THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 50 |
Dung lượng | 0,92 MB |
Nội dung
Ngày đăng: 03/04/2016, 18:09
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết | ||
---|---|---|---|---|
[16] N.C. Tu, T.T. Oanh, P.X. Hieu and H.Q. Thuy, “Named Entity Recognition in Vietnamese Free-Text and Web Documents Using Conditional Random Fields,” the 8 th Conference on Some selection problems of Information Technology and Telecommunication, Hai Phong, Vietnam, 2005 | Sách, tạp chí |
|
||
[14] Lassila, R. Swick. Resource description framework (RDF) model and syntax specification, W3C Recommendation 1999, http://www.w3.org/TR/REC- rdfsyntax/ | Link | |||
[1] Andrew Borthwick. A Maximum Entropy Approach to Named Entity Recognition. PhD thesis, New York University, New York, September 1999 | Khác | |||
[2] Black, W., Rinaldi, F., and Mowatt, D. (1998). FACILE: Description of the NE system used for MUC. In Proceedings of the Seventh Message Understanding Conference (MUC-7) | Khác | |||
[3] C. Cortes, V. Vapnik, Support-Vector Networks, Machine Learning, 20, 1995 | Khác | |||
[4] Cam-Tu Nguyen, Trung-Kien Nguyen, Xuan-Hieu Phan, Le-Minh Nguyen, and Quang-Thuy Ha. V ietnamese Word Segmentation with CRFs and SVMs: An Investigation | Khác | |||
[5] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. A Practical Guide to Support Vector Classification | Khác | |||
[6] Dat Ba Nguyen, Son Huu Hoang, Son Bao Phan and Thai Phuong Nguyen. Named entity recognition for Vietnamese. ACIIDS 2010, Part II, LNAI 5591, pp.205-214 | Khác | |||
[7] Dat Ba Nguyen, Son Bao Pham. Ripple Down Rules for Vietnamese Named Entity Recognition. Pages 354-363. ICCCI 2012: Ho Chi Minh City, Vietnam | Khác | |||
[8] David Nadeau. Semi-Supervised Named Entity Recognition: Learning to Recognize 100 Entity Types with Little Supervision. Ottawa-Carleton Institute for Computer Science School of Information Technology and Engineering University of Ottawa, Canada, 2007 | Khác | |||
[9] Duc-Thuan Vo and Cheol-Young Ock. A Hybrid Approach of Pattern Extraction and Semi-supervised Learning for Vietnamese Named Entity Recognition | Khác | |||
[10] Fredrick Edward Kitoogo and Venansius Baryamureeba. A Methodology for Feature Selection in Named Entity Recognition | Khác | |||
[11] J.Lafferty, A.McCallum, and F.Pereira.Conditional random fields: probabilistic models for segmenting and labeling sequence data. In Proc. ICML, pages 282- 290, 2001 | Khác | |||
[12] Jain, A. and Zongker, D. (1997). Feature selection: evaluation, application, and small sample performance. IEEE T ransactions on Pattern Analysis and Machine Intelligence, 19(2):153–158 | Khác | |||
[13] Joel Mickelin. Named Entity Recognition with Support Vector Machines, Master of Science Thesis Stockholm, Sweden 2013 | Khác | |||
[17] Petasis, G., Vichot, F., Wolinski, F., Paliouras, G., Karkaletsis, V. and Spyropoulos, C.D. (2001). Using Machine Learning to Maintain Rule-based Named-Entity Recognition and Classification Systems. Proceeding Conference of Association for Computational Linguistics, pages 426-433 | Khác | |||
[18] Pobeau, T.; Saggion, H.; Piskorski, J.; Yangarber, R. (Eds). Chapter 2, Multi- source, Multilingual Information Extraction and Summarization. 20313 | Khác | |||
[19] Rabiner. A tutorial on hidden markov models and selected applications in speech recognition. In Proc. the IEEE, 77(2):257-286, 1989 | Khác | |||
[20] S. Marsland, Machine Learning, an Algorithmic Perspective, 1st edition, Chapman & Hall, London, 2009 | Khác | |||
[21] Toine Bogers, Dutch Named Entity Recognition: Optimizing Features, Algorithms, and Output, September 8, 2004 | Khác |
TỪ KHÓA LIÊN QUAN
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN