdbZWVX`!XZcigVaa^b^ii]ZdgZb Confidence Intervals for the Mean with Large Samples and Sigma Unknown 235 :hi^bVi^c\eZgXZciV\Zh[gdbVedejaVi^dc Confidence Intervals for the Proportion 239 Chapter 9: Confidence Intervals I^bZidgZ_ZXihdbZcjaa]nedi]ZhZh Chapter 10: Hypothesis Testing for a Single Population 243 L]ViVgZcjaaVcYVaiZgcVi^kZ]nedi]ZhZh4 Introduction to Hypothesis Testing for the Mean 244 8Vaa^c\dci]ZXZcigVaa^b ii] ZbdcXZV\V^c Zdg Hypothesis Testing for the Mean with n v 30 and Sigma Known ^ 247 I]ZncZZYidWZcdgbVaanY^h ig^WjiZY Hypothesis Testing for the Mean with n < 30 and Sigma Known 255 7g^c\^c\WVX`i]Zi"Y^hi g^Wji^ dc Hypothesis Testing for the Mean with n < 30 and Sigma Unknown .259 A^`Zi]ZaVhihZXi^dc!Wjil^i ]o"hXdgZh Hypothesis Testing for the Mean with n > 30 and Sigma Unknown .265 IZhi^c\eZgXZciV\Zh^chiZVYd[bZVch Hypothesis Testing for the Proportion 271 =nedi]Zh^o^c\ 279 8dbeVg^c\ildedejaVi^dcbZVch Hypothesis Testing for Two Means with n > 30 and Sigma Known 280 L]ZcedejaVi^dchcZZYidWZcdgbVaanY^hi g^WjiZY Hypothesis Testing for Two Means with n < 30 and Sigma Known 286 Chapter 11: Hypothesis Testing for Two Populations Cdh^\bV hbVaahVbeaZh2i"Y^hig^Wji^dc Hypothesis Testing for Two Means with n < 30 and Sigma Unknown 289 Oh^chiZVYd[Ih Hypothesis Testing for Two Means with n v 30 and Sigma Unknown 299 L]Vi]VeeZchl]Zci]ZildhVbeaZhVgZgZaViZY4 Hypothesis Testing for Two Means with Dependent Samples 302 8dbeVg^c\edejaVi^dceZgXZciV\Zh Hypothesis Testing for Two Proportions 309 Chapter 12: Chi-Square and Variance Tests IZhi^c\XViZ\dg^XVaYViV[dgkVg^Vi^dc 317 >hi]ZYViVY^hig^WjiZYi]ZlVnndji]dj\]i^il djaYW Z4 Chi-Square Goodness-of-Fit Test 318 6gZi]ZkVg^VWaZhgZaViZY4 Chi-Square Test for Independence 331 IZhi^c\kVg^Vi^dc^chiZVYd[i]ZbZVc Hypothesis Test for a Single Population Variance 338 >cigdYjX^c\i]Z;"Y^hig^Wji^dc Hypothesis Test for Two Population Variances .346 Chapter 13: Analysis of Variance 8dbeVg^c\bjai^eaZbZVchl^i]i]Z;"Y^hig^Wji^dc 351 I]ZbdhiWVh^X6CDK6egdXZYjgZ One-Way ANOVA: Completely Randomized Design 352 6YY^c\VWadX`^c\kVg^VWaZidi]ZiZhi One-Way ANOVA: Randomized Block Design .371 I]Z=jbdc\djh7dd`d[6a\ZWgVEgdWaZbh v Table of Contents ;^cY^c\gZaVi^dch]^ehWZilZZ cildkVg^VWaZh Chapter 14: Correlation and Simple Regression Analysis 389 9ZhXg^W^c\i]ZhigZc\i]VcYY^gZXi^dcd[VgZaVi^dch]^e Correlation 390 A^cZd[WZhiÒi Simple Regression Analysis .396 IZhihi]ViYdcdigZfj^gZVhhjb Chapter 15: Nonparametric Tests ei^dchVWdjii]ZedejaVi^dch 413 IZhii]ZbZY^Vcd[VhVbeaZ The Sign Test with a Small Sample Size 414 IZhibZY^Vchjh^c\o"hXdgZh The Sign Test with a Large Sample Size 418 6eeani]Zh^\ciZhiidildYZeZcYZciYViVhZih The Paired-Sample Sign Test (n f 25) 421 8dbW^cZi]Zh^\ciZhiVcYo"hXdgZhidiZhi eV^gZYYViV The Paired-Sample Sign Test (n # 25) 423 I]ZbV\c^ijYZd[Y^[[ZgZcXZhWZilZZcildhVbeaZh The Wilcoxon Rank Sum Test for Small Samples 425 The Wilcoxon Rank Sum Test for Large Samples JhZo"hXdgZhidbZVhjgZgVc`Y^[[ZgZcXZh 428 9^[[ZgZcXZ^cbV\c^ijYZWZilZZcYZeZcYZcihVbeaZh The Wilcoxon Signed-Rank Test 431 8dbeVg^c\bdgZi]VcildedejaVi^dch The Kruskal-Wallis Test 436 8dggZaVi^c\YViVhZihVXXdgY^c\idgVc`Y^[[Z gZcXZh The Spearman Rank Correlation Coefficient Test 442 Chapter 16: Forecasting EgZY^Xi^c\[jijgZkVajZhd[gVcYdbkVg^VWaZh 449 I]ZbdhiWVh^X[dgZXVhi^c\iZX]c^fjZ Simple Moving Average 450 GZXZciYViV^hlZ^\]iZYbdgZ]ZVk^an Weighted Moving Average 454 6hZa["XdggZXi^c\[dgZXVhi^c\iZX]c^fjZ Exponential Smoothing 458 6YYigZcYhidi]ZhZa["XdggZXi^c\bZi]dY Exponential Smoothing with Trend Adjustment 462 6XXdjci[dgigZcYhVcYhZVhdcVa^cÓjZcXZh Trend Projection and Seasonality 468 I]Z^cYZeZcYZcikVg^VWaZYdZhcÉi]VkZidWZi^bZ Causal Forecasting 477 Jh^c\hiVi^hi^XhidbZVhjgZfjVa^in Chapter 17: Statistical Process Control 483 :meadg^c\i]ZY^[[ZgZciineZhd[fjVa^inbZVhj g Z bZci Introduction to Statistical Process Control 484 BZVcVcYgVc\ZXdcigdaX]Vgih Statistical Process Control for Variable Measurement 484 8VaXjaViZi]Zegdedgi^dcd[YZ[ZXi^kZ^iZbh Statistical Process Control for Attribute Measurement Using p-charts 491 8djci^c\i]ZcjbWZgd[YZ[ZXi^kZ^iZbh Statistical Process Control for Attribute Measurement Using c-charts 495 >hVegdXZhhXVeVWaZd[eZg[dgb^c\VXXdgY^c\idYZh^\c4 Process Capability Ratio 498 BZVhjg^c\XVeVW^a^in[dgVegdXZhhi]Vi]Vhh]^[iZY Process Capability Index 500 vi I]Z=jbdc\djh7dd`d[6a\ZWgVEgdWaZbh Table of Contents Chapter 18: Contextualizing Statistical Concepts ;^\jg^c\djil]ZcidjhZl]Vi[dgbjaV 503 GZ[ZgZcXZIVWaZh *(& 6eeZcY^m6/8g^i^XVaKVajZhVcY8dcÒYZcXZ>ciZgkVah *)& 6eeZcY^m7/=nedi]Zh^hIZhi^c\ *)' 6eeZcY^m8/GZ\gZhh^dcVcY6CDK6:fjVi^dch *)) Index 545 I]Z=jbdc\djh7dd`d[6a\ZWgVEgdWaZbh vii >cigdYjXi^dc 6gZndj^cVhiVi^hi^XhXaVhh4NZh4I]ZcndjcZZYi]^hWdd`#=ZgZÉhl]n/ ;VXi&/I]ZWZhilVnidaZVgchiVi^hi^Xh^hWnldg`^c\djihiVi^hi^XhegdWaZbh#I]ZgZÉh cdYZcn^c\^i#>[ndjXdjaYÒ\jgZi]^hXaVhhdji_jhiWngZVY^c\i]ZiZmiWdd`dgiV`^c\ \ddYcdiZh^cXaVhh!ZkZgnWdYnldjaYeVhhl^i]Ón^c\Xdadgh#Jc[dgijcViZan!i]Z]Vgh] igji]^hi]Vindj]VkZidWjX`aZYdlcVcYldg`egdWaZbhdjijci^andjgÒc\ZghVgZ cjbW# ;VXi'/BdhiiZmiWdd`hdcaniZaandjl]Vii]ZVchlZghidi]Z^gegVXi^XZegdWaZbhVgZ Wjicdi]dlidYdi]ZbHjgZndjgiZmiWdd`bVn]VkZ&,*egdWaZbh[dgZkZgnide^X! Wjibdhid[i]Zbdcan\^kZndji]ZVchlZgh#I]VibZVch^[ndjYdcÉi\Zii]ZVchlZg g^\]indjÉgZidiVaanhXgZlZY@cdl^c\ndjÉgZlgdc\^hcd]ZaeViVaa^[ndjYdcÉi`cdlL=N ndjÉgZlgdc\#HiVi^hi^XhiZmiWdd`hh^idcV]j\Zi]gdcZ!a^`Zi]Z[Vi]djhVcYegdWaZbhVgZcÉiZcdj\]! i]ZcndjÉkZ\dihdbZ`^cYd[XgVonhiVih]jc\Zg!bn[g^ZcY!VcY>ÉYhZZ`egd[Zhh^dcVa ]Zae#I]^hegVXi^XZWdd`lVh\ddYViÒghi!WjiidbV`Z^i\gZVi!lZlZcii]gdj\]VcY ldg`ZYdjiVaai]ZegdWaZbhVcYidd`cdiZh^ci]ZbVg\^chl]ZclZi]dj\]ihdbZi]^c\ lVhXdc[jh^c\dgcZZYZYVa^iiaZbdgZZmeaVcVi^dc#LZVahdYgZla^iiaZh`jaahcZmiid i]Z]VgYZhiegdWaZbh!hdndjÉY`cdlcdiid[gZV`dji^[i]ZnlZgZiddX]VaaZc\^c\# 6[iZgVaa!^[ndjÉgZldg`^c\dcVegdWaZbVcYndjÉgZidiVaanhijbeZY!^hcÉi^iWZiiZgid `cdli]Vii]ZegdWaZb^hhjeedhZYidWZ]VgY4>iÉhgZVhhjg^c\!ViaZVhi[dgjh# I]Z=jbdc\djh7dd`d[6a\ZWgVEgdWaZbh Area in the Right Tail of Distribution = 0.25 D1 D2 10 10 11 12 13 14 15 16 17 18 19 20 647.789 38.506 17.443 12.218 10.007 8.813 8.073 7.571 7.209 6.937 6.724 6.554 6.414 6.298 6.200 6.115 6.042 5.978 5.922 5.871 799.500 39.000 16.044 10.649 8.434 7.260 6.542 6.059 5.715 5.456 5.256 5.096 4.965 4.857 4.765 4.687 4.619 4.560 4.508 4.461 864.163 39.165 15.439 9.979 7.764 6.599 5.890 5.416 5.078 4.826 4.630 4.474 4.347 4.242 4.153 4.077 4.011 3.954 3.903 3.859 899.583 39.248 15.101 9.605 7.388 6.227 5.523 5.053 4.718 4.468 4.275 4.121 3.996 3.892 3.804 3.729 3.665 3.608 3.559 3.515 921.848 39.298 14.885 9.364 7.146 5.988 5.285 4.817 4.484 4.236 4.044 3.891 3.767 3.663 3.576 3.502 3.438 3.382 3.333 3.289 937.111 39.331 14.735 9.197 6.978 5.820 5.119 4.652 4.320 4.072 3.881 3.728 3.604 3.501 3.415 3.341 3.277 3.221 3.172 3.128 948.217 39.355 14.624 9.074 6.853 5.695 4.995 4.529 4.197 3.950 3.759 3.607 3.483 3.380 3.293 3.219 3.156 3.100 3.051 3.007 956.656 39.373 14.540 8.980 6.757 5.600 4.899 4.433 4.102 3.855 3.664 3.512 3.388 3.285 3.199 3.125 3.061 3.005 2.956 2.913 963.285 39.387 14.473 8.905 6.681 5.523 4.823 4.357 4.026 3.779 3.588 3.436 3.312 3.209 3.123 3.049 2.985 2.929 2.880 2.837 968.627 39.398 14.419 8.844 6.619 5.461 4.761 4.295 3.964 3.717 3.526 3.374 3.250 3.147 3.060 2.986 2.922 2.866 2.817 2.774 18 19 20 990.349 39.442 14.196 8.592 6.362 5.202 4.501 4.034 3.701 3.453 3.261 3.108 2.983 2.879 2.792 2.717 2.652 2.596 2.546 2.501 991.797 39.445 14.181 8.575 6.344 5.184 4.483 4.016 3.683 3.435 3.243 3.090 2.965 2.861 2.773 2.698 2.633 2.576 2.526 2.482 993.103 39.448 14.167 8.560 6.329 5.168 4.467 3.999 3.667 3.419 3.226 3.073 2.948 2.844 2.756 2.681 2.616 2.559 2.509 2.464 D2 11 12 Area in the Right Tail of Distribution = 0.25 D1 13 14 15 16 17 10 11 12 13 14 15 16 17 18 19 20 973.025 39.407 14.374 8.794 6.568 5.410 4.709 4.243 3.912 