Nghiên cứu chế tạo điện cực chì dioxit trên nền thép oxi hóa bằng phương pháp kết tủa điện hóa, định hướng ứng dụng làm cực dương trong nguồn điện dự trữ
Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 163 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
163
Dung lượng
11,24 MB
Nội dung
B GIO DC V O TO VIN HN LM KHOA HC V CễNG NGH VIT NAM HC VIN KHOA HC V CễNG NGH .*** NGễ TH LAN NGHIấN CU CH TO IN CC CHèDIOXIT TRấN NN THẫP OXI HểA BNG PHNG PHP KT TA IN HểA, NH HNG NG DNG LM CC DNG TRONG NGUN IN D TR LUN N TIN S HểA HC H Ni, 2017 VIN HN LM KHOA HC B GIO DC V O TO V CễNG NGH VIT NAM HC VIN KHOA HC V CễNG NGH .*** NGễ TH LAN NGHIấN CU CH TO IN CC CHèDIOXIT TRấN NN THẫP OXI HểA BNG PHNG PHP KT TA IN HểA, NH HNG NG DNG LM CC DNG TRONG NGUN IN D TR LUN N TIN S HểA HC Chuyờn ngnh : Húa lý thuyt v húa lý Mó s: 62.44.01.19 Ngi hng dn khoa hc: PGS TS inh Th Mai Thanh i tỏ, TS Doón Anh Tỳ H Ni, 2017 LI CAM OAN Tụi xin cam oan lun ỏn ny l cụng trỡnh nghiờn cu ca riờng tụi di s hng dn khoa hc ca PGS TS inh Th Mai Thanh v i tỏ, TS Doón Anh Tỳ Lun ỏn khụng trựng lp vi bt k cụng trỡnh khoa hc no khỏc Cỏc kt qu v s liu lun ỏn l trung thc v cha c cụng b trờn no ngoi nhng cụng trỡnh ca tỏc gi Tỏc gi lun ỏn Ngụ Th Lan i LI CM N Tụi xin by t lũng bit n sõu sc ti PGS TS inh Th Mai Thanh v i tỏ TS Doón Anh Tỳ ó ó tn tõm hng dn khoa hc, nh hng nghiờn, cu ng viờn khớch l v to mi iu kin thun li cho tụi sut quỏ trỡnh thc hin lun ỏn Tụi xin trõn trng cm n ban lónh o Vin K thut Nhit i vin Hn lõm Khoa hc v Cụng ngh Vit Nam cựng cỏc cỏn b Vin ó quan tõm giỳp v to iu kin thun li cho tụi quỏ trỡnh hc v nghiờn cu ti Vin Tụi xin chõn thnh cm n th trng b mụn Cụng ngh Húa hc, th trng khoa Húa Lý K thut- Hc vin K thut Quõn s ó luụn giỳp , ng h v to iu kin v thi gian cho tụi sut quỏ trỡnh thc hin v bo v lun ỏn Cui cựng tụi xin by t li cm n sõu sc nht n gia ỡnh, ngi thõn v bn bố ó luụn quan tõm, khớch l, ng viờn v to mi iu kin thun li cho tụi sut thi gian thc hin lun ỏn ny Tỏc gi lun ỏn Ngụ Th Lan ii MC LC Trang M U CHNG TNG QUAN 1.1 Cu trỳc tinh th v tớnh cht húa lý ca chỡ ioxit 1.2 Cỏc phng phỏp tng hp chỡ ioxit 1.2.1 Tng hp bng phng phỏp húa hc 1.2.1.1 Phng phỏp oxi húa 1.2.1.2 Phng phỏp thy phõn 1.2.2 Tng hp bng phng phỏp in húa 1.2.2.1 C ch quỏ trỡnh kt ta in húa PbO2 1.2.2.2 Ch to in cc chỡ ioxit trờn nn kim loi quý 1.2.2.3 Ch to in cc chỡ ioxit trờn nn niken 1.2.2.4 Ch to in cc chỡ ioxit trờn nn titan 1.2.2.5 Ch to in cc chỡ ioxit trờn vt liu nn nhụm v ng 10 1.2.2.6 Ch to in cc chỡ ioxit trờn nn thộp khụng g 12 1.2.2.7 Ch to in cc chỡ ioxit trờn nn graphit 13 1.2.2.8 Ch to in cc chỡ ioxit trờn nn cacbon thy tinh (glassy cacbon) 14 1.2.2.9 Ch to in cc chỡ ioxit trờn nn ebonex 15 1.2.2.10 Ch to in cc chỡ ioxit dng composit 16 1.3 ng dng ca chỡ ioxit 17 1.3.1 17 PbO2 dựng cht thut 1.3.2 19 in cc tr PbO2 1.3.2.1 in cc tr PbO2 dựng tng hp in húa 19 1.3.2.2 in cc tr PbO2 dựng cụng ngh x lý mụi trng 20 1.3.2.3 in cc tr PbO2 dựng lm anụt bo v catụt bng phng phỏp 22 dũng ngoi 1.3.3 22 in cc PbO2 dựng ngun in chỡ 1.3.3.1 Phõn loi ngun in chỡ 22 iii 1.4 1.5 1.3.3.2 in cc dng PbO2 dựng c quy chỡ 24 1.3.3.3 in cc dng PbO2 pin chỡ d tr 28 Oxit st v cỏc phng phỏp tng hp mng oxit v ng dng 32 1.4.1 32 Cỏc loi oxit st 1.4.2 33 Cỏc phng phỏp tng hp mng oxit st 1.4.2.1 33 To lp oxit phỏt trin trờn nn thộp bng phng phỏp húa hc 1.4.2.2 To lp oxit phỏt triờn trờn nn thộp bng phng phỏp oxi húa in húa 35 1.4.3 37 Kh nng ng dng ca vt liu mng oxit Tỡnh hỡnh nghiờn cu v tng hp v ng dng PbO2 nc 40 CHNG II THC NGHIM 44 2.1 Húa cht v iu kin thc nghim 44 2.1.1 44 Húa cht 2.1.2 45 Oxi húa nn thộp bng phng phỏp húa hc 2.2 Cỏc phng phỏp nghiờn cu 46 2.2.1 46 Cỏc phng phỏp in húa 2.2.1.1 Phng phỏp quột th ng 46 2.2.1.2 Phng phỏp dũng tnh 47 2.2.2 49 Cỏc phng phỏp phõn tớch 2.2.2.1 Kớnh hin vi in t quột (SEM) 49 2.2.2.2 Nhiu x tia X( XRD )v tớnh thnh phn pha t ph XRD s dng phn 49 mm 2.2.2.3 Tỏn x nng lng tia X (EDX) 52 2.2.2.4 Phng phỏp chun Pb2+ 52 2.2.3 Phng phỏp o bỏm dớnh ca PbO2 vi nn thộp 53 2.24 Phng phỏp o dy ca mng oxit 53 CHNG III KT QU V THO LUN 54 3.1 Nghiờn cu ch to nn thộp oxi húa dựng cho in cc PbO2 54 3.1.1 54 Oxi húa nn thộp bng phng phỏp húa hc 3.1.1.1 nh hng ca nng NaOH 54 iv 3.1.1.2 nh hng ca nng NaNO3 55 3.1.1.3 nh hng ca nng NaNO2 57 3.1.1.4 nh hng ca nhit 59 3.1.1.5 nh hng ca thi gian oxi húa 61 3.1.1.6 Phõn tớch thnh phn, hỡnh thỏi pha ca mng oxit 62 3.1.2 65 Oxi húa nn thộp bng phng phỏp in húa 3.1.2.1 Xỏc nh in th oxi húa thộp dung dch kim 65 3.1.2.2 nh hng ca mt dũng 66 3.1.2.3 nh hng ca nng NaOH 69 3.1.2.4 nh hng ca nhit 71 3.1.2.5 nh hng ca thi gian oxi húa 74 Phõn tớch thnh phn, hỡnh thỏi cu trỳc pha ca mng oxit 76 3.1.3 Kho sỏt iu kin kt ta in húa PbO2 lờn nn thộp oxi húa v la 79 chn lp vt liu chuyn tip 3.1.3.1 Xỏc nh in th kt ta PbO2 ca dung dch Pb(NO3)2 79 3.1.3.2 80 nh hng ca mt dũng n bỏm dớnh ca lp PbO2 3.1.3.3 84 nh hng ca mt dũng n hỡnh thỏi hc ca lp PbO2 3.1.3.4 86 nh hng ca mt dũng n thnh phn pha ca lp PbO2 3.1.3.5 88 Kho sỏt kh nng phúng in ca in cc PbO2 3.2 Nghiờn cu cỏc yu t nh hng n quỏ trỡnh kt ta in húa PbO2 93 trờn nn thộp oxi húa in húa 3.2.1 93 nh hng ca mt dũng 3.2.2 nh hng ca nng Pb(NO3)2 94 3.2.3 98 nh hng ca nhit 3.2.4 102 nh hng ca pH 3.2.5 nh hng ca nng Cu(NO3)2 105 3.3 ỏnh giỏ kh nng lm vic ca in cc PbO2/Fe3O4H/thộp dung 110 dch in li H2SiF6v CH3SO3H 3.3.1 nh hng ca nng dung dch in ly n kh nng lm vic ca v 110 in cc 3.3.2 nh hng ca nhit dung dch in ly n kh nng lm vic ca 115 in cc 3.3.3 nh hng ca ca th tớch dung dch in ly n kh nng lm vic 119 ca in cc KT LUN 122 TI LIU THAM KHO 125 vi DANH MC CC K HIU V CH VIT TT dE/dt : S bin i in th theo thi gian EDX : Tỏn x nng lng tia X E0 : in th mch h MRB : B ngun in chỡ d tr loi nh MRB-S : B ngun in chỡ d tr loi nh cú mt rónh dn dung dch in li MRB-D : B ngun in chỡ d tr loi nh cú hait rónh dn dung dch in li MSA : axit metansunfonic M : mol/L FeOhh/thộp : Lp FeO trờn nn thộp c to thnh bng phng phỏp oxi húa húa hc Fe3O4h/thộp : Lp Fe3O4 trờn nn thộp c to thnh bng phng phỏp oxi húa in húa PANi : Polyanilin PVP : Polyvinylpyrolidon PbO2/FeOhh/thộp : Lp PbO2 kt ta in húa trờn mng FeO oxi húa nn thộp bng phng phỏp oxi húa húa hc PbO2/Fe3O4h/thộp : Lp PbO2 kt ta in húa trờn mng FeO oxi húa nn thộp bng phng phỏp oxi húa in húa Pwp : H s tng quan RVC : Li cacbon thy tinh SCE : in cc so sỏnh calomen bóo hũa SHE : in cc so sỏnh hiro tiờu chun SEM : Kớnh hin vi in t quột vii TiN : Titan nitrua TiNT : Oxit Titan nano TKG : Thộp khụng g t 1650 mV : Thi gian in th phúng in ca pin trờn 1650 mV Umax : Giỏ tr in th ln nht ca pin phúng in V/SCE : n v in th so vi in cc calomen XRD : Nhiu x tia X Z : Mụ un tng tr : H s bỡnh phng ti thiu viii 20 Hassan Karami, Mahboobeh Alipour, Synthesis lead dioxide nanoparticles by the pulsed current electrochemical method, International Journal of electrochemical science 4(2009), p 1511-1527 21 Hassan Karami, Mahboobhe Alipour, Investigation of organic expanders effects on the electrochemical behaviors of new synthesized nanostructured lead dioxide and commercial positive plates of lead-acid batteries, Journal of Power Sources, Vol 191, Iss.2 (2009), p 653-661 22 Shahram Ghasemi, Mir Fazlollah mousavi, Hassan Karami, Mojtaba Shamsipur, S H Kazemi, Energy storage capacity investigation of pulsed current formed nano-structured lead dioxide, Electrochimica Acta, Vol 52, Iss.4 (2006), p 1596-1602 23 Shahram Ghasemi, Hassan Karami, Mir Fazlollah Mousavi, Mojtaba Shamsipur, Synthesis and morphological investigation of pulsed current formed nanostructured lead dioxide, Electrochemistry Communications, Vol 7, Iss 12 (2005), p 1257-1264 24 D R P Egan, C T J Low, F C Walsh, Electrodeposited nanostructured lead dioxide as a thin film electrode for a lightweight lead-acid battery, Journal of Power Sources, Vol 196, Iss 13 (2011), p 5725-5730 25 Derek Pletcher, Hantao Zhou, Gareth Kear, C T John Low, Frank C Walsh, Richard G A Wills, A novel flow battery - A lead-acid battery based on an electrolyte with soluble lead (II) Part VI Studies of the lead dioxide positive electrode, Journal of Power Sources, Vol 180, Iss (2008), p 630-634 26 Ahmed Hazza, Derek Pletcher, Richard G A Wills, A novel flow battery- A lead-acid battery based on an electrolyte with soluble lead(II) Part IV The influence of additives, Journal of Power Sources, Vol 149 (2005), p 103-111 27 J E Curtis, T J Sinclair, Effect of electrolyte impurity on the electrochemical performance of the lead/ tetrafluoroboric acid/ lead dioxide cell, Journal of Power Sources, Vol 3, Iss (1978), p 267- 276 127 28 David Linden, Handbook of batteries, 3rd Edition, McGraw-Hill Handbooks, 2002 29 S Webster, P J Mitchell and Hampson, A short review of electrocrystallization and its applications to the lead - acid battery, Surface Technology, Vol 23 (1984), p 105-116 30 Sang-Hee Yoon, Joong-Tak Son, Jong-Soo Oh, Miniaturized g- and spinactivated Pb/HBF4/PbO2 reserve batteries as power sources for electronic fuzes, Journal of Power Sources, Vol 162 (2006), p 1421- 1430 31 Trn Quc Tựy, Nghiờn cu phc hi ngun in c chng ca tờn la, Bỏo cỏo ti khoa hc, Vin K thut Quõn s/ B Quc phũng, 1999, p.1-59 32 Ngụ Th Lan, Phm Mnh Tho, Doón Anh Tỳ, Kho sỏt b ngun 8M-A ca tờn la X29T, Tp Khoa hc v K thut, 148 (2012), tr 183-189 33 N Mohammadi, M Yari, S R Allahkaram, Characterization of PbO2 coating electrodeposited onto stainless steel 316L substrate for using as PEMFC's bipolar plates, Surface and Coatings Technology, Vol 236 (2013), p 341-346 34 Nguyn c Hựng, Nghiờn cu ch th ngun in trờn khoang tờn la, Bỏo cỏo kt qu ti, Vin K thut Quõn s/ B Quc phũng, 2003, p.1-46 35 K Wiesener, J Garche, W Schneider, Elektrochemische Stromquellen, Akademie-Verlag-Berlin, 1981, p 109-127 36 Nguyn c Hựng, Nguyn Vn Mc, nh hng ca m n in cc PbO2, Tp Hoỏ hc, s (2000), tr.31-34 37 N Arab, M Rahimi Nezhad Soltani, A Study of coating process of cast iron blackening, Journal of Applied Chemical Research, Vol 9(2009), p.13-23 38 H Xiang, F Y Shi, C Zhang, M S Rzchowski, P M Voylesa and Y A Chang Synthesis of Fe3O4 thin films by selective oxidation with controlled oxygen chemical potential, Scripta Materialia, Vol 65 (2011), p.39742 39 Trn Minh Hong, Cụng ngh m in, Nxb Khoa hc v K thut, H Ni, 1998, p 217 128 40 L Freire, X R Novoa, M F Montemor, M J Carmezim, Study of passive film formed on mild steel in alkaline media by the application of anodic potentials, Materials Chemistry and Physics, Vol 114 (2009), p 962-972 41 S Lj Gkovic, S K Zecevic and D M Drazic, Hydrogen peroxide oxidation on passive iron in alkaline solutions, Electrochimica Acta, Vol 37 (1992), p.18451850 42 A T Kuhn and P M Wright Industrial electrochemical, Processes Elsevier Press., (1971) p153 43 M Hayes, A T Kuhn The preparation and behaviour of magnetite anodes, Journal of applied electrochemistry, 8(1978),p 327-332 44 Francois Cardarelli, Materials handbook: A concise desktop reference, Springer, 2008, p 573 45 H M Zeyada, M M Makhlouf, Role of annealing temperatures on structure polymorphism, linear and nonlinear optical properties of nanostructure lead dioxide thin films, Optical materials, vol 54 (2016), p 181189 46 J P Carr, N A Hampson, The lead dioxide electrode, Chemical Reviews, Vol 72 No.6 (1972), p 679-702 47 International Center for Diffraction Data, Powder diffraction file, alphabetical index, inorganic phases (Chemical and mineral name), USA, 1984 48 Serdar Abaci, Kadir Pekmez, Tuncer Hửkelek, Attila Yildiz, Investigation of some parameters influencing electrocrystallisation of PbO2, Journal of Power Sources, Vol 88 (2000), p 232-236 49 J P Pohl, H Richert, Electrodes of conductive metalic oxides, part A., Elsevier, Amsterdam, 1980, Chap 4, p 183-220 50 J Burbank, The anodic oxides of lead, Journal