THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 70 |
Dung lượng | 1,54 MB |
Nội dung
Ngày đăng: 25/07/2017, 21:55
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết | ||||||
---|---|---|---|---|---|---|---|---|
[2] Culotta, A. & Sorensen, J. (2004) “Dependency tree kernels for relation extraction,” in Proceedings of the 42nd Meeting of the Association for Computational Linguistics (ACL‟04), Main Volume, pp. 423–429, Barcelona, Spain, July 2004 | Sách, tạp chí |
|
||||||
[8] Lafferty, J., McCallum, A. and Pereira, F. Conditional random fields: probabilistic models for segmenting and labeling sequence data. In Proc.ICML, pages 282-290 | Sách, tạp chí |
|
||||||
[10] L. Karttunen, J-P. Chanod, G. Grefenstette, A. Schiller, “Regular expressions for language engineering”, Natural Language Engineering,1996 | Sách, tạp chí |
|
||||||
[20] P.X.Hieu, N.L.Minh. http://www.jaist.ac.jp/~hieuxuan/flexcrfs/flexcrfs.html [21] Peng, F., and McCallum, A. (2004). “Accurate information extraction fromresearch papers using conditional random fields,” in HLT-NAACL, pp. 329–336 | Sách, tạp chí |
|
||||||
[1] Benajiba, Y. and Rosso, P. (2008) Arabic Named Entity Recognition using Conditional Random Fields. In: Proc. Workshop on HLT & NLP within the Arabic world. Arabic Language and local languagesprocessing: Status Updates and Prospects | Khác | |||||||
[3] Dong, C. L. and Nocedal, J. (1989). On the Limited Memory BFGS Method for Large Scale Optimization. Mathematical Programming 45, pages 503-528 | Khác | |||||||
[4] F. Biadsy, J. Hirschberg, and E. Filatova. An unsupervised approach to biography production using wikipedia. In Proceedings of the Conference of Human Language Technologies of the Association for Computational Linguistics, 2008 | Khác | |||||||
[5] GuoDong, Z. and Jian, S. 2002. Named Entity Recognition using an HMM- based Chunk Tagger. In Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, Stroudsburg, PA, USA | Khác | |||||||
[6] Hammersley, J. and Clifford, P. 1971. Markov Fields on Finite Graphs and Lattices. Unpublished Manuscript | Khác | |||||||
[9] J. Cowie, S. Nirenburg, and H. Molino-Salgado. Generating personal profiles. Number Technical report, 2001 | Khác | |||||||
[11] L. Zhou, T. M, and E. Hovy. Multi-document biographical summarization. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2004 | Khác | |||||||
[13] Malouf, R. (2002). A comparison of algorithms for maximum entropy parameter estimation. In Sixth Workshop on Computational Language Learning (CoNLL-2002) | Khác | |||||||
[15] McCallum, A., Freitag, D. and Pereira, F. 2000. Maximum Entropy Markov Models for Information Extraction and Segmentation. In Proc. International Conference on Machine Learning, pages 591-598 | Khác | |||||||
[17] N. Garera and D. Yarowsky. Structural, transitive and latent models for biographic fact extraction. In Proceedings of the 12th Conference of the European Chapter of the Association for computational Linguistics, 2009 | Khác | |||||||
[18] Nguyen, T.H., Cao, H.T. (2008). An Approach to Entity Coreference and Ambiguity Resolution in Vietnamese Texts. Vietnamese Journal of Post and Telecommunication, 19, 74-83 | Khác | |||||||
[19] Oren Etzioni, Michael Cafarela, Doug Downey, Ana Maria Popescu, Tal Shaked, Stephen Soderland, Daniel S. Weld, and Alexander Yates.Unsupervised named-entity extraction from the web: An experimental study.Artif. Intell | Khác | |||||||
[22] Rabiner. L. R. 1989. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. In Proc. the IEEE, 77(2), pages 257-286 | Khác | |||||||
[24] Sérgio Filipe da Costa Dias Soares (2011), Extraction of Biographical Information from Wikipedia Texts, Master in Information Systems and Computer | Khác | |||||||
[25] S. Levithan, J. Goyvaerts, Regular Expressions Cookbook, O‟Reilly Media , 2003-2009 | Khác | |||||||
[26] SILVA, J. (2009). QA+ML@Wikipedia&google. Master‟s thesis, Instituto Superior T´ecnico | Khác |
TỪ KHÓA LIÊN QUAN
TRÍCH ĐOẠN
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN