1. Trang chủ
  2. » Ngoại Ngữ

3D reconstruction of synaptic and nuclear corticosteroid receptors distribution density in the amygdala a feasibility study

180 115 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 180
Dung lượng 4,69 MB

Nội dung

3D RECONSTRUCTION OF SYNAPTIC AND NUCLEAR CORTICOSTEROID RECEPTORS DISTRIBUTION DENSITY IN THE AMYGDALA: A FEASIBILITY STUDY Stephanie Koo BA Social Science (Psychology) (Honours) Submitted in fulfilment of the requirements for the degree of Masters of Applied Science (Research) HL84 Translational Research Institute (TRI) and Institute of Health and Biomedical Innovation (IHBI) School of Psychology and Counselling Queensland University of Technology (QUT) 2017 Keywords Adrenal Glands, Amygdala, Brain, Cytosol, Dendrite, Fear, Glucocorticoids, Membrane, Mineralocorticoids, Neuron, Nucleus, Post Synaptic Density, Spine, Stress, Synapse 3D Reconstruction of Synaptic and Nuclear Corticosteroid Receptors Distribution Density in the Amygdala: A Feasibility Study i Abstract Disruptions to neuronal populations of corticosteroid receptors (glucocorticoid receptors; GR and mineralocorticoid receptors; MR) have been implicated in a range of stress-related pathologies; referred to as the Receptor Balance Hypothesis Traditionally, however, the receptor balance hypothesis only focuses on genomic populations of corticosteroid receptors, and does not account for membrane-associated corticosteroid receptors In this thesis, we tested the feasibility of using novel methods of reconstructing subcellular structures in order to characterise the distribution densities of GR and MR within the nucleus, and at excitatory post-synaptic terminals in the rat amygdala We used triple-label immunofluorescence in conjunction with confocal imaging to characterise the labelling of corticosteroid receptors Using Imaris™ software, we found that we could three-dimensionally reconstruct corticosteroid receptors, and perform objectbased colocalisation analysis, in order to quantify the populations of corticosteroid receptors located at excitatory post-synaptic sites This provides a novel method of quantifying corticosteroid receptors in amygdala tissue The adaptability of the method suggests that it could be applicable to a range of applications in stress research ii 3D Reconstruction of Synaptic and Nuclear Corticosteroid Receptors Distribution Density in the Amygdala: A Feasibility Study Table of Contents Keywords i Abstract ii Table of Contents iii List of Figures vii List of Tables xiii List of Abbreviations xiv Statement of Original Authorship xv Acknowledgements xvi Chapter 1: Introduction Functional Role of Corticosteroids The Amygdala and Corticosteroids Corticosteroid Receptors 10 A Rationale for Quantifying Corticosteroid Receptor Subpopulations 13 Fluorescent Imaging and Reconstruction of Corticosteroid Receptor Subtypes… 14 Thesis Objectives and Outline 18 Chapter 2: Corticosteroid Receptors 21 Dosage Effects of Corticosteroids on Corticosteroid Receptors 21 Corticosteroid Receptors in the Amygdala 22 Temporal Effects of Corticosteroid Receptors 24 Receptor Balance Hypothesis 30 Summary and Implications 33 Chapter 3: General Method 37 3D Reconstruction of Synaptic and Nuclear Corticosteroid Receptors Distribution Density in the Amygdala: A Feasibility Study iii Subjects 37 Antibodies 38 Primary Antibodies 39 Fluorescent Labels 41 Procedure 43 Tissue Preparation 43 Immunohistochemistry 44 Confocal Imaging 45 Image Processing 46 Design 47 Controls 47 Operationalisation of Variables 49 Ethics and Limitations 53 Ethics and Handling 53 The applicability of Animal Research to Humans in Stress 53 Chapter 4: Protocol Validation 55 Method 55 Subjects and Procedure 55 Design 57 Results and Discussion 59 Reagent optimisation 59 Labelling Specificity 63 Characterisation of Triple Labelling 68 Summary 76 iv 3D Reconstruction of Synaptic and Nuclear Corticosteroid Receptors Distribution Density in the Amygdala: A Feasibility Study Chapter 5: Corticosteroid Receptor Densities in the Amygdala 79 Method 80 Subjects and Procedure 80 Design 83 Results 83 Controls 83 Mosaic Images 84 Deconvolution of Images 86 Nuclear Surfaces 90 Creation of Genomic GR and MR 92 Creation of Extra-nuclear GR and MR and Post-synaptic Terminals 94 Colocalisation of Corticosteroid Receptors at Post-synaptic Terminals 95 Corticosterone levels 98 Analysis 98 Descriptive Statistics 98 Genomic Corticosteroid Receptors vs Corticosteroid Receptors at Post-Synaptic Terminals 104 Proportion of Synapses that contain Corticosteroid Receptors 106 Chapter 6: Discussion 111 Applicability of 3D Reconstruction for Characterising Corticosteroid Receptors112 GR and MR labelling can be Reconstructed as Spots 112 Nuclei can be reconstructed as Surfaces to identify gGR and gMR populations 115 3D Reconstruction of Synaptic and Nuclear Corticosteroid Receptors Distribution Density in the Amygdala: A Feasibility Study v Distribution Densities of GR and MR 116 Distribution of gGR and gMR in Amygdala Subnuclei 116 Distribution of Genomic and Colocalised Corticosteroid Receptors 118 Proportion of Excitatory Post-synaptic Terminals Containing Corticosteroid Receptors 119 Chapter 7: Conclusions 123 Reagent and Protocol Validation 123 3D reconstruction of Corticosteroid Receptors 124 References 129 vi 3D Reconstruction of Synaptic and Nuclear Corticosteroid Receptors Distribution Density in the Amygdala: A Feasibility Study List of Figures Figure The release of corticosteroids (Cort) via the Hypothalamic Pituitary Adrenal (HPA) Axis Figure Depiction of the organisation of subnuclei (labelled for GR) in a coronal section of the rat amygdala, under wide-field epifluorescence Overlay adapted from Figure 31 of Stereotaxic Coordinates (Paxinos & Watson, 1997) 4-point axis refers to the orientation of the section: D, dorsal; V, ventral; M, medial; L, lateral LA, lateral amygdala; BA, basal amygdala; CeA, central amygdala Figure The amygdala receives excitatory inputs from the hippocampus, thalamus and mPFC during stress – these circuits underlie Pavlovian conditioning and drive activation of the HPA axis from the CeA Excitatory intra-amygdaloid circuits are also activated during stress by corticosteroids Figure Factors that interact with MR and GR to affect Cognition and Behaviour 12 Figure Distribution of Genomic and Synaptic GR and MR within a neuron Genomic GR and MR are located within the cytoplasm, and translocate to the nucleus when bound Synaptic GR and MR are located near or within the membrane at synapses; when activated, these receptors can affect neurotransmission 25 Figure Corticosteroid receptors in the BLA-complex mediate neuronal excitability differently to the hippocampus Corticosteroids increase neuronal excitation in the BLA-complex, through mMR This excitability is maintained through gGR Further application of corticosterone depressed neuronal excitability through mGR 3D Reconstruction of Synaptic and Nuclear Corticosteroid Receptors Distribution Density in the Amygdala: A Feasibility Study vii Adapted from research by Karst et al (2010), Groeneweg et al (2011), and Sarabdjitsingh and Jӧels (2014) 29 Figure Excitation and Emission Spectrum for DAPI, Alexa Fluor 488 and Alexa Fluor 594 Adapted from Life Technologies (2015a) 42 Figure The LA, BA and CeA in a coronal section, regions