Nghiên cứu tính chất từ và hiệu ứng GMI trong vật liệu từ vô định hình và nano tinh thể ứng dụng làm cảm biến dòng điện

131 354 0
Nghiên cứu tính chất từ và hiệu ứng GMI trong vật liệu từ vô định hình và nano tinh thể ứng dụng làm cảm biến dòng điện

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Bộ giáo dục đào tạo Trường đại học bách khoa hà nội Nguyễn hữu tình NGHIấN CU TNH CHT T V HIU NG GMI TRONG VT LIU T Vễ NH HèNH V NANO TINH TH NG DNG LM CM BIN DềNG IN Luận án tiến sĩ Vật lý Chuyên ngành: Vật lý chất rắn Mã số: 62.44.07.01 hà nội - 2012 Bộ giáo dục đào tạo Trường đại học bách khoa hà nội Nguyễn hữu tình NGHIấN CU TNH CHT T V HIU NG GMI TRONG VT LIU T Vễ NH HèNH V NANO TINH TH NG DNG LM CM BIN DềNG IN Luận án tiến sĩ Vật lý Chuyên ngành: Vật lý chất rắn Mã số: 62.44.07.01 Ngi hng dn: GS TS Nguyn Hong Ngh hà nội 2012 Lời cảm ơn Lun ỏn ny c hon thnh ti Phũng thớ nghim Vt liu t Vụ nh hỡnh v Nanụ tinh th, Vin Vt lý K thut, i hc Bỏch khoa H Ni di s hng dn khoa hc v giỳp tn tỡnh c v tinh thn v vt cht ca GS TS Nguyn Hong Ngh Trc ht tụi xin by t lũng kớnh trng v bit n sõu sc n Giỏo s v th cỏc cỏn b, giỏo viờn ca B mụn Quang hc v Quang ph ó to mi iu kin thun li cho tụi sut thi gian hc v nghiờn cu ti phũng thớ nghim Xin cm n PGS TS Nguyn Huy Dõn, vin Khoa hc Vt liu, Vin Khoa hc v Cụng ngh Vit Nam ó to mi iu kin thun li cho tụi quỏ nghiờn cu, o c mu ti Vin v cho tụi nhng gúp ý v tho lun quý bỏu Tụi xin by t lũng cm n sõu sc ti cỏc ng nghip nhúm nghiờn cu: Th S Nguyn Vn Dng, Lờ Cao Cng Tụi xin chõn thnh cm n KS Nguyn Ngc Phỏch, Nguyn Vn Sang, Trnh Th Thanh Nga, Nguyn Hu Hong v ThS Nguyn Th Hng Tõm ó to mi iu kin thun li giỳp tụi sut thi gian nghiờn cu ti phũng thớ nghim Vt liu t Vụ nh hỡnh v Nano tinh th Lun ỏn c thc hin vi s h tr ca ti nghiờn cu khoa hc Nafosted: Nghiờn cu tớnh cht t v kh nng ng dng ca cỏc vt liu cu trỳc nano/ Di nano v cu trỳc bt ng hng, mó s 103 02-2010 19 (2010-2012) Tụi xin chõn thnh cm n Ban giỏm hiu trng i hc S phm H Ni 2, Ban ch nhim Khoa Vt lý ó to mi iu kin thun li, ng viờn giỳp tụi quỏ trỡnh thc hin lun ỏn Cui cựng, tụi xin by t lũng bit n n ti b, m, v v tt c nhng ngi thõn yờu gia ỡnh cựng bn bố ó c v, ng viờn, giỳp tụi rt nhiu c v tinh thn ln vt cht thi gian thc hin lun ỏn Tỏc gi lun ỏn LI CAM OAN Tụi xin cam oan õy l cụng trỡnh nghiờn cu ca riờng tụi Cỏc s liu, kt qu nờu lun ỏn l ca tụi cựng nhúm nghiờn cu v t mt s bi bỏo ca tụi cựng cỏc ng tỏc gi Cỏc kt qu hp tỏc nghiờn cu cựng cỏc ng tỏc gi ó c s ng ý ca cỏc ng tỏc gi Cỏc kt qu nờu lun ỏn l hon ton trung thc Tỏc gi lun ỏn DANH MC CC Kí HIU V CH VIT TT I DANH MC CC Kí HIU s : T gio bóo hũa à0 : t thm ca chõn khụng Ek : Nng lng d hng t tinh th Hc : Lc khỏng t Hext : T trng ngoi Ir, Jr, Mr : T d MS : T bóo hũa N : H s kh t RC : Tc ngui ti hn Ta : Nhit TC : Nhit Curie Tm : Nhit núng chy Tg : Nhit thy tinh húa ta : Thi gian nhit II DANH MC CC CH VIT TT GMI : Giant Magneto Impedance Hiu ng t tng tr khng l GMIr : Giant Magneto Impedance ratio T s t tng tr khng l L : Lng LQN : Lng quỏ ngui SEM : Hin vi in t quột TM : Kim loi chuyn tip T-T-T : Gin nhit - thi gian - chuyn pha VH : Vụ nh hỡnh VSM : H t k mu rung XRD : Nhiu x tia X DANH MC CC HèNH V V TH Hỡnh 1.1 T trng quanh mt vt dn cú dũng xoay chiu chy qua Hỡnh 1.2 S ph thuc ca tng tr tng i (Z/Rdc) vo tn s v t trng Hỡnh 1.3 Mụ hỡnh ụmen ca Squire Hỡnh 1.4 Mụ hỡnh d hng gii thớch hin tng tỏch nh ca ng cong t s GMI Hỡnh 1.5 Hỡnh dng ng cong t s GMI cú hin tng tỏch nh Hỡnh 1.6 th t ng vi cỏc giỏ tr K khỏc Hỡnh 1.7 Cu trỳc ụmen ca dõy vụ nh hỡnh Hỡnh 1.8 Cu trỳc ụmen ca mng, bng Hỡnh 1.9 Cu trỳc ụmen ca mng mng a lp Hỡnh 1.10 T s GMIr ca bng vụ nh hỡnh nn Co thay i theo cng dũng in Hỡnh 1.11 T s GMIr ca bng nano tinh th Fe71Al2Si14B8, 5Cu1Nb3, ph thuc tn s Hỡnh 2.1 S cu trỳc vi mụ ca cht rn Hỡnh 2.2 Hm phõn b xuyờn tõm ca Natri lng Hỡnh 2.3 Cỏc a din Bernal Hỡnh 2.4 S sp xp ca cỏc mụmen t hp kim VH a) trt t v b) phõn tỏn Hỡnh 2.5 (a) D hng t (phng d) tn ti mt khong cỏch ngn Liờn kt t tng tỏc trao i A lm cho cỏc spin song song (b) Nu d hng tinh th a phng mnh (KL ln, t cng) cỏc spin song song vi khong cỏch nh L l (c) Nu KL nh (t mm), khong cỏch m cỏc spin song song vi ln L >> l L0 l khong cỏch tng tỏc trao i st t d) Mụ hỡnh d hng t ngu nhiờn vt liu t mm nano tinh th (e) D hng t tinh th gim mnh vựng kớch thc nm (f) Lc khỏng t HC ca vt liu finemet tuõn theo qui lut m 6, i vi cỏc vt liu t mm kinh in qui lut ú l 1/D Hỡnh 2.6 (a) Hp kim a nguyờn t v siờu quỏ bóo hũa c ụng cng nhanh t th lng to trng thỏi VH (b) Khi , trng thỏi siờu qua bóo hũa b phỏ v: Cu, Nb, v B vi nng quỏ bóo hũa tỏch Fe Thnh phn hp kim b phõn ly thnh vựng giu Fe v vựng giu Cu, Nb, B, cỏc vựng ny cú nhit kt tinh khỏc Tc1(Fe) < Tc2 Nu mu c ti nhit : Tc1(Fe) < T < Tc2, pha Fe(Si) kt tinh, pha VH giu Cu, Nb, B khụng kt tinh v bao ly ht tinh th Fe, hn ch ht ny phm vi vi chc nano (c) Cu trỳc vt liu t mm nano tinh th FeCuNbSiB sau nhit ti Tc1(Fe) < T < Tc2 Hỡnh 2.7 nh TEM chp cu trỳc ht nano tinh th ca finemet, a) nh trng sỏng, b) nh trng ti Hỡnh 2.8 S nng lng t ph thuc vo thnh phn hp kim Hỡnh 2.9 ng cong ng hc kt tinh, l vựng thi gian to mm Hỡnh 2.10 Mt s phng phỏp ch to vt liu VH dng bng mng t th lng Hỡnh 2.11 S mụ t cỏc c ch truyn nhit k thut ngui nhanh Hỡnh 2.12 Gin TTT: ng cong ch C cho bit nhit v thi gian bt u kt tinh im N ca ng C tng ng nhit v thi gian TN v tN Hỡnh 3.1 H phun bng ngui nhanh chõn khụng Hỡnh 3.2 S ca h nu h quang v ỳc mu Hỡnh 3.3 Bng hp kim VH, ch to bng cụng ngh ngui nhanh Hỡnh 3.4 S lũ nhit chõn khụng Hỡnh 3.5 S minh nguyờn lý hot ng ca phng phỏp o nhiu x tia X Hỡnh 3.6 S nguyờn lý kớnh hin vi in t quột SEM Hỡnh 3.7 S nguyờn lý thit b phõn tớch nhit vi sai DSC Hỡnh 3.8 S h o t k mu rung (VSM) Hỡnh 3.9 H o t tr tnh Hỡnh 3.10 S nguyờn lớ h o t tr tnh Hỡnh 3.11 S h o GMI Hỡnh 3.12 Hỡnh nh h o GMI Hỡnh 4.1 Gin EDX ca mu N2 Hỡnh 4.2 Gin nhiu x tia X ca cỏc mu Fe76,5-xCu1NbxSi13,5B9 va ch to xong Khng nh trng thỏi vụ nh hỡnh ca tt c cỏc mu Hỡnh 4.3 Gin nhiu x tia X ca cỏc mu Fe76,5-xCu1NbxSi13,5B9 sau 15 phỳt nhit 5400C cho thy ó xut hin cỏc vch nhiu x ca pha tinh th mt s mu Hỡnh 4.4 Gin nhiu x tia X ca mu N0 15 phỳt nhit 5400C Hỡnh 4.5 Gin nhiu x tia X ca mu Fe73,5Cu1 Nb3Si13,5B9 nhit 5400C vi thi gian khỏc Hỡnh 4.6 Gin nhiu x tia X ca mu Fe73,5Cu1 Nb3Si13,5B9 15 phỳt cỏc nhit khỏc Hỡnh 4.7 Gin quột nhit vi sai (DSC) ca mu N1 Hỡnh 4.8 ng cong t húa ca mu cha o bng h VSM xỏc nh Ms Hỡnh 4.9 ng cong t tr ca mu N3 cha o bng h o t mm xỏc nh Hc Hỡnh 4.10 S ph thuc ca Hc vo hm lng Nb, mu cha Hỡnh 4.11 S ph thuc ca t bóo hũa Ms vo hm lng Nb mu cha Hỡnh 4.12 S ph thuc ca Hc vo hm lng Nb, mu nhit 5400C, 15 phỳt Hỡnh 4.13 S ph thuc ca t bóo hũa Ms vo hm lng Nb, mu nhit 5400C, 15 phỳt Hỡnh 4.14 S ph thuc ca t bóo hũa Ms vo nhit mu Hỡnh 4.15 S ph thuc ca lc khỏng t Hc vo nhit mu Hỡnh 4.16 S ph thuc ca t bóo hũa Ms vo thi gian mu Hỡnh 4.17 S ph thuc ca lc khỏng t Hc vo thi gian mu Hỡnh 4.18 Gin ph EDX ca bng vụ nh hỡnh Co75-xFexSi15B10 Hỡnh 4.19 Gin nhiu x tia X ca cỏc mu Co75-xFexSi15B10 (x = 1, 3, 5, v 9) sau ch to Hỡnh 4.20 Gin DSC ca cỏc mu Co75-xFexSi15B10 (x = 1, 3, 5, v 9) Hỡnh 4.21 Gin nhiu x tia X ca cỏc mu Co75-xFexSi15B10 x lý nhit 360oC 1h Hỡnh 4.22 Gin nhiu x tia X ca cỏc mu Co75-xFexSi15B10 x lý nhit 440oC 1h Hỡnh 4.23 Lc khỏng t Hc ph thuc vo hm lng Fe mu cha Hỡnh 4.24 T bóo hũa Ms ph thuc vo hm lng Fe mu cha Hỡnh 4.25 Lc khỏng t Hc ph thuc vo hm lng Fe mu 3800C 1h Hỡnh 4.26 T bóo hũa Ms ca ph thuc vo hm lng Fe mu 3800C 1h Hỡnh 4.27 Lc khỏng t Hc ph thuc vo nhit 1h Hỡnh 4.28 T bóo hũa Ms ca ph thuc vo nhit 1h Hỡnh 4.29 Lc khỏng t Hc ph thuc vo thi gian , nhit 3800C Hỡnh 4.30 T bóo hũa Ms ca ph thuc vo thi gian , nhit 3800C Hỡnh 5.1 nh SEM chp b mt mu bng Fe73,5Cu1Nb3Si13,5B9 nhit 5000C 20 phỳt Hỡnh 5.2 nh chp SEM b dy cỏc mu sau ch to Hỡnh 5.3 th GMI (tn s MHz) theo chiu di mu o Hỡnh 5.4 T s GMI cc i theo chiu di mu o (b rng mu l mm) Hỡnh 5.5 th GMI (tn s MHz) theo chiu rng mu o Hỡnh 5.6 T s GMI cc i theo chiu rng mu o Hỡnh 5.7 th GMI mu N3 5400C 15 phỳt Hỡnh 5.8 S ph thuc ca t s GMI vo tn s dũng in Hỡnh 5.9 th GMI (tn s MHz) ca cỏc mu cha Hỡnh 5.10 th GMI (tn s MHz) ca cỏc mu cha Hỡnh 5.11 th GMI (tn s 10 MHz) ca cỏc mu cha Hỡnh 5.12 S ph thuc ca t s GMI theo hm lng Nb vi cỏc mu cha Hỡnh 5.13 th GMI (tn s MHz) ca mu N3 5400C Hỡnh 5.14 S ph thuc ca t s GMI theo hm lng Nb vi cỏc mu 5400C Hỡnh 5.15 th GMI (tn s MHz, 15 phỳt) theo nhit mu N3 Hỡnh 5.16 S ph thuc ca t s GMI vo nhit mu (15 phỳt) Hỡnh 5.17 th GMI (tn s MHz) ca mu N3 5400C theo thi gian Hỡnh 5.18 S ph thuc ca t s GMI vo thi gian mu (5400C) Hỡnh 5.19 th GMI theo hm lng Fe, mu cha Hỡnh 5.20 S ph thuc ca t s GMI vo hm lng Fe, mu cha Hỡnh 5.21 th GMI theo hm lng Fe, mu 3600C/1h Hỡnh 5.22 S ph thuc ca t s GMI vo hm lng Fe, mu 3600C/1h Hỡnh 5.23 th GMI ca mu Co70Fe5Si15B10 thi gian , 6MHz Hỡnh 5.24 S ph thuc ca t s GMI vo thi gian ca mu Co70Fe5Si15B10, 6MH Hỡnh 5.25 th GMI ca mu Co70Fe5Si15B10 theo nhit , 6MHz Hỡnh 5.26 S ph thuc ca t s GMI cc i vo nhit (mu I3, 6MHz) Hỡnh 6.1 S phộp o dũng in khụng tip xỳc theo nguyờn lý cm ng in t (trỏi) v nguyờn lý s dng sens GMI (phi) Hỡnh 6.2 S cu to ca cm bin dũng GMI Hỡnh 6.3 S xuyn dn t 6.9.2 Khi thu v chnh lu tớn hiu xỏc nh giỏ tr tr khỏng Z ri trờn cm bin dũng, ta phi xỏc nh in ỏp trờn nú m cng dũng in khụng i Vỡ õy l tớn hiu xoay chiu hỡnh sin tn s cao nờn ta phi thc hin vic thu tớn hiu v chnh lu tớn hiu v dng mt chiu cú th o c õy chỳng tụi la chn IC AN7224 ca Panasonic IC ny cú th thc hin c hai chc nng trờn bng mch trung tn v tỏch tớn hiu bờn 6.9.3 Khi chun húa tớn hiu Tớn hiu sau qua b thu v chuyn i v giỏ tr mc s l tớn hiu mt chiu v ta cú th xỏc nh c bng cỏch s dng ADC Tuy nhiờn b chuyn i ADC