of the Electrochemical Society, Vol 106, Iss (1957), p 557 129 51 Nguyen Duc Hung, Zum kinetische verhaten der bleidioxidation durch sauerstoff in der negativen aktivmasse bleiakkumalators, Diss B T U Dersden DDR, 1985 52 A., epoocaee, coca pee yoc ca, A.H.A CCP ay, 1967 53 F A Cottonand, G Wilkenson, Advanced inorganic chemistry, 3rd Ed., Interscience Publishers, New-York, 1972, Vol I, 1048 p 54 S Ghasemi , M F Mousavi, M Shamsipur, H Karami, Sonochemical-assisted synthesis of nano-structured lead dioxide, Ultrason Sonochem., Vol 15 (2008), p 448 455 55 Xi G., Peng Y., Xu L., Zhang M., Yu W., Qian Y., Selected-control synthesis of PbO2 submicrometer-sized hollow spheres and Pb3O4 microtubes., Inorganic Chemistry Communication, Vol.7 (2004), p 607-610 56 K DE A textbook of inorganic chemistry, ninth edition, 2003, p.388 57 Amit Arora Text Book Of Inorganic Chemistry, Discovery Publishing House, 2005, p 455 58 A B Velichenko, R Amadelli, E A Baranova, D V Girenko, F I Danilov, Electrodeposition of Co-doped lead dioxide and its hysicochemical, Journal of Electroanalytical Chemistry, Vol 527 (2002), p 56 - 64 59 A B Velichenko , R Amadelli, E V Gruzdeva, T V Lukyanenko, F I Danilov, Electrodeposition of lead dioxide from methanesulfonate solutions, Journal of Power Sources, Vol 191 (2009), p 103-110 60 A B Velichenko, D V Girenko, F I Dalinov, Mechanism of lead dioxide electro-deposition, Journal of Electroanalytical Chemistry, Vol 405 (1996), p 127-132 61 Sheila M Wong, Luisa M Brantes, Lead electrodeposition from very alkaline media, Electrochimica Acta, Vol 51 (2005), p 619 - 626 130 62 N G Bakhchisaraisyan, E A Dzhafarov, The electroprecipitation of lead dioxide from alkaline plumbite solutions, Doklady akad Nauk Azerbaidzhan SSR., Vol 17 (1961), P 785-8 63 Rossano Amadelli, A B Velichenko, Lead dioxide electrodes for high potential anodic processes, Journal of Serbian Chemical Society, Vol 66 (2001), p 835 845 64 A B Velichenko, R Amadelli, V A Knysh, T V Lukyanenko, F I Danilov, Kinetics of lead dioxide electrodeposition from nitrate solutions containing colloidal TiO2, Journal of Electroanalytical Chemistry, Vol 632 (2009), p 192 196 65 Serdar Abaci, Attila Yildiz, The effect of electrocatalytic activity and crystal structure of PbO2 surfaces on polyphenylene oxide (PPO) production in acetonitrile, Turkisk Journal of Chemistry, Vol 33 (2009), p 215 - 222 66 U Casellato, S Cattarin, M Musiani, Preparation of porous PbO2 electrodes by electro- chemical deposition of composites, Electrochimica Acta, Vol 48 (2003), p 3991 - 3998 67 Shahram Ghasemi, Mir Fazllolah Muosavi, Mojtaba Shasipur, Electrochemical deposition of lead dioxide in the presence of polyvinylpyrrolidone A morphological study, Electrochimica Acta, Vol 53 (2007), p 459 - 467 68 A B Velichenko, D V Girenko, E A Gruzdeva, R Amadelli, F I Danilov, Lead dioxide electrodeposition and it application: Influence of fluoride and iron ions, Journal of Electroanalytical Chemistry, Vol 454 (1998), p 203 - 208 69 N Munichandraiah, Potentiodynamic behaviour of -lead dioxide in neutral media at positive potentials, Journal of Electroanalytical Chemistry, Vol 309 (1991), p 199-211 70 A B Velichenko, D V Girenko, F I Danilov, Electrodeposition of lead dioxide at an Au electrode, Electrochimica Acta, Vol 40 (1995), No.17, p 2803 - 2807 131 71 S Tabat, A Nowacki, B Szczesniak, Structure and properties of electrochemically active thin PbO2 films for reserve batteries, Journal of Power Sources, Vol 31, No 1-4 (1990), p 339 - 348 72 U Casellato, S Cattarin, M Musiani, Preparation of porous PbO2 electrodes by electro- chemical deposition of compozites, Electrochimica Acta, 48 (2003), p 3991 - 3998 73 G D Mcdonald, E Y Weissman, T S Roemer, Lead - fluroboric acid battery, Journal of the Electrochemical Society, Vol 119 (1972), Iss 6, p 660 - 663 74 N Belhadj Tahar, A Savall, A comparison of different lead dioxide coated electrodes for the electrochemical destruction of phenol, Journal of New Materials for Electrochemical Systems, Vol (1999), No.1, p 19-26 75 M Ghaemi, E Ghafouri, J Neshati, Influence of the nonionic surfactant Trion X100 on electrocrystallization and electrochemical performance of lead dioxide electrode, Journal of Power Sources, Vol 157 (2006), Iss 1, p 550 - 562 76 N Vatistas, S Cristofaro, Lead dioxide coating obtained by pulsed current technique, Electrochemistry Communications, Vol (2000), p 334-337 77 A B Velichenko, V A Knysh, T V Lukyanenko, Yu A Velichenko, D Devilliers, Electrodeposition PbO2-TiO2 and PbO2-ZrO2 and its physicochemical properties, Materials Chemistry and Physics, Vol 131 (2012), p 686 - 693 78 Buming Chen, Zhongcheng Guo, Hui Huang, Xianwan Yang, Yuandong Cao, Effect of the current density on electrodepositing alpha-lead dioxide coating on aluminum substrate, Acta Metallurgica Sinica (English letters), Vol 22, No (2009), p 373-382 79 Buming Chen, Zhongcheng Guo, Hui Huang, Xianwan Yan Yuandong Cao, Morphology of alpha-lead dioxide electrodeposition on aluminum substrate electrode, Transactions Nonferrous Metals Society of China, Vol 20 (2010), p 97-103 132 80 T Mahalingam, S Velumani, M Raja, S Thanikaikarasan, J P Chu, S F Wang, Y D Kim, Electrosynthesis and characterization of lead oxide thin films, Materials characterization, Vol 58, Iss 8-9 (2007), p 817-822 81 Yuehai Song, Gang Wei, Rongchun Xiong, Structure and properties of PbO2CeO2 anodes on stainless steel, Electrochimica Acta, Vol 52, Iss 24 (2007), p 7022- 7027 82 M Amjad, M Athar, I Ahmad, The anodic behaviour of mixed lead dioxide electrodes, Pakistan Journal of Science, Vol 62, No (2010), p 189-191 83 Jr William G Darland, Production of lead dioxide, Patent US 3,033,908A, (1962), p 1-2 84 Gibson Jr Fred D, Inert lead dioxide anode and process of production, Patent US 2,945,791, (1960), p.1-3 85 Akira Fukasawa, Lead dioxide electrode, Patent US 4,064,035, (1977), p 1-5 86 Alexandre Oury, Angel Kirchev, Yann Bultel, Oxygen evolution on -lead dioxide electrodes in methanesulfonic acid, Electrochimica Acta, 63 (2012), p 28-36 87 John Collins, Gareth Kear, Xiaohong Li, C T John Low, Derek Pletcher, Ravichandra Tangirala, Duncan Stratton-Campbell, Frank C Walsh, Caiping Zhang, A novel flow battery - A lead-acid battery based on an electrolyte with soluble lead(II) Part VIII The cycling of a 10cm 10cm flow cell, Journal of Power Sources, Vol 195, Iss (2010), p 1731-1738 88 V Saez, E Marchante, M I Diez, M D Esclapez, P Bonete, T LanaVillarreal, J Gonzalez Garcia, J Mostany, A study of lead dioxide electrocrystallization mechanism on glassy carbon electrodes Part I: Experimental conditions for kinetic control, Materials Chemistry and Physics, Vol 125 (2011), p 46-54 89 I Sirộs, C T J Low, C Ponce-de-Leún, F C Walsh, The deposition of nanostructured b-PbO2 coatings from aqueous methanesulfonic acid for the 133 electrochemical oxidation of organic pollutant, Electrochemistry Communications, Vol 12 (2010), 7074 90 R J Pollock, J F Houlihan, A N Bain, B S Coryea, Electrochemical properties of a new electrode material, Ti4O7, Materials Research Bulletin, Vol 19 (1984), Iss 1, p 17- 24 91 A H Ras, J F Van Staden, Electrodeposition of PbO2 and BiPbO2 on Ebonex, Journal of Applied Electrochemistry, Vol 29, No.3 (1999), p 313-319 92 D Devilliers, M T Dinh Thi, E Mahộ, V Dauriac, N Lequeux, Electroanalytical investigations on electrodeposited lead dioxide, Journal of Electroanalytical Chemistry, Vol 573, Iss (2004), p 227 - 239 93 Olga Kasian, Tatiana Lukyanenko1, Alexander Velichenko1, Rossano Amadelli, Electrochemical behavior of platinized Ebonex electrodes, International Journal of electrochemical science, Vol (2012), p 7915- 7926 94 S -Y Park, S.-I Mho, E O Chi, Y U Kwon, H L Park, Characteristics of Pt thin films on the conducting ceramics TiO and Ebonex (Ti4O7) as electrode materials, Thin Solid Films, Vol 258, Iss 1-2 (1995), p 5- 95 Jared B Leagard, The preparatory manual of black powder and pyrotechnics, Washington, first edition, p.124-129 96 Sandeep Dhameja, Electric vehicle battery system, Butterworth-Heinemann, USA, 2002, p 1-252 97 Roland M Dell, David A J Rand, Understanding battery, The Royal Society of Chemistry, Cambrigde, UK, 2001, p.1-254 98 C P Zhang, S M Sharkh, X Li, F C Walsh, C N Zhang, J C Jiang, The performance of a soluble lead acid flow battery and its comparison to a static lead -acid battery, Energy Conversion and Management, Vol 52 (2011), p.33913398 99 Fritz Beck, Paỹl Ruetschi, Rechargeable batteries with aqueous electrolytes, Electrochimica Acta, Vol 45 (2000), p 2467-2482 134 100 Michael D Gernon, Min Wu, Thomas Buszta and Patrick Janney, Environmental benefits of methanesulfonic acid Comparative properties and advantages, Green Chemistry, Vol 1, Iss.3 (1999), p 127-140 101 Philippe Perret, Zohreh Khani, Thierry Brousse, Daniel Belanger, Daniel Guay, Carbon/ PbO2 asymmetric electrochemical capacitor based on methanesulfonic acid electrolyte, Electrochimica Acta, Vol 56, Iss 24 (2011), p 8122-8128 102 R G A Wills, J Collins, D Stratton-Campbell, C T J Low and D Pletcher, Developments in the soluble lead-acid flow battery, Journal of Applied Electrochemistry, Vol 40, No.5 (2010), p 955- 965 103 Derek Pletcher, G A Wills Richard, A novel flow battery- A lead-acid battery based on an electrolyte with soluble lead(II) Part III The influence of condition on battery performance, Journal of Power Sources, Vol 149(2005), p 96-102 104 Xiaohong Li, Derek Pletcher, Frank C.Walsh, A novel flow battery - A lead-acid battery based on an electrolyte with soluble lead(II) Part VII Further studies of the lead dioxide positive electrode, Electrochimica Acta, Vol 54, Iss 20 (2009), p 4688- 4695 105 John Collins, Xiaohong Li, Derek Pletcher, Ravichandra Tangirala, Duncan Stratton Campbell, Frank C Walsh, Caiping Zhang, A lead-acid battery based on an electrolyte with soluble lead(II) Part IX Electrode and electrolyte conditioning with hydrogen peroxide, Journal of Power Sources, Vol 195, Iss (2010), p 2975-2978 106 Alexandre Oury, Angel Kirchev, Yann Bultel, Eric Chainet, PbO2/ Pb2+ cycling in methanesulfonic acid and mechanisms associated for soluble lead-acid flow battery applications, Electrochimica Acta, Vol 71 (2012), p 140- 149 107 Weissman Eugene Y., Mc Donald Guy D., Weinlein Conrad E., Electrochemical battery employing bonded lead dioxide electrode and fluoroboric acid electrolyte, US Patent 3,770,507 (1973); C.A., Vol 80, 1974, P33 297g 135 108 C Ponce de Leon, A Fras Ferrer, J Gonzalez Garca, D A Szanto, F C Walsh, Redox flow cells for energy conversion, Journal of Power Sources, Vol 160, Iss.1 (2006), p 716-732 109 S Tabat, A Nowacki and B Szczesniak, Structure and properties of electrochemically active thin PbO2 films for reserve batteries, Journal of Power Sources, Vol 31, No 1-4 (1990), p 339-348 110 N A Hampson, Babkova N V., Electrodeposition of lead dioxide from a fluorosilicic acid electrolyte, Tr Ural'sk politekhn In-ta, (1975), p 82-6; C.A., Vol 85, 200041f 111 R Narayan,B Viswanathan, Chemical and electrochemical energy system, Universities Press, 1998, p.125 112 N A Hampson, C J Bushrod, The discharge capacity of the lead-lead dioxide couple in fluoboric and hydrofluosilicic acid, Journal of Applied Electrochemistry, Vol (1974), p 1-6 113 Hong Nhõm, Húa hc cỏc nguyờn t, Nh xut bn i hc Quc gia H Ni, 2004, p 186-188 114 Tsuda, K Naru, A.Fujimori, K Siratori, Electronic conduction in oxides, second edition, Springer, 2000, p.243 115 Jie Chen, Kelong Huang, Suqin Liu, Hydrothermal preparation of a protective Fe3O4 film on Fe foil, Corrosion Science, Vol 50 (2008), p 19821986 116 J Wietlant, V Goossens, R Hausbrand, H Terryn, Electronic properties of