sampled in grey Sections were taken -2.04mm to -3.36mm from the bregma according to the rat brain atlas (Paxinos & Watson, 2007) Adapted from “The Rat Brain in Stereotaxic Coordinates 6th edition,” by G Paxinos and C Watson, 2007, p.56 50 Figure Groups involved in MR titration of antibodies 58 Figure 10 Representative image of fluorescent labelling of PSD-95-like immunoreactivity at concentrations of 1:500, 1:750 and 1:1000 (epifluorescence), in rat brain tissue A non-linear contrast was applied in Photoshop using the curves function Transformation was applied uniformly to all three images to improve the contrast Images were taken with a 60x (1.25 NA) oil objective Scale bar: 10µm 60 Figure 11 a), b), c), and d) show tissue sections incubated with rMR-1D5 at a dilution of 1:200; where the top two images are sections incubated for 24 hours, and the middle two images are sections incubated for 48 hours Images e) and f) were diluted at 1:500 incubated for 48 hours Images in the left column have been incubated for hours with the secondary antibody and images in the right column have been incubated for hours Epifluorescent images were taken with a 60x (1.25 NA) oil objective Scale bar: 10µm 61 viii 3D Reconstruction of Synaptic and Nuclear Corticosteroid Receptors Distribution Density in the Amygdala: A Feasibility Study Ratman, D., Berghe, W V., Dejager, L., Libert, C., Tavernier, J., Beck, I M., & Bosscher, K D (2013) How glucocorticoid receptors modulate the activity of other transcription factors: A scope beyond tethering Molecular and Cellular Endocrinology, 380, 41-54 doi:10.1016/j.mce.2012.12.014 Repa, J C., Muller, J., Apergis, J., Desrochers, T M., Zhou, Y., & LeDoux, J E (2001) Two different lateral amygdala cell populations contribute to the inititation and storage of memory Nature Neuroscience, 4(7), 724-731 doi:10.1038/89512 Reul, J., & de Kloet, E R (1985) Two receptor systems for corticosterone in rat brain: Microdistribution and differential occupation Endocrinology, 117, 2505-2511 doi:10.1210/endo-117-6-2505 Reul, J., van den Bosch, F R., & De Kloet, E R (1987) Relative occupation of type-I and type-II corticosteroid receptors in rat brain following stress and dexamethasone treatment: Functional implications Journal of Endocrinology, 115(3), 459-467 doi:10.1677/joe.0.1150459 Rizzo, G., Veronese, M., Heckemann, R A., Selvaraj, S., Howes, O D., Hammers, A., Bertoldo, A (2014) The predictive power of brain mRNA mappings for in vivo protein density: A positron emission tomography correlation study Journal of Cerebral Blood Flow and Metabolism, 34, 827-835 doi:10.1038/jcbfm.2014.21 Roozendaal, B (2000) Glucocorticoids and the regulation of memory consolidation Psychoneuroendocrinology, 25, 213-238 doi:10.1016/S03064530(99)00058-X 148 Chapter 7: Conclusions Roozendaal, B (2003) Systems mediating acute glucocorticoid effects on memory consolidation and retrieval Progress in Neuro-Psychopharmacology & Biological Psychiatry, 27, 1213-1223 doi:10.1016/j.pnpbp.2003.09.015 Roozendaal, B., & McGaugh, J L (1996) Amygdaloid nuclei lesions differentially affect glucocorticoid-induced memory enhancement in an inhibitory avoidance task Neurobiology of Learning and Memory, 65, 1-8 doi:10.1006/nlme.1996.0001 Roozendaal, B., Portillo-Marquez, G., & McGaugh, J L (1996) Basolateral amygdala lesions block glucocorticoid-induced modulation of memory for spatial learning Behavioral Neuroscience, 5, 1074-1083 doi:10.1037/07357044.110.5.1074 Roozendaal, B., Quirarte, G L., & McGaugh, J L (2002) Glucocorticoids interact with the basolateral amygdala beta-adrenoceptor-cAMP/cAMP/PKA system in influencing memory consolidation The European Journal of Neuroscience, 15(3), 553-560 doi:10.1046/j.0953-816x.2001.01876.x Rosenkranz, J A., & Grace, A A (2002) Dopamine-mediated modulation of odourevoked amygdala potentials during pavlovian conditioning Nature Neuroscience, 417(16), 282-287 doi:10.1038/417282a Sah, P P., Faber, E S L., Lopez de Armentia, M., & Power, J (2003) The amygdaloid complex: Anatomy and physiology Physiological Reviews, 83, 803-834 doi:10.1152/physrev.00002.2003 Sah, P P., & Lopez de Armentia, M (2003) Excitatory synaptic transmission in the lateral and central amygdala Annals of the New York Academy of Sciences, 985(1), 67-77 doi:10.1111/j.1749-6632.2003.tb07072.x Chapter 7: Conclusions 149 Sampedro-Piquero, P., Begega, A., & Arias, J L (2014) Increase of glucocorticoid receptor expression after environmental enrichment: Relations to spatial memory, exploration and anxiety-related behaviors Physiology & Behavior, 129, 118-129 doi:10.1016/j.physbeh.2014.02.048 Sandi, C (2011) Glucocorticoids act on glutamatergic pathyways to affect memory processes Trends in Neuroscience, 34, 165-176 doi:10.1016/j.tins.2011.01.006 Santos, T B., Cespedes, I C., & Viana, M B (2014) Chronic corticosterone administration facilitates aversive memory retrieval and increases GR/NOS immunoreactivity Behavioural Brain Research, 267, 46-54 doi:10.1016/j.bbr.2014.03.020 Sapolsky, R M., Romero, D G., & Munck, A U (2000) How glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions Endocrine Reviews, 21(1), 55-89 doi:10.1210/edrv.21.1.0389 Sarabdjitsingh, R A., & Joels, M (2014) Rapid corticosteroid actions on synaptic plasticity in the mouse basolateral amygdala: Relevance of recent stress history and β-adrenergic signaling Neurobiology of Learning and Memory, 112, 168-175 doi:10.1016/j.nlm.2013.10.011 Sarabdjitsingh, R A., Kofink, D., Karst, H., De Kloet, E R., & Joels, M (2012) Stress-induced enhancement of mouse amygdalar synaptic plasticity depends on glucocorticoid and ß-adrenergic activity PLOS ONE, 7(8) doi:10.1371/journal.pone.0042143 Sarabdjitsingh, R A., Meijer, O C., & de Kloet, E R (2010) Specificity of glucocorticoid receptor primary antibodies for analysis of receptor 150 Chapter 7: Conclusions localization patterns in cultured cells and rat hippocampus Brain Research, 1331, 1-11 doi:10.1016/j.brainres.2010.03.052 Savander, V., Miettinen, R., LeDoux, J E., & Pitkänen, A (1997) Lateral nucleus of the rat amygdala is reciprocally connected with basal and accessory basal nuclei: a light and electron microscopic study Neuroscience, 77, 767-781 doi:10.1016/S0306-4522(96)00513-1 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Cardona, A (2012) Fiji: An open-source platform for biological-image analysis Nature Methods, 9, 676-682 doi:10.1038/nmeth.2019 Schwabe, L (2013) Stress and the engagement of multiple memory systems: Integration of animal and human studies Hippocampus, 23, 1035-1043 doi:10.1002/hipo.22175 Schwabe, L., Joels, M., Roozendaal, B., Wolf, O T., & Oitzl, M S (2012) Stress effects on memory: An update and integration Neuroscience and Biobehavioral Reviews, 36, 1740-1749 doi:10.1016/j.neubiorev.2011.07.002 Seckl, J R., Dickson, K L., Yates, C., & Fink, G (1991) Distribution of glucocorticoid and mineralocorticoid receptor messenger RNA expression in human postmortem hippocampus Brain Research, 561(2), 332-337 doi:10.1016/0006-8993(91)91612-5 Shepard, J D., Barron, K W., & Myers, D A (2000) Corticosterone delivery to the amygdala increases corticotropin-releasing factor mRNA in the central amygdaloid nucleus and anxiety-like behavior Brain Research, 861(2), 288295 doi:10.1016/S0006-8993(00)02019-9 Simms, J A., Haass-Koffler, C L., Bito-Onon, J., Li, R., & Bartlett, S