ch lm vic vi cỏc in ỏp khong t 0-5V m tớn hiu b phỏt hin mc tớn hiu ca AN7224 khụng nm khong ny nờn Hỡnh 6.24 Khi chun húa tớn hiu ta phi s dng mt mch chun húa in ỏp nh trờn Bin tr VR5 cú tỏc dng phõn ỏp m bo mc in ỏp vo ADC di cho phộp(thc hin hiu chnh Nhõn) Bin tr VR3 l bin tr chnh offset, iu chnh mc in ỏp vo ADC di cho phộp (thc hin hiu chnh Cng) Mt khỏc ta cũn cn mt mch bo v cng, ú l iụt D1v D2 m bo an ton cho cng ADC, trỏnh hin tng quỏ ỏp, quỏ dũng chp mch 114 Hỡnh 6.25 Khi vi iu khin v hin th 6.9.4 Khi vi iu khin v hin th Vi iu khin õy s dng l PIC16F877, tớn hiu ADC c a v chõn RA5 IC LM336-5V c dựng to in ỏp chun 5V so sỏnh cho mch chuyn i ADC bờn vi iu khin Cỏc chõn 33-39 c dựng kt ni LCD tiờu chun, c dựng hin th kt qu o lng ó tớnh toỏn xong 6.9.5 Khi kt ni mỏy tớnh Hỡnh 6.26 Khi kt ni mỏy tớnh Ngoi nhim v o lng v hin th kt qu, ng h ny cũn cú chc nng kt ni vi phn mm mỏy tớnh o lng chớnh xỏc v v th dũng in 115 KT LUN CHNG Trờn c s cỏc kt qu nghiờn cu nh hng cỏc yu t bờn ngoi (hỡnh dng mu, tn s dũng cao tn) v cỏc tớnh cht ni ti ca mu (thnh phn, cu trỳc vi mụ v tớnh t mm) lờn t s GMI, ó thit k, ch to cm bin o dũng in khụng tip xỳc s dng sens GMI (cm bin dũng) ó s dng cm bin dũng GMI kho sỏt cỏc c tuyn U-I (U- tớn hiu nhn c, I: dũng in cn ú) cỏc di o dũng in I: ữ1 A, 1ữ10A, 10ữ60A, 40ữ100A, 100ữ300A Cỏc kt qu t c cho thy cm bin cú c tuyn U I l tng i tuyn tớnh vi tt c cỏc di o Do ú cú th ng dng sens GMI lm cm bin o dũng in theo phng phỏp khụng tip xỳc ó o v kho sỏt c hai dũng mt chiu v xoay chiu trờn cựng mt cm bin dũng, kt qu cho thy khụng cú s khỏc bit ỏng k trờn c tuyn U-I Nh vy cm bin dũng GMI cú th o c c dũng mt chiu v dũng xoay chiu õy l u im ca cm bin GMI so vi phng phỏp o khụng tip xỳc (ampe kỡm) ng dng nguyờn lý in ng truyn thng ú ch cú th o c dũng in xoay chiu 116 KT LUN ó nghiờn cu tng quan v hiu ng tng tr cao tn v tng tr khng l GMI dõy dn t tớnh: cỏc c ch ca hiu ng theo cỏc di tn s khỏc (tn s thp, tn s trung bỡnh v tn s cao) ó lm rừ mi liờn h hiu ng GMI v cu trỳc ụmen ca dõy dn t tớnh vụ nh hỡnh(VH) cú hỡnh dng khỏc Nm vng cụng ngh ngui nhanh t th lng, cu trỳc ca cht rn VH v vt liu t mm cú cu trỳc VH ó s dng cụng ngh ngui nhanh ch to cỏc mu hp kim VH giu Co h Co75-xFexSi15B10 (x = 1, 3, 5, v 9) Tỡm hiu v vt liu t cú cu trỳc nano v lý thuyt d hng t ngu nhiờn vt liu t mm giu Fe (Si) cú kớch thc ht c ~30nm tng ng quóng ng tng tỏc trao i st t i vi vt liu ny ó nghiờn cu c ch v ng hc kt tinh vt liu VH giu Fe v thc hin k thut tỏi kt tinh cỏc mu cú thnh phn Fe76,5-xCu1NbxSi13,5B (x = - 7) nhn c vt liu finemet cú kớch thc nano Trong ú xỏc nh c nh hng cỏc thụng s nh nhit , thi gian n quỏ trỡnh kt tinh v hỡnh thnh cu trỳc nano h finemet ó nghiờn cu nh hng ca hm lng Nb lờn nhit chuyn pha VHnano tinh th (G Cry) cỏc mu finemet Kt qu cho thy nhit chuyn pha G -Fe tng theo hm lng Nb Vỡ vy bng cỏch thay i thnh phn Nb cú th iu chnh nhit kt tinh cho phự hp vi iu kin cụng ngh ó nghiờn cu nh hng ca ch x lý nhit n tớnh cht t ca tt c cỏc mu nghiờn cu Kt qu cho thy mu vi thnh phn Nb bng 3% nguyờn t nhit 540oC 15 phỳt cho tớnh t mm tt nht, iu cn nhn c hiu ng GMI cao ó nghiờn cu nh hng ca vic thay i hm lng Fe hp kim vụ nh hỡnh nn Co v ch x lý nhit n cu trỳc, tớnh cht t ca vt liu Kt qu cho thy, vic thay i hm lng Fe khụng lm thay i trng thỏi vụ nh hỡnh ca vt liu quỏ trỡnh ngui nhanh Nhng Fe lm tng cm ng t bóo hũa, ng thi Fe l nguyờn t r tin hn Co Khi cỏc mu giu Co, trng thỏi vụ nh hỡnh c quan sỏt thy trờn tt c cỏc mu di nhit 380oC (thi gian ti h) vi cỏc mu trờn 380oC ó thy s xut hin cỏc pha tinh th - Fe mt s mu Vi cỏc mu di 380oC, kt qu kho sỏt lc khỏng t HC cho thy cú s gim HC mu , iu ny l quỏ trỡnh nhit ó kh cỏc ng sut d, tng n nh ca cu trỳc vụ nh hỡnh, gim d hng ca vt liu v ú lm gim HC Mu cú 5% nguyờn t Fe, 360 380oC mt gi cho tớnh t mm tt nht 117 10 11 12 13 ó nghiờn cu nh hng ca cỏc yu t hỡnh hc ca mu (sens GMI) n hiu ng GMI, kt qu cho thy hiu ng GMI ph thuc mnh vo cỏc yu t kớch thc ca mu Kt qu thu c cho thy mu cú b dy c 20àm, rng c 0, mm, di mm cho t s GMIr ln nht ti nhit phũng ó nghiờn cu nh hng ca tn s o n t s GMIr, kt qu cho thy giỏ tr GMIr ln nht thu c o tn s 6MHz vi mi mu ó nghiờn cu nh hng ca vic thay i hm lng Nb v ch x lý nhit n hiu ng GMI ca h mu finemet, kt qu thu c cho thy, mu cú hm lng Nb l 3% nguyờn t c nhit 540oC 15 phỳt (cú tớnh t mm tt nht) cho t s GMI ln nht Giỏ tr ln nht t c l 220% o tn s MHz nhit phũng ó nghiờn cu nh hng ca vic thay i hm lng Fe hp kim vụ nh hỡnh nn Co v ch x lý nhit n hiu ng GMI ca h mu Co75xFexSi15B10 Kt qu cho thy mu cú thnh phn Fe 5% nguyờn t, nhit 380oC thi gian 1h, cho t s GMIr ln nht Giỏ tr ln nht t c l 369 % o tn s 6MHz nhit phũng Trờn c s cỏc kt qu nghiờn cu nh hng cỏc yu t bờn ngoi (hỡnh dng mu, tn s dũng cao tn) v cỏc tớnh cht ni ti ca mu (thnh phn, cu trỳc vi mụ v tớnh t mm) lờn t s GMI, ó thit k, ch to cm bin o dũng in khụng tip xỳc s dng sens GMI (cm bin dũng) ó s dng cm bin dũng GMI kho sỏt cỏc c tuyn U-I (U- tớn hiu nhn c, I: dũng in cn ú) cỏc di o dũng in I: ữ1 A, 1ữ10A, 10ữ60A, 40ữ100A, 100ữ300A Cỏc kt qu t c cho thy cm bin cú c tuyn U I l tng i tuyn tớnh vi tt c cỏc di o Do ú cú th ng dng sens GMI lm cm bin o dũng in theo phng phỏp khụng tip xỳc ó o v kho sỏt c hai dũng mt chiu v xoay chiu trờn cựng mt cm bin dũng, kt qu cho thy khụng cú s khỏc bit ỏng k trờn c tuyn U-I Nh vy cm bin dũng GMI cú th o c c dũng mt chiu v dũng xoay chiu õy l u im ca cm bin GMI so vi phng phỏp o khụng tip xỳc (ampe kỡm) ng dng nguyờn lý in ng truyn thng ú ch cú th o c dũng in xoay chiu Mt u th ỏng k ca cm bin dũng GMI l xung tớn hiu u ng dng vi dũng in o, iu ny khụng th cú thit b o trờn c s cm ng in t kinh in 118 DANH MC CC CễNG TRèNH CễNG B Nguyen Hoang Nghi, Nguyen Van Dung, Trinh Thi Thanh Nga, Bui Thi Khanh Nhung, Mai Thanh Tung, Nguyen Huu Tinh, Hoang Nhat Hieu, Bui Xuan Chien, Nguyen Thi Hong Tam (2008), Advanced magnetic materials produced by using rapid quenching technology, Journal of the Korean Physical Society, Vol 52, No 6, June 2008, pp 1858_1862 Nguyen Hoang Nghi, Mai Thanh Tung, Hoang Nhat Hieu, Nguyen Van Dung, Nguyen Huu Tinh, Le Cao Cuong and Trinh Thi Thanh Nga (2009), Advanced Metallic Magnetic Materials Prepared by Electro-Chemical Deposition, Vapor Deposition and Rapid Quenching, Physics and Engineering of New Materials, Springer Proceedings in Physics, Volume 127 ISBN 978-3-540-88200-8 Springer Berlin Heidelberg, 2009, p 141-149 Nguyen Huu Tinh, Nguyen Hoang Nghi, Nguyen Huy Dan and Le Anh Tuan (2009), The efect of size factors to ratio of giant magnetic resistance in undetermined share which manufactured by rapid quenching, Journal of Science ISSN 1859 2325/ NO08/2009, pp 87-90 N H Tinh, N V Dung, N H Nghi, and M H Phan (2012), Influence of Nb substitution for Fe on the magnetic and magneto-impedance properties of amorphous and annealed Fe76 5-xSi13,5B9Cu1Nbx (x = 0-7) ribbons, Physica B 407, 37903796 Nguyn Hu Tỡnh, Nguyn Hong Ngh, Nguyn Huy Dõn, Lờ Anh Tun, Trn Thiờn c, Nguyn Th Mai, Mai Xuõn Dng v Trnh Th Thanh Nga (2009), Nghiờn cu nh hng ca ch x lý nhit lờn tớnh cht t, cu trỳc v tớnh cht t tng tr khng l ca bng vụ nh hỡnh Co70Fe5Si15B10, Tuyn cỏc bỏo cỏo hi ngh Vt lý cht rn v Khoa hc vt liu ton quc ln th 6, pp 78 81 Nguyn Hu Tỡnh, Nguyn Hong Ngh, Nguyn Huy Dõn, Lờ Anh Tun, Trn Thiờn c, Nguyn Th Mai, Mai Xuõn Dng v Trnh Th Thanh Nga (2009), Nghiờn cu nh hng ca hm lng Fe lờn tớnh cht t, cu trỳc v tớnh cht t tng tr khng l ca bng vụ nh hỡnh nn Co, Tuyn cỏc bỏo cỏo hi ngh Vt lý cht rn v Khoa hc vt liu ton quc ln th 6, pp 82 85 Nguyn Hu Tỡnh, Nguyn Hong Ngh, Nguyn Huy Dõn v Nguyn Vn Dng (2011), Nghiờn cu nh hng ca hm lng Nb v ch nhit n cu trỳc, tớnh cht t v hiu ng t tng tr khng l (GMI) ca vt liu Finemet ch to bng cụng ngh ngui nhanh, Tuyn cỏc bỏo cỏo hi ngh Vt lý cht rn v Khoa hc vt liu ton quc ln th 119 TI LIU THAM KHO Ting Vit [1] Bựi Xuõn Chin (2009), Vt liu t cu trỳc nanụ dng ht cú hiu ng t in tr khng l (GMR) ch to bng cụng ngh ngui nhanh, Lun ỏn Tin s Vt lý, Trng i hc Bỏch khoa H Ni, H Ni [2] Nguyn ng Dng (1996), Cu trỳc t vi v tớnh cht t ca vt liu nanụ tinh th h FeBSiCuNb, Lun ỏn PTS Toỏn- Lý, H Ni [3] Mai Xuõn Dng (2000), Nghiờn cu cu trỳc v tớnh cht t ca mt s vt liu t vụ nh hỡnh v nanụmột, Lun ỏn Tin s Vt lý, Trng i hc Bỏch khoa H Ni, H Ni [4] Nguyn Hong Ngh (1992), Vt liu vụ nh hỡnh v kim loi vụ nh hỡnh, Giỏo trỡnh ging dy ti vin Vt Lý K Thut, i hc bỏch khoa H Ni, H Ni [5] Nguyn Hong Ngh (2012), C s t hc v Cỏc vt liu t tiờn tin, NXB Khoa hc v k thut (ang in) [6] Nguyn Hong Ngh (2003), Lý thuyt nhiu x tia X, NXB Giỏo dc, H Ni [7] Nguyn Hong Ngh (2003), Cỏc phng phỏp thc nghim phõn tớch cu trỳc, NXB Giỏo dc, H Ni [8] Lu Tun Ti (2008), Vt liu t, NXB i hc Quc gia H Ni, H Ni [9] Nguyn Phỳ Thựy (1996), T hc v siờu dn, Trng i hc Khoa hc t nhiờn, i hc quc gia H Ni v Trung tõm Quc t o to v Khoa hc Vt liu (ITIMS), H Ni [10] Nguyn Phỳ Thựy (2003), Vt lý cỏc hin tng t, NXB i hc Quc gia H Ni, H Ni [11] Lờ Th Cỏt Tng, Phan Vnh Phỳc, Trn ng Thnh, Hựng Mnh, Nguyn Hng Quang v Trn Th c (2006), Xỏc nh kớch thc ht nano tinh th bng phng phỏp nhiu x tia X, Tuyn cỏc bỏo cỏo Hi ngh Vt lý cht rn ton quc ln th VI, H Ni, tr 1436 Ting Anh [12] P Allia, M Baricco, M Krobel, P Tiberto and F Vinai (1994) Soft nanocrystanlline ferromagnetic alloys with improved utility obtained through Joule heating of amorphous ribbons J MMM, 133, pp 234-247 [13] P Allia , M Baricco, P Tiberto and F Vinai (1993) Kinetics of the amorphous to nanocrystalline transformation of Fe73.5Cu1Nb3Si13.5B9 J Appl Phys , 74, pp 3137-3143 120 [14] L Anh-Tuan, K Chong-Oh, P Manh-Huong, L Heebok, Y Seong-Cho (2007) Very large magnetoimpedance effect in a glass-coated microwire LC-resonator Physica B 