3.665 3.474 3.321 3.197 3.095 3.008 2.934 2.870 2.814 2.765 2.721 976.708 39.415 14.337 8.751 6.525 5.366 4.666 4.200 3.868 3.621 3.430 3.277 3.153 3.050 2.963 2.889 2.825 2.769 2.720 2.676 979.837 39.421 14.304 8.715 6.488 5.329 4.628 4.162 3.831 3.583 3.392 3.239 3.115 3.012 2.925 2.851 2.786 2.730 2.681 2.637 982.528 39.427 14.277 8.684 6.456 5.297 4.596 4.130 3.798 3.550 3.359 3.206 3.082 2.979 2.891 2.817 2.753 2.696 2.647 2.603 h7dd`d[HiVi^hi^XhEgdWaZbh 536 I]Z=jbdc\dj 984.867 39.431 14.253 8.657 6.428 5.269 4.568 4.101 3.769 3.522 3.330 3.177 3.053 2.949 2.862 2.788 2.723 2.667 2.617 2.573 986.919 39.435 14.232 8.633 6.403 5.244 4.543 4.076 3.744 3.496 3.304 3.152 3.027 2.923 2.836 2.761 2.697 2.640 2.591 2.547 988.733 39.439 14.213 8.611 6.381 5.222 4.521 4.054 3.722 3.474 3.282 3.129 3.004 2.900 2.813 2.738 2.673 2.617 2.567 2.523 Area in the Right Tail of Distribution = 0.01 D1 D2 10 10 11 12 13 14 15 16 17 18 19 20 4052.2 98.503 34.116 21.198 16.258 13.745 12.246 11.259 10.561 10.044 9.646 9.330 9.074 8.862 8.683 8.531 8.400 8.285 8.185 8.096 4999.5 99.000 30.817 18.000 13.274 10.925 9.547 8.649 8.022 7.559 7.206 6.927 6.701 6.515 6.359 6.226 6.112 6.013 5.926 5.849 5403.4 99.166 29.457 16.694 12.060 9.780 8.451 7.591 6.992 6.552 6.217 5.953 5.739 5.564 5.417 5.292 5.185 5.092 5.010 4.938 5624.6 99.249 28.710 15.977 11.392 9.148 7.847 7.006 6.422 5.994 5.668 5.412 5.205 5.035 4.893 4.773 4.669 4.579 4.500 4.431 5763.6 99.299 28.237 15.522 10.967 8.746 7.460 6.632 6.057 5.636 5.316 5.064 4.862 4.695 4.556 4.437 4.336 4.248 4.171 4.103 5859.0 99.333 27.911 15.207 10.672 8.466 7.191 6.371 5.802 5.386 5.069 4.821 4.620 4.456 4.318 4.202 4.102 4.015 3.939 3.871 5928.4 99.356 27.672 14.976 10.456 8.260 6.993 6.178 5.613 5.200 4.886 4.640 4.441 4.278 4.142 4.026 3.927 3.841 3.765 3.699 5981.1 99.374 27.489 14.799 10.289 8.102 6.840 6.029 5.467 5.057 4.744 4.499 4.302 4.140 4.004 3.890 3.791 3.705 3.631 3.564 6022.5 99.388 27.345 14.659 10.158 7.976 6.719 5.911 5.351 4.942 4.632 4.388 4.191 4.030 3.895 3.780 3.682 3.597 3.523 3.457 6055.8 99.399 27.229 14.546 10.051 7.874 6.620 5.814 5.257 4.849 4.539 4.296 4.100 3.939 3.805 3.691 3.593 3.508 3.434 3.368 18 19 20 6191.5 99.444 26.751 14.080 9.610 7.451 6.209 5.412 4.860 4.457 4.150 3.909 3.716 3.556 3.423 3.310 3.212 3.128 3.054 2.989 6200.6 99.447 26.719 14.048 9.580 7.422 6.181 5.384 4.833 4.430 4.123 3.883 3.689 3.529 3.396 3.283 3.186 3.101 3.027 2.962 6208.7 99.449 26.690 14.020 9.553 7.396 6.155 5.359 4.808 4.405 4.099 3.858 3.665 3.505 3.372 3.259 3.162 3.077 3.003 2.938 D2 11 12 Area in the Right Tail of Distribution = 0.01 D1 13 14 15 16 17 10 11 12 13 14 15 16 17 18 19 20 6083.3 99.408 27.133 14.452 9.963 7.790 6.538 5.734 5.178 4.772 4.462 4.220 4.025 3.864 3.730 3.616 3.519 3.434 3.360 3.294 6106.3 99.416 27.052 14.374 9.888 7.718 6.469 5.667 5.111 4.706 4.397 4.155 3.960 3.800 3.666 3.553 3.455 3.371 3.297 3.231 6125.9 99.422 26.983 14.307 9.825 7.657 6.410 5.609 5.055 4.650 4.342 4.100 3.905 3.745 3.612 3.498 3.401 3.316 3.242 3.177 6142.7 99.428 26.924 14.249 9.770 7.605 6.359 5.559 5.005 4.601 4.293 4.052 3.857 3.698 3.564 3.451 3.353 3.269 3.195 3.130 6157.3 99.433 26.872 14.198 9.722 7.559 6.314 5.515 4.962 4.558 4.251 4.010 3.815 3.656 3.522 3.409 3.312 3.227 3.153 3.088 6170.1 99.437 26.827 14.154 9.680 7.519 6.275 5.477 4.924 4.520 4.213 3.972 3.778 3.619 3.485 3.372 3.275 3.190 3.116 3.051 6181.4 99.440 26.787 14.115 9.643 7.483 6.240 5.442 4.890 4.487 4.180 3.939 3.745 3.586 3.452 3.339 3.242 3.158 3.084 3.018 I]Z=jbdc\djh7dd`d[HiVi^hi^XhEgdWaZbh 537 Reference Table Critical Values of Studentized Range Critical Values of the Studentized Range (0.05 level) D1 D2 3 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 6.085 4.501 3.927 3.635 3.461 3.344 3.261 3.199 3.151 3.113 3.081 3.055 3.033 3.014 2.998 2.984 2.971 2.960 2.950 2.943 