thermally formed thin iron oxide film, Electrochimica Acta, Vol 52 (2007), p 7617-7625 117 R L Kurtz, J Karunamuni, and R L Stockbauer, Synthesis of epitaxial Fe3O4 films on Cu(001), Physical Review B, Vol 60, Iss 24-15 (1999), R16342 118 Huanan Duan, Xiangping Chen, Boquan Li, Jianyu Liang, Growth morphology study of cathodically electrodeposited Fe3O4 thin films at elevated temperatures, China Materials Research Bulletin, Vol 45 (2010), p 16961702 136 119 Benyang Wang, Qifeng Wei, Shiliang Qu, Synthesis and characterization of uniform and crystalline magnetite nanoparticles via oxidation-precipitation and modified co-precipitation methods, International Journal of electrochemical science, (2013), p 3786 3793 120 Hingliang Zhu, Deren Yang, Luming Zhu, Hydrothermal growth and characterization of magnetite (Fe3O4) thin film, Surface and Coating Technology, Vol 201 (2007), p 5870-5874 121 Alona Gabrene, Janina Setina, Inna Juhnevica and Gundars Mezinskis, Stabilization of magnetite nanoparticles by encapsulation into the silica matrix, Journal of Chemistry and Chemical Enginneering, Vol 8(2014), p 42-46 122 J Sun, Zh Wang, Y Wang, Y Zhu, K Wei, T Shen, F Li, Synthesis, characterization and magnetoresistance properties study of magnetite thin films by electroless plating in aqueous solution, Vacuum, Vol 86 (2011), p 461-465 123 T D Burleigh, P Schmuki, and S Virtanen, Properties of the nanoporous anodic oxide electrochemically grown on steel in hot 50% NaOH, Journal of The Electrochemical Society, Vol 156, Iss (2009), C45-C53 124 T D Burleigh, T C Dotson, K T Dotson, S J Gabay, T B Sloan, and S G Ferrell, Anodizing steel in KOH and NaOH solutions, Journal of The Electrochemical Society, Vol 154, Iss 10 (2007), C579-C586 125 S P Sena, R A Lindley, H J Blythe, Ch Sauer, M Al-Kafarji, G A Gehring, Investigation of magnetite thinfilms produced by pulsed laser deposition, Journal of Magnetism and Magnetic Materials, Vol 176, Iss 2-3 (1997), p 111-126 126 J.-Y Lee, B.-C Kang, D.-Y Jung, and J.-H Boo, Selective growth of iron oxide thin films using the combined method of metal-organic chemical vapor deposition and microcontact printing, Journal of Vacuum Science and Technology B, Vol 25, No.4 (2007), p 1516-1519 127 Nguyn c Hựng, Ngun in húa hc, cỏc c tớnh v ng dng k thut quõn s, K thut Quõn s, s 1(1977), tr.26-34 137 128 Phm Quang nh, Nghiờn cu quỏ trỡnh hỡnh thnh anot t dung dch nitrat lm in cc tr v cht oxi húa, Lun phú tin s khoa hc hoỏ hc, Vin K thut Quõn s / B Quc phũng, H Ni, 1994 129 Chu Th Thu Hin, Trn Trung, V Th Thu H, Nghiờn cu nh hng ca pH v hm lng NaCl ti kh nng oxi húa Phenol s dng in cc Ti/SnO2-Sb2O/PbO2, Húa hc 2014, s 6(2014), tr.784-788 130 Chu Th Thu Hin, Trn Trung, V Th Thu H, Nguyn Ngc Phong, nh hng ca nhit phõn hy cỏc mui n thnh phn v hỡnh thỏi b mt in cc Ti/SnO2 - Sb2O3/PbO2, Khoa hc v Cụng ngh, s 1(2015), tr.105-114 131 Chu Th Thu Hin, Nghiờn cu ch to, kho sỏt c tớnh in húa ca in cc Ti/SnO2- Sb2O3/PbO2 dung dch cú cha hp cht hu c, Lun ỏn tin s húa hc, Vin Húa hc, (2014), tr 1-129 132 inh Th Mai Thanh, Nguyn Th Lờ Hin, Nghiờn cu cu trỳc lp PbO2 kt ta in húa trờn nn titan, Tp Khoa hc v Cụng ngh, 44, s 2, (2006), tr 38-43 133 inh Th Mai Thanh, Phm Th Nm, Nguyn Th Thu Trang, Th Hi, Nghiờn cu la chn iu kin ti u tng hp PbO2 trờn thộp khụng r 304 bng phng phỏp dũng ỏp t, Tp Húa hc, 48 (2010), tr 313-318 134 Nguyn Thu Phng, Phm Th Nm, inh Th Mai Thanh, ng dng lp ph PbO2 trờn nn thộp khụng r 304 lm anụt tr cho quỏ trỡnh bo v catụt s dng dũng ngoi mụi trng t, Tp Khoa hc v Cụng ngh, 50, s (2007), tr 385 395 135 inh Th Mai Thanh, Mai Xuõn Hng, ng V Minh, Nghiờn cu quỏ trỡnh tng hp in húa v tớnh cht húa lý ca in cc xỳc tỏc Co-PbO2, Tp Khoa hc v Cụng ngh, 44(5), 2006, tr 77-82 136 Bui Hai Ninh, Phan Thi Binh, Mai Thi Thanh Thuy, Vu Huu Hieu, Study on structure and discharge ability of lead dioxide synthesized on the stainless steel by the pulse galvanostatic method, VAST-Proceeding International Scientific 138 Conference on Chemistry for Development and Intergration, Hanoi, 2008, p.1049-1055 137 Phan Th Bỡnh, Bựi Hi Ninh, Tớnh cht in húa ca compozit PbO2-PANi tng hp bng phng phỏp xung dũng, Tp Húa hc, 47(6B), 2009, tr 138142 138 Phan Thi Binh, Nguyen Xuan Truong, Mai Th Thanh Thuy, Detection ability of nitrite on the PbO2 electrode synthesized by electrochemical method, Tp Hoỏ hc, vol 47(6B), 2009, p 131-136 139 Lờ T Hi, Trng Cụng c, Trn Vn Thm, Nghiờn cu quỏ trỡnh in kt tinh PbO2 trờn nn graphit bng phng phỏp oxy húa anot ion Pb2+ dung dch Pb(NO3)2, Tp Khoa hc v Cụng ngh, i hc Nng, s 5(28), 2008, tr 69- 75 140 Trnh Xuõn Sộn, Trng Th Hnh, Nguyn Th Bớch Lc, Trn Quc Tu, Nghiờn cu ch to in cc PbO2/Ti v tớnh cht in hoỏ ca chỳng mụi trng cht in ly, Tp Húa hc, 45, s 5, (2007), tr 575 - 579 141 R E Kirk, and D F Othemer (Edited by), Encyclopendial of chemical technology, The Interscience Encyclopedia, INC., New York, Vol 8, p 61-62 142 H M Rietveld, A profile refinement method for nuclear and magnetic structures, Journal of Applied Crystallography, Vol (1969), p 65-71 143 Rodriguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction, Physica B: Condensed Matter, Vol 192(12), 1993, p 5569 144 Sibel Barỗ, Feride Ulu, Heikki Sọrkkọ, Anatholy Dimogloand Mika Sillanpọọ Electrosynthesis of Ferrate (VI) ion Using High Purity Iron Electrodes: Optimization of Influencing Parameters on the Process and Investigating Its Stability, International Journal of Electrochemical science, (2014), p.3099 3117 139 145 A A A Darwish, E F M El-Zaidiac, M M El-Nahassc, T A Hanafy, A A Al-ZubaidDi, Electric and electrical conductivity studies of bulk lead (II) oxide (PbO), Journal of Alloys and Compounds, 589(2014), p 393398 146 Rossano Amadelli and A B Velichenko, Lead dioxide electrodes for high potential anodic processes, Journal of Serbian Chemical Society, 66 (11-12), 2001, p 835-845 140 DANH MC CC CễNG TRèNH KHOA HC CễNG B Nm 2013-2015 Ngụ Th Lan, Doón Anh Tỳ, inh Th Mai Thanh, Tng hp v nghiờn cu hỡnh thỏi cu trỳc, tớnh cht ca mng Fe3O4 trờn nn thộp bng phng phỏp dũng ỏp t, Tp Húa hc 5(ABC) 2013, p 701-705 Ngụ Th Lan, Doón Anh Tỳ, inh Th Mai Thanh, Tng hp v nghiờn cu hớnh thỏi cu trỳc, tớnh cht cu mng Fe3O4 to thnh trờn nn thộp bng phng phỏp oxi húa húa hc, Tp Húa hc 54(1) 2015, p 79-83 Ngụ Th Lan, Doón Anh Tỳ, Nguyn Vn K, inh Th Mai Thanh, Tng hp v nghiờn cu hỡnh thỏi, tớnh cht ca lp ph PbO2 kt ta in húa trờn nn thộp mm v kh nng ng dng lm in cc pin chỡ d tr, Tp Húa hc 53(3) 2015, p 341-347 Ngụ Th Lan, Doón Anh Tỳ, Tụ Thanh Loan, inh Th Mai Thanh, nh hng ca mt dũng, nng chỡ nitrat v nhit ca dung dch in ly n hỡnh thỏi, cu trỳc ca lp PbO2 kt ta in húa trờn vt liu nn thộp, Tp Húa hc 54(1)2016, p 1-6 Ngụ Th Lan, Doón Anh Tỳ, Lng Trung Sn, inh Th Mai Thanh, nh hng ca hỡnh thỏi, cu trỳc pha ca lp PbO2 kt ta in húa trờn nn thộp n kh nng lm vic va in cc PbO2 pin chỡ d tr,Tp Húa hc 54(3)2016, p 321-326 Ngụ Th Lan, Doón Anh Tỳ, on Tin Phỏt, inh Th Mai Thanh, So sỏnh kh nng phúng in ca cp in cc Pb-PbO2trong dung dch axit metasunfonic v axit florosilixic, Tp Húa hc54(5) 2016, p 542-548 Doón Anh Tỳ, Ngụ Th Lan, inh Th Mai Thanh, Bng c quyn sỏng ch: Quy trỡnh sn xut in cc dng ca pin chỡ d tr nng lng cao S 15371, ngy cp bng 11/4/2016 ... ĐÀO TẠO VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ …… ….***………… NGÔ THỊ LAN NGHIÊN CỨU CHẾ TẠO ĐIỆN CỰC CHÌ DIOXIT TRÊN NỀN THÉP OXI HÓA BẰNG PHƯƠNG PHÁP KẾT TỦA ĐIỆN HÓA, ĐỊNH HƯỚNG ỨNG. .. cực dương cho nguồn điện chì dự trữ Nội dung luận án: Nghiên cứu oxi hóa thép 08K phương pháp hóa học phương pháp điện hóa Nghiên cứu yếu tố ảnh hưởng đến trình kết tủa điện hóa PbO2 thép, thép. .. đioxit thép phương pháp kết tủa điện hóa, định hướng ứng dụng làm điện cực dương nguồn điện đặt với mục tiêu nội dung sau: Mục tiêu luận án: Tổng hợp điện hóa PbO2 thép đáp ứng yêu cầu làm điện cực