395, pp 8892 [15] J M Barandiaran, G V Kurlyandskaya, M Vazquez, J Gutierrez, D Garcia, J L Munoz (1999) A Simple Model of the Magnetoresistance Contribution to the Magnetoimpedance Effect in Thin Films Phys Stat Sol , A, 171, R3-R4 [16] A D Bensalah, F Alves, R Barrue, F Simon, S N Kane (2006) GMI sensors based on stress-annealed iron based nanocrystalline ribbon sensors and Actuators, A 129, pp 142145 [17] Betancourt, B I Sỏnchez, B Hernando, R Valenzuela (2005) Characterization of stress-annealed amorphous CoFeBSi ribbons by GMI and inductance spectroscopy Journal of Magnetism and Magnetic Materials, Vol 294, pp 159-162 [18] Betancourt I and Valenzuela R (2002), Influence of the torsion stress on the circumferential magnetization curves of CoFeBSi amorphous wires, Applied Physics Letters, doi:10 1063/1 1490627 [19] Betancourt and R Valenzuela (2003) The effect of torsion stress on the circumferential permeability of CoFeBSi amorphous wires IEEE, pp 3097 3099 [20] J Bigot, N Lecaude, J C Perron, C Milan, C Ramiarijaona and J F Rialland (1994) Influence of annealing conditions on nanocrystallization and magnetic properties in Fe73.5Cu1Nb3Si13.5B9 alloy J MMM, 133, pp 299-302 [21] J M Borrego, A Conde (1997) Nanocrystallization behavior of FeSiCu(NbX) alloys Materials Science and Engineering, A226-228, pp 663-667 [22] J M Borrego, A Conde, M Millan, M J Capitan, J L Joulaud (1998) Nanocrystallization in Fe73.5Si13.5B9Cu1Nb1X2 (X = Nb, Mo and V) alloys studied by X-ray synchrotron radiation Nanostructure Materials, 10, pp 575-583 [23] M Brouha, G Turk, D V A Borst (1985) Soft Magnetic Properties of CoFeBSi Amorphous Ribbon Improved by Pulse Annealing J Phys C , 46, pp 413-416 [24] K Brzozka, W A Slawska, M Grawronski, K Jezwita and H K Lachowicz (1995) Evolution of Mossbauer spectra with nanocrystalline content in Fe73.5Cu1Nb3Si13.5B7 alloys J MMM, 140-144, pp 481-482 [25] N A Buznikov, C G Kim, C O Kim, S S Yoon (2007) Asy mmetric offdiagonal magnetoimpedance in field-annealedby ferromagnetic resonance Journal of Magnetism and Magnetic Materials, 310, pp 22952297 [26] X L Chai, D C Zeng, G X Liu, H Y Yu, X C Zhong, Z W Liu (2009) Influence of current amplitude on the nonlinear asy mmetric ac voltampere characteristics in amorphous ribbons with GMI effec Journal of Magnetism and Magnetic Materials, 321, pp 12721275 121 [27] G Chen, X L Yang, L Zeng, J X Yang, F F Gong, D P Yang, Z C Wang (2000) Enhanced GMI effect in a Co70Fe5Si15B10 ribbon due to Cu and Nb substitution for B J Appl Phys, pp 5263-5265 [28] H S Chen and K A Jackson (1981) Metallic Glasses, Treatise on Materials Science and technology Vol 20, pp 251 [29] J W Christian The Theory of Transformations in Metals and Alloys Ch I, 16, 22 and Ch III, 81, 93 [30] C F Conde and A Conde (1995) Crystallization behaviour of amorphous Fe74Cu1Nb3Si10B12 Journal of Non Crystalline, Solids 192 and 193, pp 498-502 [31] F Cristian, V Emil, T Marinel, C Mihai (2006) Using the GMI effect for detecting small rotationnal XVIII Imko World Congress, pp 1-2 [32] H Davies (1994) The surprising properties of magnetic alloys with nano mộtresized are being used to design better permanent magnets Ultrafine alloys make their mark Phys Work, pp 40-43 [33] C Dong, S Chen, T Y Hsu (2002) A simple model of giant magneto-impedance effect in amorphous thin films J Magn Magn Mater, pp 288-294 [34] P Duhaj, I Maiko, P Svec, D Janickovic (1995) Structural characterization of the Finemet type alloys Journal of Nou-Crystalline Solids, pp 561-564 [35] M E Ghannami, T Kulik, A Hermando, B L Fernandez, J C Gomezsal, P Gorria, J M Barandiaran (1994) Influence of the preparation conditions on the magnetic properties and electrical resistivity of Fe73.5Cu1Nb3Si13.5B9 nanocrystalline alloys J MMM, 133, pp 314-316 [36] V Fal-Miyar, M A Cerdeira, J A Garca, M Tejedor, A P Potatov Fe73.5xCrxNb3Cu1Si13.5B9 amorphous ribbons Physica, B 398, pp 252255 [37] J J Freijo, A Hernando, M Vazquez, A Mendez, V R Ramanan (1999) Exchange biasing in ferromagnetic amorphous wires: A controllable micromagnetic configuration Appl Phys Lett , 74, pp 1305-1307 [38] K L Garca, J M Garca-Beneytez, R Valenzuela, A Zhukov, J Gonzỏlez, M Vỏzquez (2011) Effects of torsion on the magnetoimpedance response of CoFeBSi amorphous wires Journal of Magnetism and Magnetic Materials, pp 721-723 [39] K L Garca , R Valenzuela (2011) Correlation between magnetization processes and giant magnetoimpedance response in CoFeBSi amorphous CoFeBSi wires Journal of Non-Crystalline Solids, 287, pp 313-317 [40] M Ghanaatshoar, M M Tehranchi, S M Mohseni, S E Roozmeh, A Gharehbagh (1999) Effect of magnetic fieldcurrent annealing on the magnetoimpedance of Co-based ribbons Journal of Non-Crystalline Solids, 353, pp 899-901 122 [41] L A P Gonc, J M Soarea, F L A Machado, A R Rodrigues (2005) Hall and giant magnetoimpedance effects in the Co70Fe5Si15B10 metallic glass Journal of Non-Crystalline Solids, 352, pp 36593662 [42] L A P Gonc, J M Soares, F L A Machado, W M Azevedo (2006) GMI effect in the low magnetostrictive Co70Fe5Si15B10 alloys Physica B 384, pp 152154 [43] R Gotthard, R Guenther, G Guenther, L Reinhard, H Wolfgang, M Wolfram and O Wolfgang (2002) High frequency performance of laminated soft magnetic films (NiFe, FeAlN, and amorphous CoFeBSi) in external fields J App Phys 10 1063/1 1447520 [44] H Q Guo, H Kronmuller, T Dragon, Z H Cheng, B G Shen (2001) Enhanced magnetoimpedance and field sensitivity in microstructure controlled FeSiCuNbB ribbons, J Appl Phys , 89, pp 514-516 [45] V Haslar, L Kraus, D Dlouhy, D Duhaj and P Svec (1996) Influence of Si and Nb content of magnetostriction and creep induced magnetic anisotropy of nanocrystalline FeNbCuSiB alloys J MMM, Vol 160, pp 257-258 [46] S Hens and Y Waseda (1984) Atomic size effect on the Glass Formability of Metallic alloys, The 41st Report of the Resealed Institute of Mineral Dressing and Metallurgy (Senken), pp 97 [47] G Herzer (1989) Grain structure and magnecticsm of nanocrysttalline ferromagnets IEEE Trans Magn , pp 3327-3329 [48] G Herzer (1990) Grain size dependence of coercivity and permeability in nanocrysttalline ferromagnets IEEE Trans Magn , pp 1397-1402 [49] G Herzer (1991) Magnetism and microstructure of nanocrystalline Fe-base alloys Int Symp on 3d Transition-Semi Metal Thin Films, Proc , pp 130 [50] G Herzer (1993) Nanocrystalline Soft Magnetic Materials EPS 13th General Conference, Physica scripta, Vol T49, pp 307-314 [51] G Herzer (1994) Magnetic field-induced anisotropy in nanocrystalline Fe-Cu-NbSi-B alloys J MMM 133, pp 248-250 [52] G Hezer (1996) Nanocrystalline soft magnetic materials J MMM 157-158, pp 133-136 [53] O Z Ivotsky, K Postava, L Kraus, M Foldyna, J Pistora (2006) Magnetic and magneto-optical properties of CoFeCrSiB amorphous ribbon Journal of Magnetism and Magnetic Materials, 304, pp e534e536 [54] Z Jing, Y H Kai, C Ki-Zhi, J F Yu (1996) Influence of the elements Si/B on the structure and magnetic properties of nanocrystslline (Fe, Cu, Nb)77 5SixB22 5-x alloys J MMM, 153, pp 315-319 123 [55] M Karumazzaman, I Z Rahman, M R Rahman (2001) Boron content dependance of magnetoimpedance in Fe91xZr5BxNb4 alloys J Mater Proc Tech , 119, pp 312-317 [56] B Kaviraj, S K Ghatak (2006) Influence of microwave annealing on GMI response and magnetization of an amorphous Fe73.5Nb3Cu1Si13.5B9 ribbon Solid State Co mmunications, 140, pp 294-298 [57] M Kenc et al (1994) Temperature dependence of the magnetization and the physical properties of rapidly quenched amorphous FeB alloys IEEE Trans Mag, Vol 30, No2, pp 529 [58] C K Kim, I Skorrannek, R C OHandley (1996) Fine particle magnetic properties and microstructure of Fe-Cu-Si-Nb-B alloy at elevanted temperatures Materials Science and Engineering, B41, pp 339-344 [59] K J E Kisdi, L F Kiss, L K Varga, P Kamasa (1997) Curie temperature measurement of metastable alloys using high heating rate Materials Science and Engineering, A226-228, pp 689-692 [60] M Knobel, K R Pirota (2002) Magnetic Behavior And Magneto-Transport Properties Of Cobalt-Based Soft Magnetic Ribbons J Magn Magn Mater pp 242-245 [61] M Knobel, M Vazquez, L Kraus (2003) Giant magnetoimpedance Handbook of Magnetic Materials, Vol 15, Elsevier Science B V , Amsterdam, pp 169 (Chapter 5) [62] N H Nghi et al (2003) GMI effect in amorphous and nanocrystallinemagnetic materials Physica B, Vol 327, p 253256 [63] L Kraus, M Mala tek, S S Yoon, C G Kim (2006) Asy mmetric giant magnetoimpedance in twisted CoFeCrSiB morphous ribbons Journal of Magnetism and Magnetic Materials, 304, pp 214-217 [64] L Kraus, M Michal, K Postava, J Dusan (2005) Asy mmetric giant magnetoimpedance in stress-field annealed CoFeBSi amorphous ribbons Journal of Magnetism and Magnetic Materials, 290291, pp 11311133 [65] T Kulik, A Hernando (1996) Magnetic Properties of Fe76,5-xCu1NbxSi13.5B9 alloys nanocrystallized from amorphous state J MMM, 160, pp 269-270 [66] T Kulik, G Vlasak, R Zuberek (1997) Correlation between microstructure and magnetic properties of amorphous and nanocrystalline Fe73.5Cu1Nb3Si16, 5B6, Materials Science and Engineering, A226-228, pp 701-705 [67] L V Panina, K Mohri, T Uchiyama, M Noda and K Buchida (1995) Offdiagonal magnetoimpedance in NiFe-Au-NiFe layered film and its application to linear magnetic sensors IEEE Trans Magn , 34, pp 1249-1260 124 [68] N Lecaude, J C Perron (1996) Modelling of nanocrystallization in Finemet-type alloy from enthalpy measurements J MMM, 160, pp 263-265 [69] N Lecaude, J C Perron (1997) Nanocrystallization mechanisms in Finemet-type alloys from calorimetric studies Materials Science and Engineering, A226-228, pp 581-585 [70] T Liu, N Chen, Z X Xu, R Z Ma (1996) The amorphous to nanocrystalline transportation in Fe73.5Cu1Nb3Si13.5B9 studies by thermogravimetry analysis J MMM, 152, pp 359-364 [71] L Ludk Kraus, M Michal, K Postava, J Duan (2005) Asy mmetric giant magneto impedance in stress-field annealed CoFeBSi amorphous ribbons Journal of Magnetism and Magnetic Materials, pp 1131-1133 [72] P M Huong (2009) Recent Advances and Future Directions in Giant Magnetoimpedance Materials Magnetic Materials, pp 1-70 [73] P M Huong ; Peng H X ; Wisnom M R ; Yu S C ; Chau N (2004) Enhanced GMI effect in a Co70Fe5Si15B 10 ribbon due to Cu and Nb substitution for B Phys Stat Sol A, 201, 1558-1562 [74] P M Huong ; Kim YS, Chien NX, Yu SC, Lee HB, Chau N Japan J Appl Phys 2003, 42, 5571-5574 [75] K Mohri, T Kohsawa, K Kawashima, H Yoshida, L V Panina (1992) A method to generate high-frequency magnetic field for GMI effects IEEE Trans Magn , 28, pp 3150-3152 [76] S M Mohseni, S E Roozmeh, N Wanderka, F Fiorillo (2007) Structural characterization and magnetoimpedance effect in amorphous and nanocrystalline AlGe-substituted FeSiBNbCu ribbons Journal of Magnetism and Magnetic Materials, 312, pp 35-42 [77] S Mudry, Y Kulyk, Tsizh B (2010) Isothermal crystallization kinetics in Fe 73 1Si15 5B7 4Nb3 0Cu1 amorphous alloys Rev Adv Mater, pp 147-151 [78] M Muller, N Mattern (1994) The infuence of Refractory element additions on the magnetic properties and on the Crystallization behaviour of nanocrystalline soft magnetic Fe-B-Si-Cu alloys I MMM, 136, pp 79-87 [79] D Muraca, V Cremaschi, M Knobel, H Sirkin (2008) Influence of Ge on magnetic and structural properties of Joule-heated Co-based ribbons: Giant magnetoimpedance response Journal of Magnetism and Magnetic Materials, 320, pp 20682073 [80] Neuweiler, B Hofmann, H Kronzmiler (1996) Approach to magnetic saturation in nanocrystalline and amorphous Fe73.5Cu1Nb3Si13.5B9 I MMM, 135, pp 28-34 [81] R C OHandley (1983) Amorphous metallic alloys London, Butterworths, ch 14, pp 263-271 125 [82] P T Squire (1990) Phenonemological model for magnetoimpedance in soft ferromagnets J Magn Magn Mater , 87, pp 140-144 [83] L V Panina, K Mohri (1994) Influence of thermo-stress factor on magnetoimpedance of soft magnetic materialp Appl Phys Lett , pp 1189-1191 [84] M H Phan, H X Peng, M R Wisnom, and N H Nghi (2007) Large enhancement of GMI effect in polymer composites containing Co-based ferromagnetic microwires Journal of Magnetism and Magnetic Materials;316: e253-e256 [85] M H Phan, H X Peng, S C Yu, N V Dung, and N H Nghi (2007) Optimized GMI effect in electrodeposited CoP/Cu composite wire s Journal of Magnetism and Magnetic Materials;316: 244-247 [86] S E Roozmeh, M M Tehranchi, M Ghanaatshoar, S M Mohseni, M Parhizkari, H Ghomi, H Latifi (2006) Magnetoimpedance effect in laser annealed Co68, 25Fe4, 5Si12, 25B15 amorphous ribbons Journal of Magnetism and Magnetic Materials, 304, pp e633e635 [87] S Roth (1996) The growth of -Fe(Si) particle in an amorphous Fe73.5Mo3Cu1Si13.5 alloys J MMM, 160, pp 266-268 [88] Y Seok-Soo, N A Buznikov, L Jin, K Chong-Oh, C G Kim (2006) The effect of surface crystalline layers on asy mmetric off-diagonal magnetoimpedance in field-annealed CoFeSiB amorphous ribbons Journal of Magnetism and Magnetic Materials, 304, pp e186e188 [89] Serebryakov, A Gurov, N Novokhatskaya (1995) Crystal nucleation in Finemettype alloys as evidenced by Calorimetric measurements Materials science and Engineering, A203, pp L10-L12 [90] Skorvanek, R C OHandley (1995) Fine particle magnetism in nanocrystalline Fe-Cu-Si-Nb-B at elevated temperatures J MMM, 140-144, pp 467-468 [91] M T Tung, N V Dung, N H Nghi, M H Phan, H X Peng (2008) Influence of Fe doping and FeNi-layer thickness on the magnetic properties and GMI effect of lectrodeposited Ni100-xFex/Cu (x = 0~95) wires Journal of Physics D: Applied Physics; 41: 105003 [92] M T Tung, L T T Hang, L A Tuan, N H Nghi, and M H Phan (2012) Influence of electrodeposition parameters on the magnetic properties and magneto-impedance effect in electrodeposited Cu/CoP wires Journal of Alloys and Compounds (under consideration) [93] K Twarowski, M Kuzminski, W A Slawska, H K Lachowicz, G Herzer (1995) Magnetostriction of Fe73.5Cu1Nb3Si15, 5B7 nanocrystalline alloy I MMM 140-144, pp 449-450 126 [94] N A Usov (2002) Magnetic fluid hyperthermia of the mouse experimental tumor J Magn Magn Mater , 249, pp 3-8 [95] V H Duong, R Grossinger, R Sato and C Polak (1996) The magnetic behaviour of nanocrystalline Fe76,5-xCu1NbxSi13.5B9 J MMM 157/158, pp 193-194 [96] R Valenzuela, J Gonzalez, E Amano (2002) Current annealing and magnetoimpedance in CoFeBSi amorphous ribbons IEEE, pp 3925-3927 [97] R Valenzuela, A Fessant, J Gieraltowski, C Tannous (2007) Effect of the metalto-wire ratio on the high-frequency magnetoimpedance of glass-coated CoFeBSi amorphous microwires Measurement Tech , pp [98] R Valenzuela, J Gonzalez, E Amano (1997) Current annealing and magnetoimpedance in CoFeBSi amorphous ribbons IEEE, pp 3925-3927 [99] L K Varga, E Bakos, L F Kiss, I Bakonyi (1994) Kinetics of amorphous nanocrystalline transformation for a finemet alloys Materials Science and Engineering, Vol A179-180, pp 567-571 [100] L K Varga, K E Kisdi, V Strom, K V Rao (1996) Thermomagnetic study of nanophases in Fe-based soft magnetic materials J MMM 159, pp L321-L323 [101] M Vazquez (2001) Giant Magneto Impedance and Applications J Magn Magn Mater , 226-230, pp 693-699 [102] J Velazquez, M Vazquez, A Hernando, H T Savage, M Wun-Fogle (1992) Magnetoelastic anisotropy in amorphous wires due to quenching J App Phys 70, pp 6525-6527 [103] M D Victor, G M Hector, V K Galina (2008) Wide-angle magneto impedance field sensor based on two crossed amorphous ribbons sensors and Actuators, A 142, pp 496502 [104] N Wang, F Zhu and P Hasen (1991) Twinned structure of Fe2B in an annealed Fe73.5Cu1Nb3Si13.5B9 soft magnetic alloy Phil Mag Letters 64, pp 157-162 [105] S S Yoon, C G Kim (2001) Effect of annealing temperature on permeability and giant magnetoimpedance Appl Phys Lett , 78, pp 3280-3282 [106] Y Yoshizawa and K Yamauchi (1989) Effects of magnetic field annealing on magnetic properties in ultrafine crystalline Fe-Cu-Nb-Si-B alloys IEEE Trans Magn , Vol 25, pp 3324-3326 [107] Y Yoshizawa and K Yamauchi (1990) Fe-base soft magnetic alloys composed of ultrafine grain structure Materials Transactions and JIM, Vol 31, No4, pp 307314 [108] Y Yoshizawa and K Yamauchi (1991) Magnetic properties of Fe-Cu-M-Si-B alloys Materials Science and Engineering, A133, pp 176-179 127 [109] Y Yoshizawa, S Oguma and K Yamauchi (1988) New Fe-based soft magnetic alloys composed of ultrafine grain structure J Appl Phys 64, pp 6044-6046 [110] T Zemcik and J Ryba (1994) Influence of surface on the nanocrystalline structural formation Hyperfine Interactions 83, pp 299-303 PH LC: MT S CễNG B CA CC TC GI VIT NAM (V HIU NG GMI) Chaturvedi, N Laurita, A Leary, M H Phan, M E McHenry, and H Srikanth Giant magnetoimpedance and field sensitivity in amorphous and nanocrystalline (Co1= 0, 025, 05, 1) ribbons Journal of Applied xFex)89Zr7B4 (x Physics 2011;109:07B508 N H Nghi et al (2003) GMI effect in amorphous and nanocrystallinemagnetic materials Physica B, Vol 327, p 253256 F X Qin, H X Peng, M H Phan, L V Panina, M Ipatov, A Zhukov (2012) Effects of wire properties on the field-tunable behaviour of continuous-microwire composites Sensors and Actuators A: Physical;178:118 P M Huong (2009) Recent Advances and Future Directions in Giant Magnetoimpedance Materials Magnetic Materials, pp 1-70 P M Huong ; Peng H X ; Wisnom M R ; Yu S C ; Chau N (2004) Enhanced GMI effect in a Co70Fe5Si15B10 ribbon due to Cu and Nb substitution for B Phys Stat Sol A, 201, 1558-1562 M H Phan, H X Peng, M R Wisnom, and N H Nghi (2007) Large enhancement of GMI effect in polymer composites containing Co-based ferromagnetic microwires Journal of Magnetism and Magnetic Materials;316: e253-e256 M H Phan, H X Peng, S C Yu, N V Dung, and N H Nghi (2007) Optimized GMI effect in electrodeposited CoP/Cu composite wires Journal of Magnetism and Magnetic Materials;316: 244-247 M T Tung, N V Dung, N H Nghi, M H Phan, H X Peng (2008) Influence of Fe doping and FeNi-layer thickness on the magnetic properties and GMI effect of lectrodeposited Ni100-xFex/Cu (x = 0~95) wires Journal of Physics D: Applied Physics; 41: 105003 M T Tung, L T T Hang, L A Tuan, N H Nghi, and M H Phan (2012) Influence of electrodeposition parameters on the magnetic properties and magnetoimpedance effect in electrodeposited Cu/CoP wires Journal of Alloys and Compounds (under consideration) 10 V H Duong, R Grossinger, R Sato and C Polak (1996) The magnetic behaviour of nanocrystalline Fe76,5-xCu1NbxSi13.5B9 J MMM 157/158, pp 193-194 128 ... hữu tình NGHIấN CU TNH CHT T V HIU NG GMI TRONG VT LIU T Vễ NH HèNH V NANO TINH TH NG DNG LM CM BIN DềNG IN Luận án tiến sĩ Vật lý Chuyên ngành: Vật lý chất rắn Mã số: 62.44.07.01 Ngi hng dn:... kim n t s GMIr ca hp kim nano tinh th Fe76.5-xCu1NbxSi13.5B9 92 5.3.2 Nghiờn cu nh hng ca ch nhit n n t s GMIr ca hp kim nano tinh th Fe76.5-xCu1NbxSi13.5B9 94 95 5.4 Nghiờn cu hiu ng GMI trờn... HIU NG GMI CA BNG HP KIM 89 11 5.1 Kho sỏt nh hng ca cỏc yu t hỡnh hc n hiu ng GMI 89 5.2 Kho sỏt nh hng ca tn s dũng in cao tn n hiu ng GMI 91 5.3 Nghiờn cu hiu ng GMI trờn h hp kim nano tinh

Ngày đăng: 09/07/2017, 20:32

Từ khóa liên quan

Mục lục

  • Muc lục

  • Mở đầu

  • Chương 1

  • Chương 2

  • Chương 3

  • Chương 4

  • Chương 5

  • Chương 6

  • Kết luận

  • Công trình đã công bố

  • Tài liệu tham khảo

Tài liệu cùng người dùng

Tài liệu liên quan