2.935 2.927 2.920 8.331 5.910 5.040 4.602 4.339 4.165 4.041 3.949 3.877 3.820 3.773 3.734 3.701 3.673 3.649 3.628 3.609 3.593 3.578 3.566 3.554 3.543 3.533 9.798 6.825 5.757 5.219 4.896 4.681 4.529 4.415 4.327 4.256 4.199 4.151 4.111 4.076 4.046 4.020 3.997 3.977 3.958 3.943 3.928 3.915 3.902 10.881 7.502 6.287 5.673 5.305 5.060 4.886 4.755 4.654 4.574 4.508 4.453 4.407 4.367 4.333 4.303 4.276 4.253 4.232 4.214 4.197 4.182 4.167 11.734 8.037 6.707 6.033 5.629 5.359 5.167 5.024 4.912 4.823 4.748 4.690 4.639 4.595 4.557 4.524 4.494 4.469 4.445 4.425 4.407 4.389 4.374 12.435 8.478 7.053 6.330 5.895 5.606 5.399 5.244 5.124 5.028 4.947 4.884 4.829 4.782 4.741 4.705 4.673 4.645 4.620 4.599 4.578 4.559 4.542 13.027 8.852 7.347 6.582 6.122 5.815 5.596 5.432 5.304 5.202 5.116 5.049 4.990 4.940 4.896 4.858 4.824 4.794 4.768 4.745 4.723 4.703 4.685 13.538 9.177 7.602 6.801 6.319 5.998 5.767 5.595 5.461 5.353 5.263 5.192 5.130 5.077 5.031 4.991 4.955 4.924 4.895 4.871 4.848 4.827 4.808 Critical Values of the Studentized Range (0.01 level) D1 D2 3 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 14.035 8.263 6.511 5.702 5.243 4.948 4.745 4.596 4.482 4.392 4.320 4.261 4.210 4.167 4.131 4.099 4.071 4.046 4.024 4.014 3.995 3.979 3.964 19.019 10.616 8.118 6.976 6.331 5.919 5.635 5.428 5.270 5.146 5.046 4.964 4.895 4.836 4.786 4.742 4.703 4.669 4.639 4.619 4.594 4.572 4.552 22.294 12.170 9.173 7.806 7.033 6.543 6.204 5.957 5.769 5.621 5.502 5.404 5.322 5.252 5.192 5.140 5.094 5.054 5.018 4.992 4.963 4.936 4.912 24.717 13.324 9.958 8.422 7.556 7.006 6.625 6.347 6.136 5.970 5.836 5.727 5.634 5.556 5.489 5.430 5.379 5.333 5.293 5.264 5.231 5.202 5.175 26.628 14.240 10.582 8.913 7.974 7.373 6.960 6.658 6.428 6.247 6.101 5.981 5.881 5.796 5.722 5.659 5.603 5.553 5.509 5.476 5.440 5.408 5.379 28.199 14.997 11.099 9.321 8.318 7.678 7.238 6.915 6.669 6.476 6.321 6.192 6.085 5.994 5.915 5.847 5.787 5.735 5.688 5.651 5.613 5.579 5.547 29.528 15.640 11.539 9.669 8.611 7.940 7.475 7.134 6.875 6.671 6.507 6.372 6.258 6.162 6.079 6.007 5.944 5.889 5.839 5.800 5.759 5.723 5.690 30.677 16.198 11.925 9.971 8.869 8.167 7.681 7.326 7.055 6.842 6.670 6.528 6.410 6.309 6.222 6.147 6.081 6.022 5.970 5.929 5.887 5.848 5.814 10 13.988 9.462 7.826 6.995 6.493 6.158 5.918 5.738 5.598 5.486 5.395 5.318 5.253 5.198 5.150 5.108 5.071 5.038 5.008 4.982 4.958 4.936 4.916 10 31.687 16.689 12.264 10.239 9.097 8.368 7.864 7.495 7.214 6.992 6.814 6.666 6.543 6.438 6.348 6.270 6.201 6.141 6.086 6.043 5.999 5.959 5.923 Source: E.S Pearson and H.O Hartley, Biometrika Tables for Statisticians, New York: Cambridge University Press, 1954 h7dd`d[HiVi^hi^XhEgdWaZbh 538 I]Z=jbdc\dj Reference Table Critical Values for the Sign Test One–Tailed F Two–Tailed F n 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0.05 0.10 0.025 0.05 0.01 0.02 0.005 0.01 1 2 3 4 5 6 7 1 2 3 4 5 6 0 1 2 3 4 5 0 0 1 2 3 4 5 Source: From Journal of American Statistical Association Vol 41 (1946) pp 557–66 W.J Dixon and A.M Mood Reference Table Lower and Upper Critical Values for Wilcoxon Rank Sum Test n1 n2 4 10 5,16 6,18 6,21 7,23 7,26 8,28 8,31 9,33 6,18 11,25 12,28 12,32 13,35 14,38 15,41 16,44 F = 0.025 (one–tail) or F = 0.05 (two–tail) 6,21 12,28 18,37 19,41 20,45 21,49 22,53 24,56 7,23 12,32 19,41 26,52 28,56 29,61 31,65 32,70 7,26 13,35 20,45 28,56 37,68 39,73 41,78 43,83 8,28 14,38 21,49 29,61 39,73 49,87 51,93 54,98 10 8,31 15,41 22,53 31,65 41,78 51,93 63,108 66,114 9,33 16,44 24,56 32,70 43,83 54,98 66,114 79,131 10 10,29 17,39 25,50 33,63 43,76 54,90 66,105 69,111 11,31 18,42 26,54 35,67 46,80 57,95 69,111 83,127 (Note: n1 is the smaller of the two samples – i.e., n1 f n2 ) n1 n2 10 6,15 7,17 7,20 8,22 9,24 9,27 10,29 11,31 7,17 12,24 13,27 14,30 15,33 16,36 17,39 18,42 F = 0.05 (one–tail) or F = 0.10 (two–tail) 7,20 13,27 19,36 20,40 22,43 24,46 25,50 26,54 8,22 14,30 20,40 28,50 30,54 32,58 33,63 35,67 9,24 15,33 22,43 30,54 39,66 41,71 43,76 46,80 9,27 16,36 24,46 32,58 41,71 52,84 54,90 57,95 (Note: n1 f n 2.) Source: F Wilcoxon and R A Wilcox, Some Approximate Statistical Procedures (New York: American Cyanamid Company, 1964), pp 20-23 I]Z=jbdc\djh7dd`d[HiVi^hi^XhEgdWaZbh 539 Reference Table Critical Values Wc for the Wilcoxon Signed–Rank Test One–Tailed F Two–Tailed F n 10 11 12 0.05 0.10 0.025 0.05 0.01 0.02 0.005 0.01 11 14 17 11 14 10 Source: Some Rapid Approximate Statistical Procedures Copyright 1949, 1964 Lerderle Laboratories, American Cyanamid Co., Wayne, N.J Reference Table F n 10 11 12 Critical Values for the Spearman Rank Correlation 0.10 0.05 0.01 0.900 0.829 0.714 0.643 0.600 0.564 0.536 0.497 ––– 0.886 0.786 0.738 0.700 0.648 0.618 0.591 ––– ––– 0.929 0.881 0.833 0.794 0.818 0.780 Source: N.L Johnson and F.C Leone, Statistical and Experimental Design, Vol (1964), p 412 Reference Table 10 Sample Size n 10 Factors for 3-Sigma Control Chart Limits Mean Factor A2 1.880 1.023 0.729 0.577 0.483 0.419 0.373 0.337 0.308 Lower Range D3 Upper Range D4 0 0 0.076 0.136 0.184 0.223 3.268 2.574 2.282 2.115 2.004 1.924 1.864 1.816 1.777 Source: E.S Pearson, The Percentage Limits for the Distribution Range in Samples from a Normal Population, Biometrika 24 (1932): 416 h7dd`d[HiVi^hi^XhEgdWaZbh 540 I]Z=jbdc\dj Appendix A tervals In e c n e d fi n o C and Critical Values Confidence Intervals Critical z-scores Sample Size for Confidence Intervals I]Z=jbdc\djh7dd`d[HiVi^hi^XhEgdWaZbh 541 Appendix B g n i t s e T s i s Hypothe One-Sample Hypothesis Test h7dd`d[HiVi^hi^XhEgdWaZbh 542 I]Z=jbdc\dj Two-Sample Hypothesis Test o o o o o o I]Z=jbdc\djh7dd`d[HiVi^hi^XhEgdWaZbh 543 Appendix C Regression and ANOVA Equations Correlation Equations ns Sum of Square Equatio Regression slope a nd y-intercept Coefficient of Determination Equations Significance of slope equations ANOVA Equations (completely randomized design) h7dd`d[HiVi^hi^XhEgdWaZbh 544 I]Z=jbdc\dj Index ALPHABETICAL LIST OF CONCEPTS WITH PROBLEM NUMBERS This comprehensive index organizes the concepts and skills discussed within the book alphabetically Each entry is accompanied by one or more problem numbers, in which the topics are most prominently featured ]Z eV\Zh!^ci]ZWdd`#;dgZmVbeaZ!-#'^hi 6aai]ZhZcjbWZghgZ[ZgidegdWaZbh!cdi hZXdcYegdWaZb^c8]VeiZg-# A addition rule of probabilities: 4.23, 4.24, 4.29, 4.33, 4.35, 4.37–4.41 alpha exponential smoothing: 16.15 significance level: 9.5 alternative hypothesis: 10.1–10.4 analysis of variance: 13.1–13.2 completely randomized design: 13.1–13.30 randomized block design: 13.1, 13.31–13.58 average: 2.1–2.6 B bar chart: 1.11–1.20 Bayes’ Theorem: 4.67–4.69 beta: 16.22–16.30 binomial probability distribution: 6.1–6.16, 12.4, 12.12 characteristics: 6.1 mean: 6.5, 6.9, 6.13, 6.16 standard deviation: 6.5, 6.9, 6.13, 6.16 using the normal distribution to approximate: 7.30–7.37 blocking variables: 13.33 box and whisker plot: 3.21, 3.22, 3.26, 3.28 C calculated chi-square score: 12.1, 12.3, 12.5, 12.7, 12.8, 12.11, 12.13, 12.15, 12.17, 12.18, 12.20, 12.22, 12.24, 12.26, 12.28–12.30, 12.32, 12.34, 12.36, 12.38 F-score: 12.40–12.45, 13.5, 13.7, 13.10, 13.16, 13.19, 13.25, 13.28, 13.34, 13.35, 13.40, 13.41, 13.45, 13.46, 13.49, 13.50, 13.54–13.56 t-score: 9.25–9.33, 10.32, 10.34, 10.36, 10.38, 10.40 z-score: 9.6, 9.36, 9.37, 9.42, 9.45, 10.8, 10.11, 10.15, 10.16, 10.19, 10.22, 10.25, 10.28, 10.43, 10.46, 10.49, 10.52, 10.55, 10.56, 10.59, 10.62, 10.65, 10.68 casual forecasting: 16.45–16.50 categorical data: 1.11, 1.13–1.14, 2.22, 2.23 Index — Alphabetical List of Concepts with Problem Numbers central limit theorem: 8.5 central tendency, measures of mean: 2.1–2.6, 2.22–2.23, 3.23–3.25, 3.27, 3.29, 3.37, 3.41, 3.45 mean: of a grouped frequency distribution: 2.41–2.44 median: 2.12–2.14, 2.22–2.23, 3.9, 3.12, 3.14–3.15, 3.19, 3.23–3.25, 3.27, 3.29 mode: 2.19–2.23 weighted mean: 2.34–2.44 charts bar: 1.11–1.20 line: 1.25–1.27 pie: 1.21–1.24 Chebyshev’s Theorem: 3.54–3.62 chi-square probability distribution: 12.1–12.39 expected frequencies: 12.1 observed frequencies: 12.1 chi-square tests goodness-of-fit: 12.1–12.17 one-sample variance test: 12.29–12.39 test for independence: 12.18–12.28 classes: 1.4–1.5, 1.9–1.10, 2.34 classical probability: 4.2, 4.6 coefficient of determination: 14.15–14.16, 14.27, 14.38 coefficient of variation: 3.40, 3.44, 3.48, 3.51 combinations: 5.14–5.27 complement rule: 4.7, 4.14, 4.16 completely randomized ANOVA: 13.1–13.30 conditional probability: 4.42–4.57 confidence interval for the mean: 9.6–9.44 for the proportion: 9.45–9.54 continuous probability distribution: 5.28 continuous variable: 1.8 correlation analysis: 14.1–14.9 correlation coefficient: 14.2–14.9 critical chi-square score: 12.1, 12.3, 12.5, 12.7, 12.8, 12.11, 12.13, 12.15, 12.17, 12.18, 12.20, 12.22, 12.24, 12.26, 12.28–12.30, 12.32, 12.34, 12.36, 12.38 h7dd`d[HiVi^hi^XhEgdWaZbh 546 I]Z=jbdc\dj F-score: 12.40–12.45, 13.5, 13.7, 13.10, 13.16, 13.19, 13.25, 13.28, 13.34, 13.35, 13.40, 13.41, 13.45, 13.46, 13.49, 13.50, 13.54–13.56 t-score: 9.25–9.33, 10.32, 10.34, 10.36, 10.38, 10.40 z-score: 9.6, 9.36, 9.37, 9.42, 9.45, 10.8, 10.11, 10.15, 10.16, 10.19, 10.22, 10.25, 10.28, 10.43, 10.46, 10.49, 10.52, 10.55, 10.56, 10.59, 10.62, 10.65, 10.68 cumulative frequency distribution: 1.3, 1.6 D degrees of freedom: chi-square distribution: 12.3 F-distribution: 12.41 t-distribution: 9.24–9.33, 10.31–10.41, 11.17–11.30 dependent variable: 1.28–1.30, 14.1 discrete probability distribution: 5.28 discrete variable: 1.11 dispersions, measures of interquartile range: 3.11–3.20, 3.22, 3.26 population standard deviation: 3.39, 3.43 population variance: 3.37, 3.38, 3.41, 3.42 range: 3.1–3.7 sample standard deviation: 3.47, 3.49, 3.50 sample variance: 3.45, 3.46 distributions binomial: 6.1–6.16, 12.4, 12.12 chi-square: 12.1–12.39 continuous: 5.28 discrete: 5.28 empirical rule: 7.23–7.29 exponential: 7.45–7.54 F-distribution: 12.40–12.45, 13.5, 13.10, 13.19, 13.28, 13.34, 13.35, 13.45, 13.46, 13.54–13.56 frequency: 1.1–1.6, 1.8–1.10, 1.21, 1.22, 2.19–2.21 hypergeometric: 6.39–6.51 normal: 7.1–7.22, 12.8 Index — Alphabetical List of Concepts with Problem Numbers normal approximation to the binomial: 7.30–7.37 Poisson: 6.17–6.31, 12.6, 12.14 Poisson approximation to the binomial: 6.32–6.38 random variables: 5.28 t-distribution: 9.24–9.33, 10.31–10.41, 11.17–11.30 uniform: 7.38–7.44, 12.2, 12.10 E–F–G empirical probability: 4.3, 4.6 empirical rule: 4.3, 4.6 expected frequencies: 12.1–12.28 exponential smoothing: 16.15–16.21 exponential smoothing with trend adjustment: 16.22–16.30 F-distribution: 12.40–12.45, 13.5, 13.10, 13.19, 13.28, 13.34, 13.35, 13.45, 13.46, 13.54–13.56 forecasting exponential smoothing: 16.15–16.21 exponential smoothing with trend adjustment: 16.22–16.30 simple moving average: 16.1–16.7 trend projection: 16.31–16.44 weighted moving average: 16.8–16.14 frequency distribution: 1.1–1.6, 1.8–1.10, 1.21, 1.22, 2.19–2.21 calculating mean of: 2.37–2.40 fundamental counting rule: 5.1–5.8 H–I–J–K histogram: 1.7–1.10 hypergeometric probability distribution: 6.39–6.51 hypothesis alternative: 10.1–10.4 null: 10.1–10.4 hypothesis testing for dependent samples: 11.38–11.46 for the mean with a single population: 10.1–10.54 for the mean with two populations: 11.1–11.46 for the proportion with a single population: 10.55–10.70 for the proportion with two populations: 11.47–11.59 for the variance with one population: 12.29–12.39 for the variance with two populations: 12.40–12.45 one-tail: 10.7 two-tail: 10.6 independent events: 4.10–4.12, 4.47, 4.50, 4.57 independent variable: 1.28–1.30, 14.1 index point: 2.12–2.14, 2.23, 2.24–2.27, 3.8–3.10, 3.16–3.17, 3.19–3.20 intercept: 14.11, 14.22, 14.33 Kruskal-Wallis test: 15.31–15.35 L–M left-skewed distribution: 3.22 level of significance: 10.5 line chart: 1.25–1.27 margin of error: 9.6 mean: 2.1–2.6, 2.22–2.23, 3.23–3.25, 3.27, 3.29, 3.37, 3.41, 3.45 of a binomial distribution: 6.5, 6.9, 6.13, 6.16 of a discrete distribution: 5.29, 5.32 of an exponential distribution: 7.48 of a frequency distribution: 2.38–2.40 of a grouped frequency distribution: 2.41–2.44 of a Poisson distribution: 6.21, 6.24 of a uniform distribution: 7.41, 7.44 weighted: 2.34–2.44 mean absolute deviation: 16.2, 16.4, 16.6, 16.7, 16.16, 16.18, 16.20, 16.21, 16.33, 16.36, 16.37, 16.40, 16.43, 16.44 I]Z=jbdc\djh7dd`d[HiVi^hi^XhEgdWaZbh 547 Index — Alphabetical List of Concepts with Problem Numbers mean square between: 13.5, 13.6, 13.10, 13.11, 13.15, 13.19, 13.20, 13.24, 13.28, 13.29, 13.35, 13.36, 13.39, 13.41, 13.46, 13.47, 13.50, 13.55–13.57 blocking: 13.34, 13.36, 13.39, 13.40, 13.45, 13.47, 13.49, 13.54, 13.57 within: 13.5–13.7, 13.10–13.12, 13.15, 13.19–13.21, 13.24, 13.28–13.30, 13.34, 13.35–13.37, 13.39–13.41, 13.45–13.50, 13.54–13.58 mean squared error: 16.9, 16.11, 16.13, 16.14, 16.23, 16.25, 16.27, 16.29, 16.30, 16.47, 16.50 median: 2.12–2.14, 2.22–2.23, 3.9, 3.12, 3.14–3.15, 3.18, 3.23–3.25, 3.27, 3.29 midrange: 2.15–2.18 mode: 2.19–2.23 moving average forecast simple: 16.1–16.7 weighted: 16.8–16.14 MSB (means square between): 13.5, 13.6, 13.10, 13.11, 13.15, 13.19, 13.20, 13.24, 13.28, 13.29, 13.35, 13.36, 13.39, 13.41, 13.46, 13.47, 13.50, 13.55–13.57 MSBL (mean square blocking): 13.34, 13.36, 13.39, 13.40, 13.45, 13.47, 13.49, 13.54, 13.57 MSW (mean square within): 13.5–13.7, 13.10–13.12, 13.15, 13.19–13.21, 13.24, 13.28–13.30, 13.34, 13.35–13.37, 13.39–13.41, 13.45–13.50, 13.54–13.58 multiplication rule: 4.58–4.66 mutually exclusive events: 4.9, 4.11, 4.12, 4.19, 4.22, 4.34, 4.36 N–O normal approximation to the binomial: 7.30–7.37 normal probability distribution: 7.1–7.22, 12.8 null hypothesis: 10.1–10.4 observed frequencies: 12.1 one-way ANOVA: 13.1–13.2 outliers: 2.22, 3.17–3.22, 3.26–3.27 h7dd`d[HiVi^hi^XhEgdWaZbh 548 I]Z=jbdc\dj P paired-sample sign test: 15.12–15.20 pairwise comparisons Scheffé’s pairwise comparison test: 13.7, 13.12, 13.21, 13.30 Tukey’s pairwise test: 13.37, 13.48, 13.58 partitioning the sum of squares: 13.9, 13.18, 13.27, 13.33, 13.44, 13.50 percentiles: 2.24–2.33, 3.8–3.10, 3.12–3.13 permutations: 5.9–5.14 pie chart: 1.21–1.24 point estimate: 9.4 Poisson approximation to the binomial: 6.32–6.38 Poisson distribution: 6.17–6.31, 12.6, 12.14 population mean: 2.2 standard deviation: 3.39, 3.43 variance: 3.37–3.38, 3.41–3.42 probability addition rule: 4.23, 4.24, 4.29, 4.33, 4.35, 4.37–4.41 Bayes’ Theorem: 4.67–4.69 classical: 4.2, 4.6 complement rule: 4.7, 4.14, 4.16 conditional: 4.42–4.57 empirical: 4.3, 4.6 independent events: 4.10–4.12, 4.47, 4.50, 4.57 multiplication rule: 4.58–4.66 mutually exclusive events: 4.9, 4.11, 4.12, 4.19, 4.22, 4.34, 4.36 subjective: 4.4, 4.6 Venn diagram: 4.25 probability distributions binomial: 6.1–6.16, 12.4, 12.12 chi-square: 12.1–12.39 continuous: 5.28 discrete: 5.28 empirical rule: 7.23–7.29 exponential: 7.45–7.54 F-distribution: 12.40–12.45, 13.5, 13.10, 13.19, 13.28, 13.34, 13.35, 13.45, 13.46, 13.54–13.56 hypergeometric: 6.39–6.51 Index — Alphabetical List of Concepts with Problem Numbers normal: 7.1–7.22, 12.8 normal approximation to the binomial: 7.30–7.37 Poisson: 6.17–6.31, 12.6, 12.14 Poisson approximation to the binomial: 6.32–6.38 random variables: 5.28 t-distribution: 9.24–9.33, 10.31–10.41, 11.17–11.30 uniform: 7.38–7.44, 12.2, 12.10 proportions confidence intervals: 9.45–9.54 one-population hypothesis testing: 10.55–10.70 two-population hypothesis testing: 11.47–11.59 p-value: 10.10, 10.14, 10.18, 10.21, 10.24, 10.27, 10.30, 10.45, 10.48, 10.51, 10.54, 