NEARLY 10 years have passed since the first edition of this book. Much progress has been made during the past decade, especially in high resolution gammaray spectrometry using.semiconductor detectors. The increasing efficiency and the improving energy resolution made the scientists realize that they had at hand a new and beautiful research tool. Improved.amplifying and analyzing equipment were necessary to realize the full abilities of high resolution detectors.
APPLIED GAMMA-RAY SPECTROMETRY BY C E CROUTHAMEL Argonne National Laboratory, U.S.A SECOND E D I T I O N COMPLETELY REVISED AND E N L A R G E D BY F ADAMS AND R DAMS Institute of Nuclear Sciences, Ghent State University, Belgium P E R G A M O N PRESS Oxford ã New York ã Toronto Sydney ã Braunschweig Pergamon Press Offices: U.K U.S.A Pergamon Press Ltd., Headington Hill Hall, Oxford OX3 OBW, England Pergamon Press Inc., Maxwell House, Fairview Park, Elmsford, New York 10523, U.S.A CANADA Pergamon of Canada Ltd., 207 Queen's Quay West, Toronto 1, Canada AUSTRALIA Pergamon Press (Aust.) Pty Ltd., 19a Boundary Street, Rushcutters Bay, N.S.W 2011, Australia FRANCE Pergamon Press SARL, 24 rue des Ecoles, 75240 Paris, Cedex 05, France WEST GERMANY Pergamon Press GmbH, 3300 Braunschweig, Postfach 2923, Burgplatz 1, West Germany Copyright (C) 1970 F Adams and R Dams All Rights Reserved No part of this publication may he reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of Pergamon Press Ltd First edition 1960 Second revised and enlarged edition 1970 Reprinted 1975 Library of Congress Catalog Card No 79-114847 Printed in Great Britain by Biddies Ltd., Guildford, Surrey ISBN 08 006888 X PREFACE TO THE SECOND EDITION 10 years have passed since the first edition of this book Much progress has been made during the past decade, especially in high resolution gamma-ray spectrometry using semiconductor detectors The increasing efficiency and the improving energy resolution made the scientists realize that they had at hand a new and beautiful research tool Imư proved amplifying and analyzing equipment were necessary to realize the full abilities of high resolution detectors Like the previous edition, the new one is primarily meant for experimentalists Chapter contains the various decay processes and the possible interaction mechanisms of gamma radiation with matter Chapters 2, and deal with properties and fabrication of respecư tively scintillation detectors, semiconductor detectors, and proportional gas counters Chapter includes the description of basic equipment, i.e amplifiers, analyzers, special spectrometer arrangements, and detector shielding Energy and time resolution is treated in Chapter 6, whereas Chapter deals with quantitative calibration The quantitative and qualitative interpretation of the spectra is treated in Chapter The last chapter describes the analytical applications of gamma-ray and X-ray spectrometry in tracer studies, activaư tion analysis, fission product studies, and X-ray fluorescence analysis Chapters 3, and are entirely new, while the other chapters were extended and brought up to date Appendix II is extended with the gamma-ray spectra of 46, mainly short-lived or neutron deficient, isotopes Appendix III contains about 220 gamma-ray spectra taken with a lithium drifted germanium detector The calculated intrinsic efficiencies for sodium iodide crystals are provided in Appendix IV, while a short compilation of internal conversion coefficients is given in Appendix V The tabulations of the characteristic X-ray energies (Appendix I) and of the nuclear data by photon energy and half-life sequences (Appendix VI) have been supplemented by a sequence of precisely determined photon energies (Appendix VII) We are deeply indebted to Professor Dr J Hoste, Director of the Institute for Nuclear Sciences, Radio- and Analytical Chemistry Division, for his whole-hearted support and valuable advice and suggestions We gratefully acknowledge the help of Dr A Speecke for reading portions of the manuscript and offering many valuable suggestions During the preparation of the manuscript we have enjoyed many discussions with friends and colleagues We should like to thank, particularly, P de Regge, J P Francois, J Fuger, J I Kim, and R Van Inbroukx for providing us with a number of pure gamma sources For the preparation of Appendices II, III, and VII, numerous irradiations were performed with the Thetis reactor and with the linear electron accelerator, both at the Institute of Nuclear Sciences, Ghent We are grateful to all those in charge of the exploitation of these machines and especially to Dr A Speecke and Ir K Kiesel We are grateful to Miss M Helsen and Mrs J GorleeZels for preparing the numerous drawings and for their unfailing help in the preparation of the manuscript We thank those who allowed us to use data from their work We made every endeavor to acknowledge this help in the text NEARLY Ghent, Belgium F xi ADAMS, R DAMS PREFACE TO THE FIRST EDITION book is the outgrowth of the rapidly increasing and widespread application of gammaray spectrometry to many fields other than nuclear physics Chemists, biologists, engineers, and other research workers applying this valuable tool will face the task of interpreting the gamma-ray spectra Each radioactive nuclide and detector combination will present a virtually unique situation with regard to scattering, energy resolution, and relative intenư sities in the various energy regions of the spectrum The accurate qualitative interpretation of a gamma-ray spectrum requires a careful evaluation of the source and intensity of the various peaks which may be generated in the spectrum for a given experimental situation The discussion in Chapters and deal with the intrinsic and extrinsic variables which affect the observed gamma-ray and X-ray spectra Most of the effects of these variables are illustrated in Appendix II Appendices I and IV are tabulations of the characteristic X-ray energies in keV and of the nuclear data by photon energy and half-life sequences These data are designed to aid in the rapid qualitative interpretation of the gamma-ray spectra The quantitative calibration of the spectra is treated in Chapter with supplementary data in Appendix III Finally, some of the most widely utilized applications are discussed in Chapter 4, with particular emphasis given to activation analysis The authors are indebted to many colleagues at the Argonne National Laboratory for support and assistance in preparing the manuscript, in particular, Richard C Vogel and Victor H Munnecke for their continued support and valuable suggestions in examining the manuscript, also to Peter Kafalas, Ellis P Steinberg, Donald Engelkemeir, Harold A May and Charles E Miller for reading portions of the manuscript and offering valuable criticisms Willard H McCorkle and Joseph I McMilien have given invaluable assistance with the many irradiations at CP-5 The authors are also indebted to Dorothy A Carlson and her co-workers in the Graphic Arts Department for preparing the numerous drawings; Gene H McCloud, Allen A Madson, and Marion Crouthamel for their many hours of assistance in the checking and preparation of the manuscript THIS Lemont, Illinois C E CROUTHAMEL INTRODUCTION SCINTILLATION counting, one of the oldest radiation detection techniques, has gone through several developmental phases The visually detected scintillations of energetic alpha partiư cles absorbed in thin films of zinc sulfide crystals were first noted by Sir William Crookes and also independently by Elster and Geitel in 1903 Crookes and Regener had developed an early apparatus, the spinthariscope and its' associated counting techniques, by 1908 The spinthariscope was made up of a microscope of magnification about thirty with an objective of large numerical aperture, a zinc sulfide copper-activated screen, a source of alpha particles, and a gas-tight box which could be evacuated and in which these compoư nents as well as scatterers and absorbers could be mounted In the 25 years following its development the spinthariscope produced many valuable contributions to the field of nuclear research Its application made possible detailed studies of the scattering of alpha particles by thin foils and thus first indicated the presence, and then the size and charge, of the atomic nucleus Also, the first evidence of artificial disintegration of stable isotopes was obtained by Rutherford with this instrument in 1919 Anyone familiar with present-day instrumentaư tion will appreciate the high quality of the data gathered by means of this early instrument An account and analysis of the numerous pioneering experiments which employed the spinthariscope is given by Rutherford et /.(1) The visual scintillation counter became obsolete in the 1930's, and the next 20 years were characterized by the rapid growth and development of electronic counting techniques Gas-filled ionization chambers in which the incident charged particles generate ion pairs were used as the basic detector With these gas-filled systems there are three well-defined operating ằmethodsthe ionization detector, the proportional counter, and the GeigerMỹller counter In the first method the ionization chamber consists of two electrodes in a gas medium When the chamber is placed in a radiation field the gas is ionized If a steady voltage is also applied to the electrodes, the ion pairs separate under the influence of the electric field and current will flow in an external circuit connected to the ionization chamber As the chamber voltage is increased, this current quickly reaches a limiting value which is proư portional to the rate of production of the ion pairs In order to measure this saturation current, however, it is necessary to use extremely sensitive current measuring devices Probably the most reliable and sensitive current measuring device applied to ionization chambers is the vibrating reed electrometer The second operating method of the gas-filled systems, the proportional counter, uses a cylindrical or spherical chamber with a positive electric field originating on a thin wire electrode Multiplication of the signal occurs in the vicinity of the wire where the electric field intensity is great enough to cause the incoming primary electrons to produce miniature avalanches ửf electrons The gas multiplication is limited so that the final pulse produced is proportional to the number of primary electrons generated along the track of the incident ionizing particle The proportional counter requires carefully designed amplifiers and very stable, noise-free high voltage and power supplies This counter is now generally accepted for alpha and beta counting as one of the most useful and widely applied systems in the XV XVI INTRODUCTION laboratory The stability, low dead time, and adaptability to various window, geometry, and gas-filling arrangements have established the superiority of the proportional counter over the Geiger-Mỹller counters The proportional counter will be of particular interest as a low energy X-ray spectrometer and an important supplement to the scintillation spectroư meter in the energy region of the characteristic X-rays (i.e 1.0 to 100 keV) The third mode of operation of the gas-filled systems, the Geiger-Mỹller counter, has the same general physical design as the proportional counter, but is considerably less verư satile As the voltage on the center wire electrode is increased above the proportional counter region, the pulse height becomes independent of the initial ionizing event A satisư factory Geiger-Mỹller counter will have an operating plateau of 100 or more volts in a plot of the counting rate versus applied voltage The dead time and output pulse are someư what dependent on the physical size of the counter In a typical counter, the dead time will be several hundred microseconds, and the output pulses will be several volts With the development of sensitive photomultiplier tubes, the scintillation counter has regained its former prominent place in nuclear physics research Scintillation counters are now being utilized widely in chemical research, geology, medicine, routine analysis, and in many commercial applications Curran and Baker(2) in 1944 first used the current generated by a photomultiplier with a zinc sulfide screen for the measurement of the intensity of alpha emitting sources Blau and Dreyfus(3) in 1945 made a similar application Coltman and Marshall(4) and Kallmann(5) in 1947 first counted the individual light pulses Kallmann also pointed out that naphthalene was transparent to its own light radiation, and thick crystals could be used to absorb completely and count beta particles This work marks the beginning of the rapid development of the scintillation detector into the present scintillation spectroư meter Deutsch(G) confirmed and extended Kallmann's observations on naphthalene, and Bell(7) showed that anthracene gave larger pulses than naphthalene Hofstadter(8) in 1948 applied sodium iodide-thallium activated crystals to the detection of gamma radiation This crystalline material has remained for almost 20 years the most important detector medium for gamma-ray scintillation spectrometry At present the scintillation spectrometer is not a high resolution device Little improveư ment in resolution has been made in the past 15 years Some major advancement has been realized with respect to the efficiency in converting kinetic energy of electrons to light in the crystal and in the conversion of light back to electrons at the photocathode Other scintillators such as cesium iodide-thallium activated and cesium iodide-sodium activated crystals with increased efficiencies have been developed Higher photocathode efficiency has been achieved by the use of improved multialkali cathodes Also the uniformity of the photocathodes utilized has been improved An interesting parallel development of the crystal conduction counter occurred in the same period that marked the second appearance of the scintillation counter The crystal conduction counter started with the work of Van Heerden.(9) In this counter, following the interaction of the incident radiation with the crystal, an electric pulse is sensed directly at a crystal boundary The energy transfers which must be made in the scintillation countư erkinetic energy of electrons to light, collection of the light and its transfer back to electrons at a photocathodeare eliminated Nevertheless, the inherently better energy resolution of the crystal conduction counter has never been achieved in practice Formidable experimental difficulties have prevented the general application of this type of counter The subject has been reviewed by Hofstadter/ 10, n ) Work with germanium and silicon solid-state detectors has now experimentally achieved the superior resolution expected of these devices Initially, high resolution was possible only INTRODUCTION XV11 if the energy of the interacting particle was deposited in a very small volume close to a diffusion junction or surface barrier This then limited the usefulness of these devices to heavy particles Resolution of alpha spectra with silicon devices has by far surpassed that possible in the Frisch grid gas spectrometer In the solid-state detector the number of latticehole electron pairs generated per unit alpha particle energy is approximately ten times that of the ion pairs generated in an argon gas proportional counter This corresponds to about eV per pair compared to about 30 eV in a gas For solid-state devices to be applicable to gamma radiation counting, a different apư proach than the introduction of junctions in the semiconductor was necessary Intensive reư search first with silicon then with germanium resulted in detectors suitable for gamma and X-ray spectrometry having resolving powers at low photon energies intermediate between those of the proportional counter and crystal dispersion techniques At high gamma energies the resolution of germanium detectors is unprecedented Germanium and silicon counters can be achieved by the compensation of the impurities in the semiconductor, either using a mobile impurity such as lithium, or by a nuclear compensation of the material Present development is centered around purifying germanium up to the point where a diffused juncư tion should provide depletion layers thick enough for gamma detection with a fair efficiency Other semiconductors such as cadmium telluride are used as counter materials Other materials than silicon or germanium, could either provide still better energy resolution or eliminate some of the technical difficulties associated with present-day gamma detectors, namely the low temperature operation and the temperature sensitivity During the last 11 years the sensitive volume of germanium detectors increased from a fraction of a cubic centimeter to more than 100 cm3/15) These largest detectors allow gamma-ray spectrometry with efficiencies comparable to the efficiency of small sodium iodide scintillation detectors During the same period, the resolving power of the semiconư ductor gamma detectors increased drastically through an elimination of amplification and detector noise sources Some of the most recent advances have been in the electronics, and in this aspect the field is changing rapidly Multichannel analyzers are now relatively routine instruments in the laboratory A wide selection of multichannel pulse height analyzers is available commerư cially The application of transistors and printed circuit techniques has reduced the size and power requirements of these instruments Semiconductor gamma- and X-ray spectrometry did completely change the work in such fields as activation analysis and various tracer applications High resolution X-ray counting can be capable of nondispersive fluorescence analysis This method is now intenư sively studied and its importance as a novel analytical technique is now fully realized REFERENCES RUTHERFORD, SIR E.> CHADWICK, J., and ELLIS, C D., Radiations from Radioactive Substances, Camư bridge University Press, 1951 Reissue of 1930 edition with corrections CURRAN, S C , and BAKER, W R., Rev Sei Instr 19, 116 (1948) (From a Manhattan Project Report, Radiation Lab., Univ of California, Nov 1944.) BLAU, M., and DREYFUS, B., Rev Sei Instr 16, 245 (1945) COLTMAN, J W., and MARSHALL, F W., Phys Rev., 72, 528A (1947) KALLMANN, H., Natur Technik, July 1947 DEUTSCH, M., Massachusetts Institute of Technology Technical Report No 3, Dec 1947 BELL, P R., Phys Rev 73, 1405L (1948) xviii 10 11 INTRODUCTION HOFSTADTER, R., Phys Rev 74, 100 (1948); 75, 796 (1949); 79, 389 (1950) VAN HEERDEN, P J., The Crystal Counter, Utrecht doctoral dissertation, 1945 HOFSTADTER, R., Nucleonics (4), (1949) HOFSTADTER, R Ibid (5), 29 (1949) 12 FRECK, D V and WAKEFIELD, J., Nature 193, 669 (1962) 13 WEBB, P P., and WILLIAMS, R L., Nucl Instr 22, 361 (1963) 14 TAVENDALE, A J., and EWAN, G T., Nucl Instr 25, 185 (1963) 15 HENCK, R., SIFFERT, P., and COCHE, A., Nucl Instr 60, 343 (1968) CHAPTER I N T R I N S I C VARIABLES logical separation of all the variables which affect the production of an elecư trical pulse in a spectrometer is difficult Even for fundamental studies of a detector system it is virtually impossible to observe separately many of the variables The process associated with the absorption of radiation will vary with the sensitive counting medium (sodium ioư dide-thallium activated crystals, semiconductor detectors, or proportional gas counters) and with the radioactive source to be measured The response of the detector system will vary with the different decay scheme variables such as the type of emission, i.e alpha, beta, or gamma radiation and the energy of the particles or photons Different factors are involved in the absorption processes of these radiations, and it is convenient to consider them separately Therefore, insofar as they affect the gamma-ray spectrum and its interpretation, we have classified as intrinsic variables the following: AN ENTIRELY Types of emission and decay schemes of unstable nuclei The interaction processes of radiation with matter T Y P E S OF E M I S S I O N AND DECAY S C H E M E S OF UNSTABLE NUCLEI The interpretation of gamma-ray spectra must begin with some understanding of the various decay processes This is essential for simple identification of the radioactive species as well as for quantitative assay The various ways in which a nucleus in an excited state may return to the ground state are summarized with the generally accepted symbols in Table 1.1 TABLE 1.1 DECAY PROCESSES OF THE NUCLIDES Transformation Spontaneous fission Neutron emission Alpha emission Positron emission Electron capture Beta emission Gamma emission Isomeric transition Internal conversion Symbol SF n a ò+ EC ò~ y IT IC, e~ Atomic number of daughter from parent Z Various fission products Z Z-2 Z-l Z-l Z+l z z z APPLIED GAMMA-RAY SPECTROMETRY For each radioactive nuclide the possible ways of de-excitation are summarized in the decay scheme A complete decay scheme includes all the modes of decay of the nuclide, their abundance, the energies of the radiations, the sequence in which the radiations are emitted, and the measurable half-lives of any intermediate states When possible spin and parity assignments of the various energy levels involved are also included There exist several useư ful compilations of the decay schemes of the nuclides.(1_4) It must be emphasized that the various nuclear transitions mentioned in the decay schemes and in Table 1.1 represent only the primary processes, and that the complete degraư dation of the energy of the nuclear transition will usually include a sequence of secondary events Some of these are generally known as bremsstrahlung radiation, characteristic X-rays, Auger electrons, pair formation, and annihilation photons These secondary events will also involve the external atoms in the environment which may or may not be part of the detector system A GAMMA EMISSION AND INTERNAL CONVERSION Gamma-ray emission is the most obvious way for an excited nucleus to lose energy A gamma transition can be defined as any de-excitation of an excited nuclear state to a state of lower excitation but with the same Z and A Excited states appear as the result of (1) alpha or beta decay processes, (2) nuclear reactions, (3) direct excitation from the ground state, and (4) gamma transitions from higher excited states Gamma radiation is the result of electromagnetic effects which may be thought of as changes in the charge and current disư tributions in nuclei Because charge distributions give rise to electric moments and current distributions to magnetic moments, gamma-ray transitions are classified as electric (E) and magnetic (M) Transitions are further characterized according to the angular momentum (in units of hjln) which the gamma-rays carry off With increasing angular momentum change the transition probability decreases rapidly The accepted nomenclature refers to radiation carrying off / = 1, 2, 3, 4, 5, , units hjln as dipole, quadrupole, etc.;, radiations The radiation field around a system of oscillating charges can always be expressed as an expansion in spherical harmonics of orders 1, 2, 3, Furthermore, the successive terms in this multipole expansion correspond to the photon carrying 1, 2, 3, etc., units of angular momentum The shorthand notation for electric (or magnetic) 2l pole radiation is El (or Ml); thus E\ means electric dipole; Ml means magnetic quadrupole, etc A number of selection rules for gamma transitions between an additional state of spin /,ã and a final state of spin Ig allow only some well-defined transitions Gamma-ray emission may be accompanied or even replaced by another process, the emission of internal conversion electrons Internal conversion comes about by the purely electromagnetic interaction between the nucleus and extranuclear electrons This process can be visualized according to the quantum theory of radiation as a direct coupling of a bound atomic electron and a nuclear multipole field The result of this is the emission of an electron with a kinetic energy equal to the difference between the energy of the nuclear transition involved and the binding energy of the electron in the atom The internal conư version electrons, examined in an electron spectrograph, show a line spectrum with lines corresponding to the gamma transition energy minus the binding energies of the K-, L-y M-, shells in which conversion occurs The ratio of the rate of the internal conversion process to the rate of gamma emission (or the ratio of the number of internal conversion electrons to the number of gamma quanta emitted) is known as the internal conversion 738 APPLIED GAMMA-RAY SPECTROMETRY N E U T R O N C A P T U R E F O R M E D N U C L I D E S IN ORDER OF A T O M I C N U M B E R (cont.) Isotope Production Tm Tm (/i, 2ô) Tm 170 Tm 169 (/i, y) Y bi Yi 6b fa y ) Y b1 7b Y fa y ) Y b1 7 7b Y (/f> ? ) L u1 m L1 u7 fa ó) l 7u ( ^ L ó ) L u1 7 Lu 177m Lu 176 (/i, y) Hf1 Hf174 (ậ, y) J|fl79m Hf 178 (/i, y) Hf 179 (ậ, y) J-Jfl80m Hf181 180 T a1 m Hf (ô, y) W 180 (/!,/>) Ta 181 (ii, 2ô) Ta 181 (/i, y) T a1 Ta 181 (ii, y) W1 W1 W 180 in, y) W 184 (ô, y) W 18e (ô, y) Re Re 185 (ậ, In) Re Re 185 (/i, y) R e1 8 m Re (n, y) 'J1a180m ^yl85 Main energies keV (intensity) Other energies keV 99.4 (20); 184.3 (46); 198.3 (100); 447.1 (60); 631.5 (26); 741.0 (22); 815.7 (76); 1276.8(10) 84.4 63.5(100); 93.6(6); 110.0(40); 118.6(5); 130.7(25); 177.0(50); 197.8(85); 261.2(4); 307.5 (24) 113.5(30); 137.4(2); 144.7(6); 282.6(60); 396.1 (100) 121.6(15); 138.3(10); 150.3(100); 1079.8(30); 1240.9 (30) 88.3 113.0 (60); 208.4 (100); 250.1 (2) 105.4(21); 113.0(35); 121.5(10); 128.6(25); 153.1 (26); 174.4 (19); 204.3 (22); 208.4 (100); 228.5 (57); 281.8(21); 319.2(16); 327.7(27); 378.8(44); 414.1 (26); 418.8 (32) 89.6(4); 343.6 (100); 432.8 (2); 229.5 (1) 160.6 (10); 214.3 (100) 57.5(50); 93.4 (18); 215.3 (86); 332.2 (100); 443.1 (83) 133.1 (50); 345.7 (16); 482.2 (100) 93.1; 103.4 80; 347; 422; 546; 645; 720; 730; 821; 830; 915; 1014 146.7(94); 171.7(100); 184.9(55); 318.3(12) 65.7(8); 67.7(85); 100.3(40); 113.8(8); 152.4(35); 156.3(12); 179.5(16); 198.4 (8); 222.3 (35); 229.4 (20); 264.1 (22); 1121.2(100); 1157.3(7); 1188.8(45); 1221.6(95); 1231.0(50); 1257.5 (9) 136.0(55); 151.7(100); 125.5 72.3 (43); 134.3 (35); 479.3 (85); 551.4(18); 618.1(23); 685.7 (100); 772.9 (14) 111.2 (33); 792.0 (90); 894.3 (33); 902.8 (100) 122.6(6); 137.0(100); 641.5(0.5) 92.4; 105.8 356 others 252 899; 941; 1028; 1109; 1119; 1149; 1230; others 72; 321 137; 146; 147; 160; 172; 177; 195; 214; 233; 250; 269; 297; 305; 312; 341; 368; 385; 466; others others 501 136; 476; 615 85; 116; 927; 1002; 1273; 1289; 1342; 1374; 1387; 1453; others 115; 207; 239;; 246; 511; 625; 745; 864; 879 99; 209; 245; 252; 291; 641; 768; 1022 769 739 APPENDIX VII NEUTRON CAPTURE FORMED NUCLIDES IN ORDER OF ATOMIC NUMBER (cont.) Isotope Production Main energies keV (intensity) Re 8 Re (n, y) s1 Os184 , y) Os 190m Os 189 (ô, y) Os Os Os 190 (ô, y) Os 192 (n, y) J r192m j r192 Ir 191 (n, y) Ir 191 (/i, y) I f1 Ir 193 (/i, y) 155.1 (100); 478.0 (7); 633.0 (9); 672.5(1); 829.5(3); 931.3(4) 162.6(1); 645.8(100); 717.1 (6); 874.8(9); 880.0(10) 186.7(80); 361.2(100); 616.4(100) 129.4 139.0(80); 280.3(35); 321.5(35); 387.5(35); 460.4(100); 557.7(50) 56.8 295.8(35); 308.4(35); 316.5 (100); 467.9 (65); 588.3(8); 604.2 (15); 612.3 (10) 328.0(100); 644.6(25); 938.4(10); 293.6(20) 172.4 (25); 178.9 (25); 219.9 (4); 269.3(12); 350.7(60); 359.7 (60); 409.1 (50); 456.0(12); 539.0(100) 99.0 346.3 77.7* (100); 191.4(10) 185.9; 246.5; 316.9; 493.5; 542.8; 714.3 333.0(26); 355.7(100); 425.9(15) 411.8(100); 675.9(1) 158.3 (100); 208.2 (25) 133.9 77.6* (100); 191.4(2) 158.3; 373.6 279.1 203.8 440.2 (100); 509.8 (3); 521.5 (4) 279.1 (100); 401.4 (4) 86.6; 162.3; 169.3; 459.2; 491.1; 190 p t1 Pt p^l95m Pt 194 (ô, y) Pt 196 (//, y) Pt 196 (ậ, y) Pt 198 (ô, y) p^l97m p t1 p{199 (n, ) A u1 Hg (ằ,/>) A u1 Au (ậ, y) Pt199(/i,y,/?-) Hg (ậ, y) Hg (if, y) Hg (n, y) Hg 202 (II, y) Hg 204 (, y) Tl 203 (II, 2ô) Pb 204 (n, In) Th 232 (ậ, y) A u1 9 197m Hg Hg Hg 9 m Hg 203 Hg 205 *T,J202 P b2 T h2 3 499.4; 670.0 Pa 233 Th232(i*,y,Ê-) u237 U (ậ, In) ^J239 N p2 U (ậ, y) U238(*,y,Ê-) 299.9 (15); 311.8 (100); 340.3 (4); 375.2; 398.2; 415.6 59.8(90); 164.6(10); 208.0 (100); 267.6 (2); 332.4 (2) 74.7 106.1 (100); 228.2 (60); 277.5(65); 315.7(7); 334.1 (10) Other energies keV 453; 486; 1132; 1151; 1175; 1193; 1307; 1459; 1609; 1786; 1801 126; 234; 592 503; 510 107; 181; 219; 251; 289; 298; 362; 484; 533 206; 374; 416; 484; 785; 884 621; 1149; 1183; 1209; 1469; 1512; 1623 130; 190; 602; 624 130 269 475; 791; 968 759; 1093 1088 165 269 960 681 57; 131; 143; 153; 179; 190; 195 202; 210; 257; 360; 377; 433 441; 448; 514; 527; 553; 563 574; 596; 600; 610; 643; 678 717; 725; 740; 758; 764; 805 816; 875; 890; 935; others 59; 75; 87; 104; 271 370 62; 181; 210; 254; 285 740 APPLIED GAMMA-RAY SPECTROMETRY NEUTRON CAPTURE FORMED NUCLIDES IN ORDER OF PHOTON ENERGY Energy (keV) 46.5 49.1 51.4 56.8 57.4 57.5 57.5 57.7 57.8 58.2 58.4 59.8 60.5 61.2 61.6 63.5 65.5 65.7 66.0 67.7 69.6 69.6 72.3 74.7 74.9 76.3 77.6 77.6* 77.7* 80.2 80.2 80.6 80.6 80.8 84.4 86.6 86.6 87.0 87.7 88.0 88.0 88.0 88.1 88.3 89.6 91.4 92.4 93.1 93.2 93.2 93.4 Isotope Pb 210 T b1 R h1 m I r1 Ce 143 JJ^180m Co m T b1 J r192m Dy Gd 159 U237 E u1 5 Sm 145 Sb 122m Y b1 Pm 151 T a1 Ge T a1 Gd 153 Sm 153 \ó187 |J239 Tb 161 Sb 122m Rh 104m Hg Pt 197 J131 Ce 144 Ho 6 Ho 6 m Ba 133 Tm 170 Eu 155 T h2 3 T b6 As 7 Pd 109 Ag 109m Cd 109 Tb 161 Lu 176m Hf175 Nd R e1 8 m r p a180m Cu A gi o : m J_|fl80m Intensity Half-life 100 100 100 - 25 50 100 11 100 100 90 100 100 100 30 85 20 43 100 70 100 100 100 10 100 14 52 100 100 - 37 100 100 100 i.5 100 100 - 70 100 18 22 yr 7.2 da 4.4 1.4 33.0 hr 5.5 hr 10.5 7.2 da 1.5 144.4 da 18.0 hr 6.75 da 1.7 yr 340 da 3.5 30.6 da 27.5 hr 115.1 da 79 115.1 da 236 da 47.1 hr 24.0 hr 23.54 7.2 da 3.5 4.4 65 hr 20.0 hr 8.08 da 285 da 26.9 hr 30 yr 7.5 yr 129 da 1.7 yr 22.4 73 da 38.7 hr 13.5 hr 40 sec 470 da 7.2 da 3.71 hr 70.0 da 11.1 da 18.7 8.15 hr 61.6 hr 43 sec 5.5 hr Energy (keV) 93.6 94.6 95.9 96.7 97.2 97.5 99.0 99.4 100.3 102.2 103.0 103.2 103.2 103.4 104.2 105.3 105.4 105.8 106.1 108.2 108.2 109.3 110.0 111.2 111.6 113.0 113.0 113.5 113.8 114.6* 116.4 116.7 118.6 121.1 121.5 121.6 121.8 121.8 I 121.8 121.9 122.6 123.1 124.0 124.2 125.5 127.3 127.4 127.4 128.6 129.4 130.0 Isotope Intensity Half-life Yb Dy Se 79m Se 75 100 100 100 30.6 da 2.36 hr 3.91 121 da 4.4 236 da 4.1 da 85 da 115.1 da 3.73 56.8 236 da 47.1 hr 8.15 hr 21.9 1.7 yr 155 da 18.7 2.35 da 14.6 1.25 58.0 da 30.6 da 30 da 7.8 hr 6.75 da 155 da 101 hr 115.1 da 1.8 hr 12.0 7.8 hr 30.6 da 121 da 155 da 1.9 hr 9.35 hr 12.2 yr 2.2 270 da 3.8 da 16 yr 7.8 hr 11.5 da 70.0 da 14.0 3.15 hr 36.0 hr 155 da 14.6 da 45 sec R h1 m Gd 153 pjl95m Tm T a1 161 Gd S e8 l m 153 Gd Sm 153 ^õốộ Sm 155 Eu 155 L u1 7 m Re 8 m N p2 B a1 m Dyl65m ó 6125ộỗ Yb Re Er 171 Lu 177 L u1 7 m Yb T a1 149 Nd Nd Er 171 Yb Se 75 L u1 7 m Yb 7 Eu 152m Eu 152 Zn 71 Co 57 Re Eu 154 Er 171 Ba 131 ^185 T ci o i 134m Cs Ni Lu 177m Os 191 R h1 m - 20 40 17 100 75 100 - 100 63 21 - 100 100 - 100 40 33 37 60 35 30 88 100 28 10 15 70 60 - 100 100 100 100 100 16 25 100 100 741 APPENDIX VII NEUTRON CAPTURE FORMED NUCLIDES IN ORDER OF PHOTON ENERGY (cont.) Energy (keV) 130.0 130.7 133.1 133.4 133.7 133.9 134.3 136.0 136.0 136.3 137.0 137.4 138.3 138.4 139.0 139.0 139.8 140.6 140.6 141.2 142.5 144.7 145.4 146.7 149.7 150.3 150.8 151.1 151.7 152.4 153.1 153.7 155.1 156.0 156.3 158.3 158.3 158.4 158.4 158.8 159.8 159.8 160.2 160.6 161.9 162.1 162.3 162.6 164.6 164.9 165.8 Isotope Intensity Half-life Energy (keV) R u1 100 25 50 100 43 4.5 hr 30.6 da 44.6 da 285 da 11.5 da 24.0 hr 24.0 hr 121 da 145 da 270 da 3.8 da 101 hr 1.9 hr 54 12.0 31.5 hr 49 sec 66 hr 6.04 hr 21.9 20.0 sec 101 hr 32.5 da 16.2 24.8 1.9 hr 48 70.0 145 da 115.1 da 155 da 1.25 16.7 hr 1.8 hr 115.1 da 42.0 3.15 da 14 da 1.1; (1.9 hr) 104 da 54 sec 3.43 da 39.4 19.0 sec 17.5 sec 38.7 hr 22.4 93.6 da 6.75 da 3.73 140.0 da 165.8 168.1 169.3 170.0 171.4 171.7 172.1 172.4 172.9 174.4 175.3 176.2 177.0 177.0 178.9 179.5 180.9 184.2 184.3 184.3 184.9 185.9 186.2 186.7 188.9 190.2 191.4 191.4 192.0 192.5 194.5 197.2 197.4 197.8 198.3 198.4 198.6 202.4 203.8 204.3 208.0 208.2 208.4 208.4 211.4 211.4 212.3 214.3 215.3 215.5 215.5 Yb 169 H f1 Ce 144 Ba 131 Hg m W1 Se 75 W1 57 Co Re Yb Yb 7 l n1 m Nd Os Ge 75m Mo 9 99 Sm 155 Sc 46m Yb Ce 141 T a1 m T e1 Yb 7 Cdlllm S r8 m W1 T a1 L u1 7 m J)yl65m R e1 8 Nd T a1 i 199m Hg Au 9 Sn 117m J n117(m) Te 123m Ge 7 m Sc 47 Sn 123 Jjfl79m Se 7 m As 7 Th 233 Os 185 JJ237 Gd Ce 139 35 96 55 15 100 10 16 80 100 100 100 100 100 94 100 100 30 100 35 26 100 25 12 100 100 100 100 100 100 10 100 10 10 100 Isotope Intensity Half-life Ba 139 70 60 83 27.5 hr 22.4 9.45 2.81 da 16.2 5.5 hr 3.0 da 47.1 hr 155 da 21.1 2.0 yr 30.6 da 27.5 hr 3.0 da 115.1 da 66 hr 61.6 hr 30 yr 85 da 16.2 30.0 Ra 226 series 10.0 4.75 50 da 65 hr 20.0 hr 14.6 45.1 da 11.3 hr 73 da 29 sec 30.6 da 85 da 115.1 da 79 3.14 hr 5.6 155 da 6.75 da 3.15 da 155 da 6.75 da 11.3 hr 1.8 hr 154 da 19.0 sec 5.5 hr 54 sec 11.3 hr p m1 Th 233 Mg 27 In 111 Y a182m p dl l l m p t1 Sm 153 L u1 7 m Ga Sb 125 Yb p m1 p t1 T a1 99 Mo Cu Holeem T m1 68 -pa182m P{199 Ra 2 O s1 m P(J109m I n114m Hg p t1 Mo 1 Fe 59 Ge 7 Tb O 19 Yb Tm T a1 Ge ó90ộ Hg 205 L u1 7 m JJ237 Au 9 L u1 7 m Lu 7 Ge 7 Nd j e1 m JJfl79m J|fl80m Ge 7 m Ge 7 0.6 100 100 90 25 0.3 19 100 23 50 25 25 16 100 100 46 55 - 80 100 100 10 100 - 17 100 85 100 12 100 100 22 100 25 100 100 100 100 100 100 86 100 100 742 APPLIED GAMMA-RAY SPECTROMETRY NEUTRON CAPTURE FORMED NUCLIDES IN ORDER OF PHOTON ENERGY (cont.) Energy (keV) 215.8 215.8 215.8 216.1 219.9 222.3 224.9 225.8 228.2 228.5 229.4 229.5 231.5 231.5 235.7 238.6 238.8 240.0 240.2 242.0 244.6 245.4 245.4 245.4 245.6 246.5 249.7 250.1 253.9 255.2 255.6 261.2 263.2 264.1 264.5 264.6 264.6 267.6 268.1 269.3 269.6 271.0 273.3 275.1 275.4 275.8 275.9 276.4 277.5 278.5 279.1 Isotope Intensity Half-life Energy (keV) Ru Tbieo Ho 6 m Ba 131 100 14 100 2.88 da 73 da 30 yr 11.5 da 3.0 da 115.1 da 25 18.0 hr 2.35 da 155 da 115.1 da 70.0 da 70 33.0 hr 90 hr Th 232 series 38.7 hr 1.8 hr 27.5 hr Ra 226 series 12.2 yr 7.4 da 48 2.81 da 21.9 30.0 38.7 hr 6.75 da 17.0 hr 115 da 12 30.6 da 4.5 hr 115.1 da 11.3 hr 121 da 79 6.75 da 28.7 hr 3.0 da 1.8 hr 9.35 hr 3.0 hr 11.1 da 27.5 hr 18 38.9 hr 7.5 yr 2.35 da 72 46.9 da 279.1 279.6 279.5 280.3 280.4 281.8 281.8 282.6 283.3 284.3 286.1 290.0 293.1 293.6 295.4 295.8 295.8 298.6 299.9 302.8 305.3 306.2 306.8 307.5 308.1 308.4 311.5 311.8 312.9 314.6 315.2 315.7 316.5 316.9 317.1 318.3 319.1 319.2 319.4 320.0 320.0 i 321.5 325.1 326.3 327.7 328.0 328.6 332.0 332.2 332.4 333.0 p t1 T a1 Se 83 Gd N p2 Lu 7 m T a1 H f l 75 85m Sr Ce 143 N b9 m Pb 2 As 7 Nd Pm15X Pb Eu 152 A g m Cdlllni In 111 Sm 155 Pt 9 As 7 Lu 7 Zr Sn 113 Nd Yb Ru T a1 Ge 7 Se 75 Ge TJ237 Ba 135m Pt Nd Eu 152m C d1 m Nd 147 p m1 Se 81 B a1 3 m Ba 133 N p2 129 Te H g2 - 35 50 60 57 20 100 - 100 15 15 _ 28 10 100 100 - 15 30 100 28 22 100 100 100 100 12 57 0.6 30 100 100 10 65 - 100 Isotope Intensity Half-life Pb Se 75 Dy 100 40 17 35 33 21 s1 Ho 6 m Lu 7 m As 7 Yb Gd J131 Pm Se 81 Ce 143 I r1 Pb Er I r1 Tb Pa 233 Ba 133 Gd Rh Tc 1 Yb Er I r1 109 Pd Pa 233 K 42 Gd I n1 m N p2 I r1 199 Pt Ru 105 Ta 182m Rh L u1 7 m 147 Nd Cr 51 T i5 Q S193 Ru Nd Lu 7 m I r1 140 La S n1 m JJflSOm TJ237 A u1 60 12 100 60 100 20 - 42 35 97 15 20 27 100 24 100 35 10 100 37 - 100 - 10 12 100 16 12 100 100 35 16 27 100 38 100 100 26 52.1 hr 121 da 2.36 hr 31.5 hr 30 yr 155 da 38.7 hr 101 hr 3.73 8.08 da 53.1 hr 18 33.0 hr 19.7 hr Ra 2 series 7.8 hr 74.4 da 73 da 27.0 da 7.5 yr 18.0 hr 35.3 hr 14.0 30.6 da 7.8 hr 74.4 da 13.5 hr 27.0 da 12.52 hr 3.73 1.9 hr 2.35 da 74.4 da 30.0 4.5 hr 16.2 35.3 hr 155 da 11.06 da 27.8 da 5.79 31.5 hr 2.88 da 1.8 hr 155 da 19.7 hr 40.27 hr 9.5 5.5 hr 6.75 da 6.2 da 743 APPENDIX VII NEUTRON CAPTURE FORMED NUCLIDES IN ORDER OF PHOTON ENERGY (cont.) Energy (keV) 334.1 336.6 340.3 340.3 341.9 343.6 344.2 344.2 345.7 346.3 347.5 350.7 352.0 355.6 355.7 356.0 356.6 359.7 360.4 361.0 361.2 361.7 363.5 364.5 366.3 366.5 367.3 373.1 373.6 375.2 376.5 378.8 383.8 387.5 388.2 388.5 391.4 396.1 398.2 400.7 401.4 409.1 410.8 411.0 411.8 414.1 415.6 416.4 417.0 417.4 418.8 Isotope Intensity Half-life N p2 10 100 100 100 100 100 20 16 100 60 2.35 da 4.5 hr 27.5 hr 27.0 da 7.4 da 70.0 da 12.2 yr 9.35 hr 44.6 da 88.0 18.0 hr 3.0 da Ra 2 series 17.0 hr 6.2 da 7.5 yr 25 3.0 da 3.73 105 da 10.0 2.36 hr 18.0 hr 8.08 da 66 hr 2.56 hr 11.3 hr 11.3 da 42.0 27.0 da 22.0 155 da 7.5 yr 31.5 hr 13.1 da 2.84 hr 104 101 hr 27.0 da 121 da 52.1 hr 3.0 da 30 yr 12.2 yr 2.70 da 155 da 27.0 da 11.3 hr 54 105 da 155 da In 115m P m1 p a2 3 Agin H f1 152 Eu Eu 152m H f1 p^l97m Gd p t 191 p b 214 Zr Au Ba 133 Se 83 p t 191 Gd T e 12 7m Os 190m Dy Gd J131 Mo99 Ni Ge 7 Ba 131 J|gl99m p a 233 pdm L u1 7 r n Ba 133 s1 J126 Sr 87m Jn113m Y b1 p a2 3 Se 75 p b 203 p t 191 Ho 6 m Eu 152 Au L u1 7 m p a2 3 Ge 7 I n1 m T e1 7m L u1 7 m 50 100 100 100 60 100 15 100 30 100 100 20 15 16 - 75 44 11 35 100 100 100 100 - 20 50 14 100 26 25 35 100 32 Energy (keV) 423.5 425.9 427.8 432.8 433.8 438.7 440.1 440.2 442.7 | 443.1 443.9 446.0 447.1 452.4 ! 456.0 459.2 459.5 459.5 460.4 463.1 464.6 467.9 469.6 475.1 478.0 479.3 479.3 480.1 482.2 484.9 486.8 489.5 490.5 491.1 491.2 492.5 492.7 493.5 | 496.3 497.0 499.4 ! 506.0 507.5 507.9 509.8 510.0 511.0 Isotope Intensity Half-life Nd 1 Au Sb 125 28 15 100 30 100 100 100 83 18 15 60 24 12 H f1 A g1 Z n6 m 147 Nd -JJ202 J128 JJfl80ro Eu 152 Pm Tm T e1 p t1 T h2 3 129 Te " Te - 100 Sb 125 31 Cs 132 I r1 65 R u1 17 Rh (Rh m )100 R e1 8 ^187 85 óốốộỗ 100 Gd H f1 100 Cd 1 m 18 48 La 140 Ca -Sc Ce 143 s1 T h2 3 J126 Cd 115 Te 131 p t 199 Ba 131 R u1 T h2 3 101 Mo Te 121 Zr T 12 Se 83 Cu Br 80 Co As Zr 15 60 28 100 60 24 100 60 1.8 hr 6.2 da 2.0 yr 70.0 da 2.4 13.8 hr 11.1 da 12.0 da 25.4 5.5 hr 12.2 yr 27.5 hr 85 da 24.8 3.0 da 22.4 33.5 da 72 31.5 hr 2.0 yr 6.2 da 74.4 da 4.5 hr 210 da (2.5 yr) 16.7 hr 24.0 hr 3.14 hr 3.73 44.6 da 44 da 40.27 hr 4.7 d a - da 33.0 hr 22.4 13.1 da 53 hr 24.8 30.0 11.5 da 38.9 da 22.4 14.6 17.0 da 17.0 hr 12.0 da 25 12.8 hr 17.6 71.3 da 17.5 da 78 hr 744 APPLIED GAMMA-RAY SPECTROMETRY NEUTRON CAPTURE FORMED NUCLIDES IN ORDER OF PHOTON ENERGY (cont.) Energy (KeV) Isotope Intensity Half-life Na 22 Zn 65 Ni R n1 ( m ) 511.6 511.9 514.0 515.5 520.8 520.9 521.5 526.3 527.7 529.3 529.5 529.6 531.0 539.0 540.4 542.8 544.9 545.7 551.4 552.9 554.3 555.8 555.8 555.8 557.7 558.1 558.2 559.2 563.2 564.0 565.8 565.9 569.3 570.5 572.9 580.0 583.1 585.0 588.3 588.6 590.8 590.9 591.5 595.8 600.4 601.1 Zn 71 R U1 _ (Rh 106 ) Sr 85 J3yl65m As 7 Br 83 YJ202 J128 Cd 115 Br 83 Gd 161 Ho e m Nd p t1 Nd p[199 T ci o i 165 Dy W1 117 In Br 82 Rb m Rh 104 100 100 30 4.5 100 100 14 45 100 26 18 80 100 100 R h1 m Os 193 Ge 7 I n114m As 76 Cs 134 Sb 122 Se 81 Dy Cs 134 Ho 6 m T e1 pdm ^1208 Ba 131 I r1 Zr 89m Mo 101 Pm 149 Eu 154 As Sb 125 Ga 72 50 18 100 100 45 35 100 100 100 80 12 100 53 2.58 yr 245 da 36.0 hr 210 da (2.5 yr) 2.2 1.02 yr (30 sec) 64 da 1.25 38.7 hr 2.33 hr 12.0 da 25.4 2.3 da 2.33 hr 3.73 30 yr 11.06 da 3.0 da 1.8 hr 30.0 14.0 2.36 hr 24.0 hr 1.1 hr 35.87 hr 1.02 44 sec 4.4 31.5 hr 11.3 hr 50 da 26.3 hr 2.07 yr 2.75 da 18 2.36 hr 2.07 yr 30 yr 17.0 da 22.0 Th 232 series 11.5 da 74.4 da 4.4 14.6 53.1 hr 16 yr 17.5 da 2yr 14.3 hr Energy (KeV) 602.1 602.6 604.2 604.7 606.6 608.4 608.5 609.3 610.2 612.3 616.4 617.0 618.1 619.0 620.0 620.5 622.3 626.6 630.1 631.5 632.9 633.0 633.1 634.6 635.8 636.4 640.4 641.5 644.6 645.7 645.8 649.3 654.4 654.8 657.0 657.8 658.1 661.6 661.6 664.4 665.7 666.3 667.7 670.0 670.5 672.5 675.9 676.0 677.9 Isotope Intensity T e1 100 15 100 18 1 Sb 124 I r1 Cs 134 Sb 125 T i5 As Bi 214 R u1 I r1 O s1 m Br 80 W1 Br 82 Ba 131 Dy 165 R u1 (Rh 106 ) T ci o i 72 Ga T m1 68 A g1 Re 8 Dy As Sb 125 J131 Br 80 Re Ir 194 Sb 124 Os 185 Se 81 T e1 Nd As Ag 110m Nb97 Ba 137ra Cs 137 (Ba 137m ) Ce 143 Br 80 J126 Cs 132 Th 233 Ho 6 m Re 8 Au R u1 110m Ag - 10 100 100 23 50 30 24 26 100 18 24 36 12 0.5 25 100 15 28 14 100 100 100 100 15 15 100 100 1 10 10 Half-life 24.8 60.9 da 74.4 da 2.07 yr 2.0 yr 5.79 17.5 da Ra 226 series 38.9 da 74.4 da 10.0 17.6 24.0 hr 35.87 hr 11.5 da 2.36 hr 1.02 yr (30 sec) 14.0 14.3 hr 85 da 2.42 16.7 hr 2.36 hr 17.5 da 2.0 yr 8.08 da 17.6 3.8 da 19.7 hr 60.9 da 93.6 da 18 24.8 1.8 hr 26.3 hr 253 da 72.1 2.6 26.6 yr (2.6 min) 33 hr 17.6 13.1 da 6.2 da 22.4 30 yr 16.7 hr 2.70 da 4.5 hr 253 da 745 APPENDIX VII NEUTRON CAPTURE FORMED NUCLIDES IN ORDER OF PHOTON ENERGY (cont.) Energy (keV) 685.7 692.5 695.5 695.8 696.4 697.5 698.3 702.5 704.3 706.4 711.6 714.3 715.2 717.1 717.8 718.1 721.6 722.1 722.8 723.1 724.0 724.3 725.1 727.3 739.9 741.0 743.3 743.5 752.1 753.3 754.0 756.6 763.9 765.8 766.8 767.5 768.1 772.9 776.6 778.5 778.6 786.5 792.0 795.8 796.0 798.7 802.0 810.3 810.3 810.5 Isotope Intensity Half-life \yi87 Rhl02(m) 100 45 100 100 12 Br 82 Nb Br 80 Ag 110m Ho 6 m 33 100 20 65 122 Sb Mo 101 ^129111 p r1 4 p^l99 Dy Os 185 Se 83 Pm 151 Ce 143 J131 Sb 124 Eu 154 Zr 95 R u1 J n114m Bi 212 Mo 9 T m1 68 Nb m J128 Ho 6 m J126 C e1 m Zr 95 Ag 110m Nb R h1 ( m ) As Bi 214 W1 82 Br Mo 9 Eu 152 Ga Re Cs 134 Er 171 Se 83 Cs 134 Co H o1 6 m Ga 72 - 18 30 20 17 10 65 100 40 15 22 100 16 10 100 80 24 100 0.2 14 100 12 45 90 90 20 100 66 24.0 hr 2.75 da 14.6 33.5 da 17.3 210 da (2.5 yr) 35.87 hr 2.03-10 yr 17.6 253 da 30 yr 30.0 2.36 hr 93.6 da 25 27.5 hr 33 hr 8.08 da 60.9 da 16 yr 65 da 4.5 hr 50 da Th 232 series 66 hr 85 da 60 sec 25.4 30 yr 13.1 da 55 sec 65 da 253 da 35 da 210 da (2.5 yr) 26.3 hr Ra 226 series 24.0 hr 35.87 hr 66 hr 12.2 yr 14.3 hr 38 da 2.07 yr 7.8 hr 25 2.07 yr 71.3 da 30 yr 14.3 hr Energy (keV) 815.5 815.7 818.0 818.8 827.8 828.0 829.5 831.0 834.1 834.8 841.6 844.0 846.9 860.5 863.5 867.5 871.1 871.1 874.8 876.0 879.4 880.0 884.5 889.4 894.3 898.0 898.0 902.8 909.2 910.1 911.0 928.5 931.3 934.1 934.6 937.2 938.4 963.5 964.1 965.8 968.8 969.9 983.5 995.3 997.2 1005.5 1012.4 1014.1 1037.4 1039.0 1039.4 Isotope Intensity Half-life La 140 44 76 23* 30 45 12 100 100 100 100 100 40.27 hr 85 da 253 da 54 35.87 hr 18 16.7 hr 30 yr 14.3 hr 291 da 9.35 hr 9.45 2.58 hr Th 232 series 71.3 da 26.3 hr 6.6 2.03 10 yr 93.6 da 4.5 hr 73.0 da 93.6 da 253 da 83.9 da 38 da 17.8 104 da 38 da 78 hr 2.2 Th 232 series 5.79 16.7 hr 44 da 10.1 da 253 da 19.7 hr 9.35 hr 12.2 yr 73.0 da Th 232 series 4.5 hr 44 hr 2.36 hr 24.8 16 yr 14.6 9.45 44 hr 5.1 21.1 T m1 ^gllOm I n1 m 82 Br Se 81 Re 8 H o1 6 m 72 Ga Mn 54 Ê ui m Mg 27 Mn 56 TJ208 Co As Nb m Nb Os 185 R u1 Tb Os 185 Ag 110m Sc 46 Re Rb 8 ó88 Re Zr 89 Zn 71 Ac 2 T i5 188 Re Cd 115m Nb m Ag 110m I r1 152m Eu Eu 152 Tbleo Ac 228 R u1 48 Sc Dy T e1 Eu 154 Mo 1 Mg 27 Sc 48 Cu 6 Ga - 1.2 0.2 100 100 9, 100 10 74 100 33 63 100 100 100 - 100 100 33 10 90 55 70 - 100 50 100 40 98 100 100 746 APPLIED GAMMA-RAY SPECTROMETRY NEUTRON CAPTURE FORMED NUCLIDES IN ORDER OF PHOTON ENERGY (cont.) Energy (keV) 1043.9 1047.0 1050.5 1050.5 1050.6 1076.6 1079.8 1085.8 1086.0 1097.1 1098.6 1115.4 1115.4 1120.0 1120.3 1121.2 1136.0 1140.5 1147.8 1147.9 1157.3 1173.1 1177.6 1180.7 1188.8 1199.7 1203.5 1215.8 1221.6 1228.8 1231.0 1240.9 1256.6 1256.7 1257.5 1260.4 1266.2 1271.6 1274.3 1273.3 1274.5 1276.5 1276.8 1289.9 1291.5 1293.4 1293.6 1296.9 1300.0 Isotope Intensity Half-life Energy (keV) Br 82 37 12 100 35.87 hr 210 da (2.5 yr) 21.1 1.02 yr (30 sec) 14.3 hr 18.66 da 1.9 hr 11.3 hr 12.2 yr 54 45.1 da 245 da 2.56 hr Ra 2 series 83.9 da 115.1 da 6.2 da 2.75 da 24.8 17.0 hr 115.1 da 5.24 yr 73 da 12.0 115.1 da 73 da 17.5 da 26.3 hr 115.1 da 26.3 hr 115.1 da 1.9 hr 2.75 da 17.6 115.1 da 14.3 hr 2.62 hr 73 da 16.0 yr 6.56 2.58 yr 14.3 hr 85 da 44 da 45.1 da 54 110 4.7 da-3.43 da 72 sec 1311.9 1311.6 1315.0 1317.2 1325.5 1332.4 1332.4 1345.5 1362.3 1364.8 1367.5 1368.4 1378.1 1378.4 1384.0 1388.1 1388.9 1407.5 1434.4 1436.8 1458.9 1460.7 1474.7 1481.7 1488.4 1488.9 1507.7 1508.6 1524.7 1532.7 1575.5 1576.1 1580.5 1588.3 1595.3 1595.4 1596.2 1633.1 1642.0 1690.7 1778.9 1810.7 1836.1 1836.1 1860.4 1997.4 2090.6 2112.0 2112.8 2118.6 R b102(m) Ga R u1 (Rh 106 ) Ga Rb86 Y b1 7 Ge 7 Eu 152 In 1 m Fe Zn e Ni B i2 Sc 46 T a1 Cs 132 Sb 122 T e1 97 Zr T a1 Co T b1 151 Nd T a1 T b1 74 As As 76 T a1 76 As T a1 Y b1 7 122 Sb Br 80 T a1 72 Ga Si 31 T b1 154 Eu Al 29 Na 22 Ga T m1 115m Cd Fe Tj,116m A 41 Ca -Sc In 114 100 30 45 70 100 100 60 100 100 0.5 10 60 100 48 22 45 0.5 10 95 2.5 50 30 1 100 23 100 100 100 10 45 80 100 100 90 100 Isotope Intensity Half-life T b1 100 38 100 100 73 da 44 hr 9.35 hr 35.87 hr 60.9 da 10.5 5.24 yr 12.8 hr 17.0 hr 2.07 yr 11.3 hr 15 hr 26.9 hr 36.0 hr 253 da 22.0 9.35 hr 12.2 yr 3.76 60.9 da 22.0 1.25xl09yr 35.87 hr 2.56 hr 17.2 22.0 54 4.4 12.52 hr 14.6 19.2 hr 3.0 hr 26.9 hr Th 232 series 16 yr 40.27 hr 14.3 hr 11 sec 37.29 60.9 da 2.31 2.58 hr 17.8 104 da 14.3 hr 3.0 hr 60.9 da 54 2.58 hr 17.8 Sc 48 E u1 m Br 82 Sb 124 Co m Co Cu Zr Cs 134 Ge 7 Na Ho 6 Ni ^pllOm pdin Eu 152m Eu 152 y52 Sb 124 P di ii K4 Br 82 Ni Pr 144 P d m I nl i e m Z r8 m K 42 Mo 1 p r142 Cd 117m Ho166 Ac 2 Eu 154 La 140 Ga p20 Cl 38 Sb 124 Al Mn Rb88 ó88 Ga C d1 m Sb 124 I nl i e m Mn Rb88 90 18 100 22 60 90 100 60 100 28 100 20 60 100 45 100 - - 10 100 100 100 50 100 25 100 100 - 20 15 4.5 747 APPENDIX VII NEUTRON CAPTURE FORMED NUCLIDES IN ORDER OF PHOTON ENERGY (cont.) Energy (keV) 2166.8 2185.8 2201.4 2425.8 2507.4 2614.3 Isotope Intensity Half-life Cl38 70 50 14 19 p r1 4 72 Ga AI29 Ga72 JJ208 37.29 17.2 14.3 hr 6.56 14.3 hr Th232 series Energy (keV) Isotope Intensity Half-life 2677.6 2753.6 3083 3102.4 4071 Rb 88 Na24 Ca49 S37 Ca49 11 100 100 100 10 17.8 15 hr 8.8 5.05 8.8 ISOTOPES POSSIBLY PRESENT IN THE BACKGROUND Isotope Production Main energies keV (intensity) Natural Fission 1460.7 511.9(100); 622.3(30); 1050.5 (5) Cs137 (Ba137m) Ce144 Pr144 Fission 661.6 Fission Fission ^208 p b2 Th232 Th232 Th232 Th232 80.2(10); 133.4(100) 696.4(100); 1488.4(20); 2185.8(50) 583.1; 860.5; 2614.3 238.6 727.3 911.0; 968.8; 1588.3 K4 R u1 (Rh106) B i2 Ac228 series series series series Pb210 Pb214 Ra226 series Ra226 series Ra226 series 46.5 242.0; 295.4; 352.0 609.3; 768.1; 1120.0 Ra2; Ra226 series 186.2 B i2 Other energies keV 616; 874; 1128; 1061; 1133; 1182; 1195; 1497; 1562; 1767; 1797; 1929; 1989; 2113; 2192; 2239; 2317; 2366; 2390; 2406; 278; 511; 763 300 785; 1078; 1621; 278 209; 271; 327; 338; 410; 463; 562; 773; 795; 836; 1247; 1460; 1497; 1633 258; 274; 481; 534 665; 703; 720; 785; 806; 840; 934 965; 1155; 1207; 1238; 1379 1386; 1398; 1408; 1510; 1585 1661; 1731; 1765; 1848; 2119 2204; 2293; 2447 INDEX Absolute disintegration rate 210 Activation analysis 257 absolute method 276 accuracy 289 applications 294 charged particle 269 chemical separations 281 comparators 277 detection limitssensitivity 287 general considerations 276 neutron sources 259 nondestructive 278 photon activation 268 precision 289 second-order interference 275 Amplifier 125 biased 148 Analogue-to-digital converter 137 Angular correlation of gamma-rays Angular momentum Annihilation radiation 13, 23, 228 Attenuation coefficients 15, 205 Auger electrons Autofluoroscope 306 Avalanche detectors 117 Charge carriers 75 collection 75 density 71, 73 drift length 76, 103 mean free path 76 mobility 73 recombination 75 trapping 75 velocity 71 Clean-up drift 92 Coaxial detectors 98 Coincidence anti-shield 151 delayed 166 fast-slow 163 operation of photomultipliers 50 resolving time 161 spectrometry 161 sum method 166 Compton scattering 14, 18 Computer techniques 234 Conditions for luminescence 33 Conduction band 32 Counting geometry 203 Cryostat 101, 217 Background 168 Backscatter 19, 230 Band model 31 Base line restoration 135 Beta transitions 11 Bremsstrahlung 23 Burn-up 299 Data reduction 234 Datastorage 138 Dead time corrections 141 Decay scheme Detection limit 233 Detector breakdown 88 Determination limit 233 Diffused junction detectors 77 Cadmium ratio 265 Calibration of a full-energy peak 210, 217 Camera gamma-ray 306 positron 306 scintillation 304 Canning, NaI(Tl) 38,61 Capacitance low detectors 130 of Ge(Li) detectors 97 of N-P diodes 78 Capture gamma-rays 160,270 Cesium iodide 37 Characteristic X-ray excitation 8, 10 Efficiency computed 202 experimental 210 full energy peak from absolute disintegration rates 210 full energy peak by Klein-Nishina differential cross-section 207 full energy peak, special effects in measuring 213 Ge(Li) detector 217 incident full energy peak 203 incident intrinsic 203 source full energy peak 203 source intrinsic 203 749 750 INDEX Inversion layer 95 Iodine escape peak 18, 213 Ion implantation 79 Isomeric transition Isotope dilution 251 Electron capture 12 conduction 32, 71 escape 106 Energy calibration 225 Energy resolution 178, 189, 198 Equivalent noise charge 120 Escape peak annihilation 23 detection efficiency 106, 220 iodine 18,213 Exciton 33 Fano factor 192, 198 Field effect transistor 127 noise of 127 parallel operation of 132 Field tube 112 Fission products 299 Fluorescence yield Formation of radioactive species Full energy peak 203 efficiency of 209 Jitter Leakage current 189 Least squares analysis 235, 243 Light pipe 41 Light pulser 44 Linear attenuation coefficients 15 Linearity analogue-to-digital converter 142 differential 143 Ge(Li) detectors 104 Nal(Tl) detectors 55 Line width (full width at half maximum) Lithium compensation 81, 96 diffusion 89 ion drift 82, 90 ion pairing 84 mobility 83 precipitation 86 Luminescence center 33 decay 35, 186 Luminescent materials 34 270 Gain amplifier 134 shift effects 50, 150 Gas ionization detector 69, 111 Germanium-lithium drifted detectors coaxial 98 configurations 98 control of 93 depletion layer 83 detection efficiency 104 encapsulated 102 energy resolution 189 fabrication 87 linearity 104 mounting 94 noise 189 planar 98 pulse shape 193 radiation damage 104 surface sensitivity 94 temperature sensitivity 96 thin window 100 time resolution 195 U-junction 100 High voltage supply Mass attenuation coefficient Monte Carlo method 206 Multichannel analyzer characteristics 140 dead time 141 display 139 dynamic range 146 linearity 144 memory 138 stability 144 Multiscaler 224 Mu-metal 47 149 Interaction of gamma-rays with matter Internal Bremsstrahlung 25 Internal conversion Internal pair formation 11 164 14 Negatron emission 12 Neutron generators 266 resonance 265 sources 259 spectrum 263 Noise 120, 126, 147 detector 189 photomultiplier 50 Nuclear reactions 270 Nuclear reactors 260 15 182, 193 INDEX Optical coupling 40 Organic scintillators 36 Pair internal conversion 11 Peak shape Nal(Tl) detector 209 Ge(Li) detector 242 Peak-to-total ratio 105, 205 Photoelectric effect 14, 17 Photofraction 105, 205 Photomultiplier 42 anode 45 dark noise 49 dynodes 45 gain shift 50 gain variance 179 magnetic shielding 47 noise 49 photocathode 42 photocathode uniformity 43 processing 51 single electron spectrum 187 structures 46 Photon activation 268 Photons per event in Nal(Tl) 180 Pole-zero cancellation 134 Positron emission 12, 23 Preamplifier 120 charge sensitive 120 field effect transistor 127 vacuum tube 125 voltage sensitive 120 Proportional gas counter 111 Pulser 142, 225 Pulser line width 192 Pulse shape Ge(Li) detector 194 Nal(Tl) detector 186 Pulse shaping 122 differentiation 123 integration 123 networks 133 Purity control 227 Quenching 34 Radiometrie titrations 255 Radio reagent methods 225 Radio release method 257 Reaction cross section 264 threshold 264 Reactor pulsing 263 Reflector (Nal(Tl) 38, 61, 66 Resonance integral 266 Response function 239, 241 Scattering angle 20 Compton 14, 18 elastic 14 inelastic 14 Scintillators CsI(Tl) 37 N a l 37 Nal(Tl) 36, 51 organic 36 Semiconductor capacitance 78, 81, 96 extrinsic 72 interstitial impurities 72 intrinsic 71 properties 71 resistivity 71 substitutional impurities 72 Shielding, design of 168 Signal-to-noise ratio 133 Silicon-lithium drifted detectors 108 Single channel analyzer 141 Single electron response photomultiplier 187 proportional counter 198 Sodium iodide emission spectrum 53 energy resolution 178 light pulse 186 machining 59 non-linearity 55 physical properties 51 preparation 57 pulse shape 186 scintillation decay 54 scintillation efficiency 52, 56 Source geometry 203 point 204 preparation 223 Spectrometer anti-coincidence 151 Compton 156 pair 158 sum coincidence 165 total absorption 151 Spectrum smoothing 240 Spectrum stripping 235 Stabilization equipment 144 Statistics, scintillation spectrometer 178 Substoichiometric activation analysis 254 Substoichiometric isotope dilution analysis Sum peaks coincident 7, 215, 228 random 146, 216, 229 Surface of Ge(Li) detector 94 of NaI(Tl) detector 57 752 Surface barrier contacts 99 Surface barrier detector 78 Threshold reactions 264 Time resolution Ge(Li) detector 197 Nal(Tl) detector 186 Timing crossing-over 164 leading edge 163 INDEX Transfer photon-to-photoelectron 180 variance 180 Trapping 34, 75 Two-lines method for calibration 217 Walk 163 Whole-body counting 304 X-ray spectrometry 307 nondispersive 307 OTHER TITLES IN THE SERIES IN ANALYTICAL CHEMISTRY Vol Vol Vol Vol Vol Vol Vol Vol Vol Vol Vol Vol Vol Vol Vol Vol Vol Vol Vol Vol Vol Vol Vol Vol Vol Vol Vol Vol Vol Vol Vol Vol Vol Vol Vol Vol Vol Vol Vol WEISZMicroanalysis by the Ring Oven Technique CROUTHAMELApplied Gamma-ray Spectrometry VICKERYThe Analytical Chemistry of the Rare Earths HEADRIDGEPhotometric Titrations BUSEVThe Analytical Chemistry of Indium ELWELL and GIDLEYAtomic absorption Spectrophotometry ERDEYGravimetric Analysis Parts IIII CRITCHFIELDOrganic Functional Group Analysis MOSESAnalytical Chemistry of the Actinide Elements 10 RYABCHIKOV and GOL'BRAIKHThe Analytical Chemistry of Thorium 11 CALITrace Analysis for Semiconductor Materials 12 ZUMANOrganic Polarographic Analysis 13 RECHNITZControlled-potential Analysis 14 MILNERAnalysis of Petroleum for Trace Elements 15 ALIMARIN and PETRIKOVAInorganic Ultramicronanalysis 16 MOSHIERAnalytical Chemistry of Niobium and Tantalum 17 JEFFERY and KIPPINGGas Analysis by Gas Chromatography 18 NIELSENKinetics of Precipitation 19 CALEYAnalysis of Ancient Metals 20 MOSESNuclear Techniques in Analytical Chemistry 21 PUNGOROscillometry and Conductometry 22 J ZYKANewer Redox Titrants 23 MOSHIER and SIEVERSGas Chromatography of Metal Chelates 24 BEAMISHThe Analytical Chemistry of the Noble Metals 25 YATSIMIRSKIIKinetic Methods of Analysis 26 SZABADVRYHistory of Analytical Chemistry 27 YOUNGThe Analytical Chemistry of Cobalt 28 LEWIS, O T T and SINEThe Analysis of Nickel 29 BRAUN and TệLGYESSYRadiometrie Titrations 30 RĩZIệKA and STARYSubstoichiometry in Radiochemical Analysis 31 CROMPTONAnalysis of Organoaluminium and Organozinc Compounds 32 SCHILTAnalytical Applications of 1,10Phananthroline and Related Compounds 33 BARK and BARKThermometric Titrimetry t 34 GUILBAULTEnzymatic Methods of Analysis 35 WAINERDIAnalytical Chemistry in Space 36 JEFFERY Chemical Methods of Rock Analysis 37 WEISZMicroanalysis by the Ring Oven Technique (2nd Editionlarge and revised.) 38 RIEMAN and WALTONIon Exchange in Analytical Chemistry 39 GORSUCHThe Destruction of Organic Matter 753 ... first by Segre, and later extended by others.(18) They com pared metallic beryllium-7 and beryllium-7 fluoride As beryllium-7 fluoride, the half-life 14 APPLIED GAMMA-RAY SPECTROMETRY decreases by. .. production of characteristic X-rays by beta-ray absorption, although detected easily by scintillation spectrometry, has not been described adequately in theory In X-ray spectrometry this effect may... spectra the beta rays are removed by an external absorber For beta-ray spectrometry the sodium iodide is not very useful Indeed, it would be a diffi- APPLIED GAMMA-RAY SPECTROMETRY Cs1137 30.0yr U7MeVß-o5KMeV