E (2012) Mifepristone in the central nucleus of the amygdala reduces yohimbine Chapter 7: Conclusions 151 stress-induced reinstatement of ethanol-seeking Neuropsychopharmacology, 37(4), 906-918 doi:10.1038/npp.2011.268 Solberg, L C., Olson, S L., Turek, F W., & Redei, E (2001) Altered hormone levels and circadian rhythm of activity in the WKY rat, a putative animal model of depression American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 281, R786-R794 Soria Van Hoeve, J S., & Borst, J G (2010) Delayed appearance of the scaffolding proteins PSD-95 and Homer-1 at the developing rat calyx of Held synapse Journal of Comparative Neurology, 518(22), 4581-4590 doi:10.1002/cne.22479 Staines, W A., Meister, B., Melander, T., Nagy, J I., & Hökfelt, T (1988) Threecolor immunofluorescence histochemistry allowing triple labeling within a single section The Journal of Histochemistry and Cytochemistry, 36(2), 145151 doi:10.1177/36.2.2891745 Stefanacci, L., & Amaral, D G (2002) Some observations on cortical inputs to the macaque monkey amygdala: An anterograde tracing study The Journal of Comparative Neurology, 451, 301-323 doi:10.1002/cne.10339 Teng, Z., Zhang, M., Zhao, M., & Zhang, W (2013) Glucocorticoid exerts its nongenomic effect on IPSC by activation of a phospholipase C-dependent pathway in prefrontal cortex of rat The Journal of Physiology, 591, 33413353 doi:10.1113/jphysiol.2013.254961 van Ast, V A., Cornelisse, S., Meeter, M., Joels, M., & Kindt, M (2013) Timedependent effects of cortisol on the contexualisation of emotional memories Biological Psychiatry, 74, 809-816 doi:10.1016/j.biopsych.2013.06.022 152 Chapter 7: Conclusions van Steensel, B., van Binnendijk, E P., Hornsby, C D., van der Voort, H T M., Krozowski, Z S., de Kloet, E R., & van Driel, R (1996) Partial colocalization of glucocorticoid and mineralocorticoid receptors in discrete compartments in nuclei of rat hippocampus neurons Journal of Cell Science, 109, 787-792 Vidal-Gonzalez, I., Vidal-Gonzalez, B., Rauch, S L., & Quirk, G J (2006) Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear Learning & Memory, 13, 728733 doi:10.1101/lm.306106 Virgonlini, M B., Chen, K., Weston, D D., Bauter, M R., & A., C.-S D (2005) Interactions of chronic lead exposure and intermittent stress: consequences for brain catecholamine systems and associated behaviors and HPA axis function Toxicological Sciences, 87, 469-482 Vogel, S., Klumpers, F., Krugers, H J., Fang, Z., Oplaat, K T., Oitzl, M S., Fernandez, G (2014) Blocking the mineralocorticoid receptor in humans prevents the stress-induced enhancement of centromedial amygdala connectivity with the dorsal striatum Neuropsychopharmacology, 2014, 110 doi:10.1038/npp.2014.271 Wang, C., & Wang, S (2009) Modulation of presynaptic glucocorticoid receptors on glutamate release from rat hippocampal nerve terminals Synapse, 63(9), 745751 doi:10.1002/syn.20654 Wang, Q., Verweij, E W E., Krugers, H J., Joels, M., Swaab, D F., & Lucassen, P J (2014) Distribution of the glucocorticoid receptor in the human amygdala; changes in mood disorder patients Brain Structure and Function, 219, 16151626 doi:10.1007/s00429-013-0589-4 Chapter 7: Conclusions 153 Wingenfeld, K., & Wolf, O T (2015) Effects of cortisol on cognition in major depressive disorder, posttraumatic stress disorder and borderline personality disorder - 2014 Curt Richter Award Winner Psychoneuroendocrinology, 51, 282-295 doi: 10.1016/j.psyneuen.2014.10.009 Xing, Y (2007) Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry Nature Protocols, 2, 1152-1165 doi:10.1038/nprot.2007.107 Yang, Y L., Chao, P K., Ro, L S., Wo, Y P., & Lu, K T (2007) Glutamate NMDA receptors