10.58, 10.61, 10.64, 10.67, 10.70, 11.3, 11.9, 11.12, 11.15, 11.33, 11.36, 11.49, 11.52, 11.55, 11.58 Q–R quartile: 3.8–3.22, 3.26, 3.28 random variables: 5.28 randomized block design: 13.1, 13.31–13.58 range: 3.1–3.7 interquartile: 3.11–3.20, 3.22, 3.26 relative frequency distribution: 1.2, 1.5, 1.21-1.22, 1.24 regression analysis: 14.10–14.43 right-skewed distribution: 3.23, 3.27 S sample mean: 2.3 standard deviation: 3.47, 3.49, 3.50 variance: 3.45-3.46 sample size for a confidence interval for the mean: 9.9, 9.14, 9.20, 9.23, 9.35, 9.38, 9.41, 9.44 for a confidence interval for the proportion: 9.46, 9.48, 9.50, 9.52, 9.54 sampling cluster: 8.3 simple random: 8.1 stratified: 8.4 systematic: 8.2 sampling distributions of the mean: 8.5–8.17 finite population correction factor for the mean: 8.18–8.22 of the proportion: 8.23–8.35 finite population correction factor for the proportion: 8.36–8.40 sampling error: 9.1–9.3 scatter chart: 1.28–1.30 Scheffé’s pairwise comparison test: 13.7, 13.12, 13.21, 13.30 seasonal forecast: 16.35, 16.42 seasonal indexes: 16.34, 16.41 sign test: 15.3–15.12 simple regression analysis: 14.10–14.43 slope: 14.11, 14.22, 14.33 Spearman rank correlation coefficient test: 15.36–15.45 SSB (sum of squares between): 13.4, 13.9, 13.18, 13.27, 13.32, 13.43, 13.52 SSBL (sum of squares blocking): 13.33, 13.44, 13.53 SSE (sum of squares error): 14.14, 14.25, 14.36 SSR (sum of squares regression): 14.14, 14.25, 14.36 SST (sum of squares total): 13.3, 13.8, 13.17, 13.26, 13.31, 13.42, 13.51, 14.13, 14.24, 14.35 SSW (sum of squares within): 13.4, 13.9, 13.18, 13.27, 13.33, 13.44, 13.53 standard deviation of a binomial distribution: 6.5, 6.9, 6.13, 6.16 of a discrete distribution: 5.30-5.31, 5.33-5.34 of an exponential distribution: 7.48 of grouped data: 3.53-3.54 of a Poisson distribution: 6.21, 6.24 of a population: 3.39, 3.43 of a sample: 3.47, 3.49-3.50 of a uniform distribution: 7.41, 7.44 I]Z=jbdc\djh7dd`d[HiVi^hi^XhEgdWaZbh 549 Index — Alphabetical List of Concepts with Problem Numbers standard error of the estimate: 14.17, 14.28, 14.39 of the mean: 8.5–8.17 of the proportion: 8.23–8.35 of the slope: 14.19, 14.30, 14.41 stem and leaf diagram: 3.30–3.36 subjective probability: 4.4, 4.6 sum of squares between: 13.4, 13.9, 13.18, 13.27, 13.32, 13.43, 13.52 blocking: 13.33, 13.44, 13.53 error: 14.14, 14.25, 14.36 regression: 14.14, 14.25, 14.36 total: 13.3, 13.8, 13.17, 13.26, 13.31, 13.42, 13.51, 14.13, 14.24, 14.35 within: 13.4, 13.9, 13.18, 13.27, 13.33, 13.44, 13.53 T–U–V trend projection forecasting: 16.31–16.44 Tukey’s pairwise comparison test: 13.37, 13.48, 13.58 Type I error: 10.5 Type II error: 10.5 t-distribution: 9.24–9.33, 10.31–10.41, 11.17–11.30 uniform distribution: 7.38–7.44, 12.2, 12.10 union of events: 4.29 variance of a binomial distribution: 6.5, 6.9, 6.13, 6.16 of a discrete distribution: 5.30-5.31, 5.33-5.34 of grouped data: 3.52, 3.55 of a Poisson distribution: 6.21, 6.24 of a population: 3.37, 3.38, 3.41, 3.42 of a sample: 3.45, 3.46 Venn diagram: 4.25 h7dd`d[HiVi^hi^XhEgdWaZbh 550 I]Z=jbdc\dj W–X–Y–Z Wilcoxon rank sum test: 15.16–15.19 Wilcoxon signed-rank test: 15.20–15.24 y-intercept: 14.11, 14.22, 14.33 z-score for sample means: 8.5–8.17 z-score for sample proportions: 8.23–8.35 ... (%# Set the size of each class to and list the classes in the left column of the frequency distribution Count the number of values contained in each group and list those values in the right... group the number of calls per day into groups, which are known as classes One option is the 2k v n rule to determine the number of classes, where k equals the number of classes and n equals the. .. consequence, directly or indirectly, of the use and application of any of the contents of this book Contents Introduction Chapter 1: Displaying Descriptive Statistics HjbbVg^o^cYViV^ciVWaZh!X]Vgih!VcYgVe]h