within the amygdala participate in the modulatory effects of glucocorticoids on extinction of conditioned fear in rats Neuropsychopharmacology, 32, 1042-1051 doi:10.1038/sj.npp.1301215 Zalachoras, I (2014) Targeting the brain under stress: Selective glucocorticoid receptor modulation (Doctoral Thesis), Leiden University, Leiden, Netherlands Zhe, D., Fang, H., & Yuxiu, S (2008) Expressions of hippocampal mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) in the single-prolonged stress-rats Acta Histochemica et Cytochemica, 41(4), 8995 doi:10.1267/ahc.08013 Zhou, M., Bakker, E H M., Velzing, E H., Berger, S., Oitzl, M S., Joels, M., & Krugers, H J (2010) Both mineralocorticoid and glucocorticoid receptors regulate emotional memory in mice Neurobiology of Learning and Memory, 94, 530-537 doi:10.1016/j.nlm.2010.09.005 Zhou, Y., Won, J., Karlsson, M G., Zhou, M., & Rogerson, T (2009) CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala Nature Neuroscience, 12, 1438-1443 doi:10.1038/nn.2405 154 Chapter 7: Conclusions Zinchuk, V., & Grossenbacher-Zinchuk, O (2009) Recent advances in quantitative colocalization analysis: Focus on neuroscience Progress in Histochemistry and Cytochemistry, 44, 125-172 doi:10.1016/j.proghi.2009.03.001 Chapter 7: Conclusions 155 156 Appendices Appendices 157 Appendix A Antibody Details Table Details of Antibodies Used Antibody Name Manufacturer Country Catalogue Number Lot Number Concentration BuGR2 Thermofisher Scientific Australia PIEMA1-510 P1200288 1mg/ml rMR-1D5 Development al Studies Hybridoma Bank IA, USA rMR1-18 1D5 6/5/14516ug/M1Ig 0.1ml PSD-95 Antibody Life Technologies VIC, Australia 51-6900 QA213131 0.25mg/ml Goat Antimouse IgG H&L (Alexa Fluor 488) Abcam VIC, Australia AB150113 - 2.00mg/ml Goat Antirabbit IgG H&L (Alexa Fluor 594) Abcam VIC, Australia AB150084 - 1.96mg/ml 4`,6diamidino-2phenylindole, dihydrochlorid e (DAPI) Life Technologies VIC, Australia D1306 1711782 158 Appendices Appendix B Acquisition Parameters Table Acquisition Parameters of Images with Olympus FV1200 Solid State Laser LD 405nm (50nw) LD 473nm (15mw) LD 559nm (15mw) Laser Power 0.9% 3.0% (GR)/5.0% (MR) 3.0% HV 855 760 (GR)/810 (MR) 800 Offset 1 Gain 37 46 (GR)/40 (MR) 37 Appendices 159 Appendix C Nyquist Sampling Parameters Table Nyquist Sampling Parameters from Scientific Volume Imaging (n.d.) Microscopy Parameter Value Microscope Type Confocal Numerical Aperture 1.35 Excitation Wavelength 488 Emission Wavelength 520 Number of Excited Photons 1.0 Lens Immersion Refractive Index Oil, 1.515 Scientific Volume Imaging (n.d.) Microscopy Nyquist rate and PSF calculator Retrieved from: https://svi.nl/NyquistCalculator 160 Appendices Appendix D Ethics Appendices 161 Appendix E Supplementary Videos Table Links to Supplementary Videos of 3D Objects in Imaris (Bitplane) Video URL Video 1, Process of 3D Reconstruction https://youtu.be/9kgq69dt1ls Video 2, High Magnification view of 3D objects in Imaris https://youtu.be/cs3e4UxgAdY 162 Appendices ... Amygdala: A Feasibility Study xiii List of Abbreviations ACTH Adrenocorticotrophic Releasing Hormone BLA Basolateral Amygdala BA Basal Nuclei of the Amygdala CeA Central Nuclei of the Amygdala CRH... of Synaptic and Nuclear Corticosteroid Receptors Distribution Density in the Amygdala: A Feasibility Study Overlay in white displays the boundaries of the different subregions of the amygdala. .. The amygdala can be broadly divided into three subregions; the basolateral amygdala complex (BLA), the central amygdala (CeA) and the intercalated cells (ITC) (Giustino & Maren, 2015; Pape & Pare,

Ngày đăng: 07/08/2017, 11:23

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN