1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Designed synthesis of titanium organic framework for photocatalyst applycation

151 403 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Nội dung

VIETNAM NATIONAL UNIVERSITY-HOCHIMINH CITY UNIVERSITY OF TECHNOLOGY-HOCHIMINH CITY HA LAC NGUYEN DESIGNED SYNTHESIS OF NOVEL METAL–ORGANIC FRAMEWORKS FOR PHOTOCATALYST APPLICATION DOCTORAL DISSERTATION HOCHIMINH CITY 2016 VIETNAM NATIONAL UNIVERSITY-HOCHIMINH CITY UNIVERSITY OF TECHNOLOGY-HOCHIMINH CITY HA LAC NGUYEN DESIGNED SYNTHESIS OF NOVEL METAL–ORGANIC FRAMEWORKS FOR PHOTOCATALYST APPLICATION Major subject: TECHNOLOGY FOR ORGANIC COMPLEXES Major subject code: 62527505 Independent Referee 1: …………………………………………………………… Independent Referee 2: …………………………………………………………… Referee 1: ………………………………………………………………………… Referee 2: ………………………………………………………………………… Referee 3: ………………………………………………………………………… SUPERVISORS Prof Dr Nam T S Phan Dr Danh T Tong PROTESTATION I would like to protest that the research, which will be reported below, belongs to me All publications were published based on the author’s research, and the author had done the truthful science and contributed to the development progress of science Any claim and conclusion were cited by the references and documented papers The author recognized that the seriousness and authenticity need to be strongly considered Author Ha Lac Nguyen i ABSTRACT Over the past two decades, the prominent growth of Metal Organic Frameworks (MOFs), a high ordered and porous materials class had been receiving the pay attention by the research community specially Constructing by Secondary Building Units (SBUs) of metal clusters and organic linkers combination that permits the modification of resultant structural modularity for structure designing (e.g., postsynthetic modification, predesigned linker, defects chemistry) which can be tunable the structural features (e.g., pore size, porosity) to make MOFs address the environment problems as well as the targeted applications such as gas uptake, separation, catalyst, drug delivery, water treatment In term of MOFs synthesis, the plenteous chemistry of metal and controllability of organic linkers were exploited to make the uncountable amount of new MOFs material In this case, the simple solvothermal reaction or other methods (e.g., hydrothermal, solvent free, slow dispersion) was usually employed to obtain new MOFs This method for MOFs synthesis can generally predict the obtained structures based on the geometry of the metal clusters and the organic linkers guided by reticular chemistry Although predicting structures is now commonplace, a robust and modular synthetic approach to designing new MOF materials remains elusive as a result of the trial-and-error nature of crystallization processes, a lack of control over crystallization, and the regular discoveries of multiple crystalline phase products once the reaction is complete In MOF chemistry, the building block method, whereby discrete, preassembled metal oxo clusters are reacted with well-defined organic linkers, has been utilized to achieve a greater degree of control over MOF construction However, the isolation and subsequent usage of many discrete metal oxo clusters remains a significant challenge and the relatively slow kinetics originating from the association and dissociation of ligands, limits the applicability of this method Additionally, it is far from given that the desired MOF structure will be obtained as metal oxo building blocks have been observed to rearrange during the synthesis Means of overcoming this lack of total synthetic control is to take inspiration from molecular synthesis, in which certain conditions have been discovered to achieve specific end products In this contribution, we articulate a strategy for making discrete metal clusters in situ that are ii appropriately functionalized to affect imine condensation reactions, commonly used in the chemistry of covalent organic frameworks (COFs) We find that the cluster formation chemistry and that of COFs, when carried out in sequence, overcome the challenge of synthetic incompatibility The structural features of targeted material, termed MOF-901, was fully characterized powder X-ray diffraction and supplemental analyses As a result of the incorporation of Ti(IV) units, MOF-901 was proven to be photocatalytically active and was applied to the photocatalyzed polymerization of methyl methacrylate (MMA) For further investigation, the photocatalysis properties of MOF which is isoreticular to MOF-901 structure, MOF-902 was successfully synthesized by enlarging the linking unit, and applied to the application of polymerization reaction with these kinds of monomer: methylmethacrylate (MMA), benzylmethacrylate (BMA), and styrene (St) Interestingly, based on the catalysis effect of MOF-902, the molecular weight of polyMMA is as high as the value of polyMMA which is produced by MOF-901 catalyst, and the polydispersity index of polyMMA produced by MOF902 catalyst is lower than MOF-901 (1.27 compared to 1.60) Moreover, we have successfully synthesized three novel MOFs termed MOF903(Fe), MOF-904(Fe), and VNU-18(Cu) based on triangular Iron (III) cluster and extraordinary three discrete Cu(II) building units, respectively These materials were full characterized by the powder X-ray diffraction, single crystal X-ray diffraction analysis, thermogravimetric analysis, gas adsorption study MOF-904 and VNU-18 show the permanent porosity with the internal surface area in calculated of 1200 m2 g-1 and 1000 m2 g-1, respectively, which are proven by Nitrogen isotherm at 77 K at low pressure iii ACKNOWLEDGEMENTS On the way to achieve the professional skills and knowledge in the research, I had turned to different vicissitude Fortunately, I was always received the support and encouragement by many people as well as the great results from my efforts In this context, I would like to give my honest acknowledgements to all First, the acknowledgement was given to my supervisors, Prof Nam T S Phan and Dr Danh T Tong, who not only supported me from the first time I joined their group, but also lead me to another sight of science Specially, they are probably my examples due to their unexhausted contribution to the science and educational work At this time, I appreciate all Faculty of Chemistry members, University of Technology, for their strong supports during the time I have worked there I hope talking my appreciation to Prof Nhan T H Le, Dr Dung T Le, and my colleagues in Prof Nam Phan’s group Second, I am grateful to Prof Omar M Yaghi for giving me the opportunity to work in his laboratory at University of California, Berkeley That is surely a great chance I had received to open mind and build up my research thinking I strongly appreciate our visiting Professor, Dr Hiroyasu Furukawa, who directly mentors me when I turn to Center for Molecular and Nanoarchitecture (MANAR Center) as well as during my visiting time at Prof Yaghi’s group Actually, I always keep in mind trying to the research like Dr Hiroyasu Furukawa I was in the wonderful moment in Prof Yaghi’s group with my friends, colleagues, and another group member (Prof Jerrey R Long), visiting Professors from different groups I would say thank to them due to their friendship as well Third, I would give my gratitude to Dr Felipe Gándara, senior scientist in Department of New Architectures in Materials Chemistry, Materials Science Institute of Madrid, Spain I was lucky to be his co-worker when he had been in Prof Yaghi’s group before coming back to Spain In fact, my knowledge and skills in crystallography may be affected from him He did not concern to share his professional skills in crystallography technique to me when I tried to learn how to solve the crystal structure by powder X-ray diffraction as well as single crystal later I strongly appreciate all his help I also want to thank to Mr Kyle E Cordova in Prof Yaghi’s group due to his support when I was in Berkeley I am happy to work with him when he comes to MANAR Center as Global Coordinator for helping MANAR Vietnam student My gratitude is given to him not only because of his valuable discussion but also his contribution to MANAR members He really changed our mind and lead us to the research meaningfully In the site of MANAR Center, I would like to acknowledge Prof Hoang Dzung, Prof Hoang T Nguyen because of their entirely encouragement Their valuable discussion would go along with me during the time iv I would say acknowledgement to my colleagues at MANAR Center, who had spent several years to research and collaborate with me I appreciate all their helps and assistances Another person I owe him a great debt of gratitude for his irreplaceable advices, guidance and encouragement when I face the challenge I hope these words will be come to him My deep gratitude is also offered to my parents and my mother-in-law, who really support and strongly encourage me Finally, I take my own acknowledgement to my wife In fact, I cannot express my indebtedness by any words to her I would like to thank to my wife due to her love and entirely encouragement Surely that is the motivation that helps me doing the research and overcoming the challenge I sincerely thank all! v CONTENT Chapter 1: INTRODUCTION 1.1 Metal Organic Frameworks (MOFs) 1.2 MOFs composites 1.3 Interesting features from MOFs material 1.3.1 Ultrahigh porosity 1.3.2 Reticular synthesis 1.3.3 High stability 10 1.3.4 Postsynthetic modification (PSM) 11 1.3.5 Catalytic transformation 13 1.3.6 Gas adsorption 15 1.3.6.1 Hydrogen storage 15 1.3.6.2 Methane storage 16 1.3.6.3 Carbon dioxide uptake and separation 18 1.3.6.4 Proton Conductivity 19 1.3.7 Prospective .20 Chapter 2: THE NOVEL METAL–ORGANIC FRAMEWORKS: SYNTHESIS AND CHARACTERIZATION 21 2.1 Introduction 21 2.1.1 Quest for design the novel MOFs material 21 2.1.2 The aim of the synthesis 21 2.2 Titanium–Organic Framework-901 synthesis 22 2.2.1 New approach to design Ti-MOFs 22 2.2.2 Scope of the work 24 2.2.3 Experimental 26 2.2.3.1 Materials and General Methods 26 2.2.3.1.1 Chemicals 26 2.2.3.1.2 Analytical techniques 27 2.2.3.2 Synthesis and Characterization of [Ti6O6(OiPr)6(AB)6] 29 2.2.3.3 Synthesis of MOF-901 29 2.2.3.4 Synthesis of MOF-902 30 2.2.3.5 Photocatalysis investigation based on MOF-901 .30 2.2.3.6 Photocatalysis experiment expansion based on MOF-902 .32 2.3 MOFs based on Open Iron (III) sites 33 vi 2.3.1 Motivation and designed linkers 33 2.3.2 Crystal structure design and prediction 33 2.3.2.1 Crystal structure design 33 2.3.2.2 Crystal structure prediction and modelling 34 2.3.3 Experimental 35 2.3.3.1 Materials 35 2.3.3.2 Linker synthesis 36 2.3.3.2.1 4,4',4''-benzene-1,3,5-triyl-tribenzoic acid (H3BTB) synthesis 36 2.3.3.2.1.1 Synthesis of 1,3,5-Tri(4',4',4''-acetylphenyl)benzene 36 2.3.3.2.1.2 Synthesis of H3BTB 37 2.3.3.2.1.3 Azobenzene-4,4’-dicarboxylic acid (H2-AzoBDC) synthesis 37 2.3.3.3 Fe-MOFs synthesis 38 2.3.3.3.1 Fe-MOF based on H2-AzoBDC linker: MOF-903 38 2.3.3.3.2 MOF-903 characterization 39 2.3.3.3.2.1 Crystal structure of MOF-903 .39 2.3.3.3.2.2 Powder X-ray diffraction analysis of MOF-903 41 2.3.3.3.2.3 FT-IR analysis of activated MOF-903 42 2.3.3.3.2.4 Thermogravimetric Analysis (TGA) of MOF-903 .43 2.3.3.3.3 Fe-MOF based H3BTB linker: MOF-904 44 2.3.3.3.4 MOF-904 characterization 44 2.3.3.3.4.1 Crystal structure of MOF-904 .44 2.3.3.3.4.2 Powder X-ray diffraction analysis of MOF-904 47 2.3.3.3.4.3 FT-IR analysis of activated MOF-904 48 2.3.3.3.4.4 Thermogravimetric Analysis (TGA) of MOF-904 .49 2.3.3.3.4.5 Nitrogen adsorption at low pressure of MOF-904 50 2.4 Unprecedented Cu(II) cluster-based MOF: VNU-18 50 2.4.1 VNU-18 synthesis 50 2.4.2 VNU-18 characterization .51 2.4.2.1 Crystal structure of VNU-18 51 2.4.2.2 Topological analysis 54 2.4.2.3 Powder X-ray diffraction data collection 55 2.4.2.4 Thermal Gravimetric Analysis of VNU-18 55 2.4.2.5 Gas Adsorption 56 Chapter 3: PHOTOCATALYTIC APPLICATION 58 3.1 Introduction to photocatalysis 58 3.1.1 Photocatalysis based MOFs 58 vii 3.1.2 Tuning light harvesting properties 59 3.1.3 Active site engineering 62 3.2 Titanium Organic Frameworks 64 3.3 Photocatalytic application of MOF-901, and MOF-902 65 3.3.1 Structural analysis of MOF-901 65 3.3.2 Photocatalysis performance of MOF-901 75 3.3.3 Structural analysis of MOF-902 87 3.3.4 Photocatalysis properties and application of MOF-902 96 3.4 Summary 106 Chapter 4: CONCLUSION AND SCIENTIFIC CONTRIBUTION 108 APPENDIX 111 PUBLICATIONS 126 REFERENCES 127 viii Appendix 15 PXRD analysis of UiO-66-NH2 (blue) displaying satisfactory agreement with the diffraction pattern simulated from the crystal structure (red) Appendix 16 PXRD analysis of VNU-1 (blue) displaying satisfactory agreement with the diffraction pattern simulated from the crystal structure (red) 120 Appendix 17 Gel permeation chromatography (GPC) profile of polyMMA product produced by UiO-66-NH2 under the same reaction conditions as used for the MOF-901 catalyst Appendix 18 Recycling experiment of MMA photoreaction in DMF displayed no loss of photocatalytic performance by MOF-901 over three consecutive reactions 121 Appendix 19 Atomic coordinates and refined unit cell parameters of MOF-902 Name MOF-902 Space Group P63 (No 173) a (Å) 31.4453(6) c (Å) 7.7346(5) Unit Cell Volume (Å3) 6658.92(9) Atom Name x y z C1 0.4712 0.6679 0.0318 C2 0.1942 0.663 0.0364 C3 0.4092 0.6156 0.4855 C4 0.4582 0.741 0.5896 C5 0.1455 0.6589 0.0265 C6 0.5168 0.6656 0.0218 C7 0.1049 0.6202 0.1096 C8 0.0582 0.6143 0.0892 C9 0.051 0.6468 0.9874 C10 0.0919 0.6864 0.9077 C11 0.1385 0.6919 0.9261 C12 0.5196 0.6266 0.0982 C13 0.5612 0.6221 0.0756 C14 0.601 0.6571 0.9774 C15 0.5991 0.6972 0.909 C16 0.5572 0.7012 0.9287 C17 0.6496 0.6162 0.968 C18 0.6976 0.62 0.9384 122 C19 0.7018 0.5777 0.9355 C20 0.7473 0.5812 0.9077 C21 0.7897 0.6272 0.8859 C22 0.7854 0.6695 0.8897 C23 0.7399 0.666 0.9145 C24 0.9877 0.6618 0.8691 C25 0.8389 0.6319 0.8671 C26 0.8747 0.6688 0.7617 C27 0.9227 0.6775 0.7608 C28 0.9359 0.6493 0.8636 C29 0.8995 0.6104 0.9606 C30 0.8515 0.6019 0.963 H1 0.1092 0.594 0.1873 H2 0.0272 0.5838 0.1522 H3 0.0887 0.7132 0.8306 H4 0.1692 0.7222 0.8611 H5 0.4891 0.5989 0.172 H6 0.5622 0.5918 0.1366 H7 0.6301 0.7251 0.8377 H8 0.5564 0.7321 0.871 H9 0.6184 0.5808 0.9999 H10 0.6697 0.5419 0.9539 H11 0.7493 0.548 0.9024 H12 0.8173 0.7056 0.8775 H13 0.738 0.6994 0.9179 123 H14 0.0134 0.6913 0.7877 H15 0.406 0.5831 0.4183 H16 0.4027 0.6068 0.625 H17 0.4468 0.6473 0.4714 H18 0.4643 0.7787 0.6015 H19 0.4597 0.7336 0.4506 H20 0.4877 0.738 0.6558 H21 0.8658 0.6915 0.682 H22 0.9499 0.707 0.6817 H23 0.9085 0.5873 0.0379 H24 0.8249 0.5732 0.0454 N1 0.6447 0.6546 0.9505 N2 0.0018 0.6381 0.9692 O1 0.3018 0.6017 0.1606 O2 0.3647 0.7313 0.9197 O3 0.3579 0.5614 0.1592 O4 0.461 0.7747 0.9186 O5 0.4414 0.6461 0.1546 O6 0.4623 0.6905 0.9147 O7 0.3745 0.6276 0.4246 O8 0.4117 0.7068 0.6539 Ti1 0.2565 0.6271 0.1677 Ti2 0.4098 0.7061 0.9109 124 Appendix 20 PXRD comparison of the experimental MOF-902 (red) with the simulated patterns of staggered model (green) and eclipsed model (red) 125 PUBLICATIONS H L Nguyen, T T Vu, D Le, T L H Doan, V Q Nguyen, N T S Phan ACS Catal 2017, 7, 338 B T Nguyen, H L Nguyen, T C Nguyen, K E Cordova, H Furukawa Chem Mater 2016, 28, 6243 H L Nguyen, F Gándara, H Furukawa, T L H Doan, K E Cordova, O M Yaghi J Am Chem Soc., 2016, 138, 4330 T N Tu, N Q Phan, T T Vu, H L Nguyen, K E Cordova, H Furukawa J Mater Chem A 2016, 4, 3638 L T M Hoang, L H Ngo, H L Nguyen, C K Nguyen, B T Nguyen, Q T Ton, H K D Nguyen, K E Cordova, T Truong Chem Commun., 2015, 51, 17132 T L H Doan, H L Nguyen, H Q Pham, N.-N Pham-Tran, T N Le, K E Cordova Chem Asian J., 2015, 10, 2660 126 REFERENCES [1] Yaghi, O M.; O'Keeffe, M.; Ockwig, N W.; Chae, H K.; Eddaoudi, M.; Kim, J Nature 2003, 423, 705 [2] Kitagawa, S.; Kitaura, R.; Noro, S Angew Chem., Int Ed 2004, 43, 2334 [3] Férey, G Chem Soc Rev 2008, 37, 191 [4] Gravereau, P.; Garnier, E.; Hardy, A Acta Crystallogr Sect B 1979, 35, 2843 [5] Eddaoudi, M.; Moler, D B.; Li, H L.; Chen, B L.; Reineke, T M.; O’Keeffe, M.; Yaghi, O M Acc Chem Res 2001, 34, 319 [6] Janiak, C., Angew Chem Int Ed 1997, 36, 1431 [7] Moulton, B.; Zaworotko, M J Chem Rev 2001, 101, 1629 [8] Yaghi, O M.; Li, H L.; Davis, C.; Richardson, D.; Groy, T L Acc Chem Res 1998, 31, 474 [9] Zaworotko, M J Angew Chem Int Ed 2000, 39, 3052 [10] Yaghi, O M.; Li, G M.; Li, H L Nature 1995, 378, 703 [11] Furukawa, H; Cordova, K E.; O'Keeffe, M.; Yaghi, O M Science 2013, 341, 1230444 [12] Luebke, R.; Belmabkhout, Y.; Weselinski, L J.; Cairns, A J.; Alkordi, M.; Norton, G.; Wojtas, L.; Adil, K.; Eddaoudi, M Chem Sci., 2015, 6, 4095 Y.; Cairns, A J.; Chen, Z.; Wojtas, Ł.; Eddaoudi, M J Am Chem Soc 2015, 137, 5421 [14] Cook, T R.; Zheng, Y.-R.; Stang, P J Chem Rev 2013, 113, 734 [15] McKinlay, A C.; Morris, R E.; Horcajada, P.; Ferey, G.; Gref, R.; Couvreur, P.; Serre, C Angew Chem., Int Ed 2010, 49, 6260 [16] Shimizu, G K H.; Vaidhyanathan, R.; Taylor, J M Chem Soc Rev 2009, 38, 1430 [17] Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O M Nature 1999, 402, 276 [18] Jaitner, P.; Rieker, C.; Wurst, K Chem Commun 1997, 1245 [19] Wang, H-H.; Jia, L-N.; Hou, L.; Shi, W-J.; Zhu, Z.; Wang, Y-Y Inorg Chem 2015, 54, 1841 [20] Xiang, S; He, Y.; Zhang, Z.; Wu, H.; Zhou, W.; Krishna, R.; Chen, B Nat Commun 2012, 3, 954 [21] Koh, H S.; Rana, M K.; Wong-Foy, A G.; Siegel, D J Phys Chem C 2015, 119, 13451 [22] Liu, B.; Yao, S.; Shi, C.; Li, G.; Huo, Q.; Liu, Y Chem Commun 2016, 52, 3223 [23] Xiang, S.; Zhou, W.; Gallegos, J M.; Liu, Y.; Chen, B J Am Chem Soc 2009, 131, 12415 127 [24] Eddaoudi, M.; Kim, J.; Rosi, N L.; Vodak, D T.; Wachter, J.; O'Keeffe, M.; Yaghi, O M Science 2002, 295, 469 [25] Liu, J.; Lukose, B.; Shekhah, O.; Arslan, H K.; Weidler, P.; Gliemann, H.; Bräse, S.; Grosjean, S.; Godt, A.; Feng, X.; Müllen, K.; Magdau, I-B.; Heine, T.; Wöll, C Sci Rep 2012, 2, 921 [26] Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour J.; Surblé, S.; Margiolaki, I Science 2005, 209, 2040 [27] Cavka, J H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K P J Am Chem Soc 2008, 130, 13850 [28] Bai, Y.; Dou, Y.; Xie, L-H.; Rutledge, W.; Li, J-R.; Zhou, H-C Chem Soc Rev 2016, 45, 2327 [29] Doan, T L H.; Nguyen, H L.; Pham, H Q.; Pham-Tran, N.-N.; Le, T N.; Cordova, K E Chem Asian J 2015, 10, 2660 [30] Jiang, H-L.; Makala, T A.; Zhou, H-C Coord Chem Rev 2013, 257, 2232 [31] Chae, H K.; Siberio-Pérez, D Y.; Kim, J.; Go, Y-B.; Eddaoudi, M.; Matzger, A J.; O'Keeffe, M.; Yaghi, O M Nature 2004, 427, 523 [32] Furukawa, H.; Ko, N.; Go, Y-B.; Aratani, N.; Choi, S B.; Choi, E.; Yazaydin, A O.; Snurr, R Q.; O'Keeffe, M.; Kim, J.; Yaghi, O M Science 2010, 239, 424 [33] Farha, O.; Hupp, J.; Eryazici, I.; Wilmer, C.; Hauser, B.; Sarjeant, A.; Snurr, R.; Nguyen, S.; Parilla, P.; O'Neill, K J Am Chem Soc 2012, 134, 9860 [34] Getman, R B.; Bae, Y-S.; Wilmer, C E.; Snurr, R Q Chem Rev 2012, 112, 703 [35] Sumida, K.; Rogow, D L.; Mason, J A.; McDonald, T M.; Bloch, E D.; Herm, Z R.; Bae, T-H.; Long, J R Chem Rev 2012, 112, 724 [36] Chui, S S-Y.; Lo, S M-F.; Charmant, J P H.; Orpen, A G.; Williams, I D Science 1999, 283, 1148 [37] Wang, X-S.; Ma, S.; Sun, D.; Parkin, S.; Zhou, H-C J Am Chem Soc 2006, 128, 16474 [38] Sun, D.; Ma, S.; Ke, Y.; Collins, D J.; Zhou, H-C J Am Chem Soc 2006, 128, 3896 [39] Ma, S.; Sun D.; Ambrogio, M.; Fillinger, J A.; Parkin, S.; Zhou, H-C J Am Chem Soc 2007, 129, 1858 [40] Wang, X-S.; Ma, S.; Yuan, D.; Yoon, J W.; Hwang, Y K.; Chang, J-S.; Wang, X.; Jørgensen, M R.; Chen, Y-S.; Zhou, H-C Inorg Chem 2009, 48, 7519 [41] Yan, Y.; Lin, X.; Yang, S.; Blake, A J.; Dailly, A.; Champness, N R.; Hubberstey, P.; Schröder, M Chem Commun 2009, 1025 [42] Zhao, D.; Yuan, D.; Sun, D.; Zhou, H-C J Am Chem Soc 2009, 131, 9186 [43] Yuan, D.; Zhao, D.; Sun, D.; Zhou, H-C Angew Chem Int Ed 2010, 49, 5357 128 [44] Yan, Y.; Telepeni, I.; Yang, S.; Lin, X.; Kockelmann, W.; Dailly, A.; Blake, A J.; Lewis, Walker, W.; G S.; Allan, D R.; Barnett, S A.; Champness, N R.; Schröder, M J Am Chem Soc 2010, 132, 4092 [45] Yuan, D.; Zhao, D.; Zhou, H-C Inorg Chem 2011, 50, 10528 [46] Zheng, B.; Bai, J.; Duan, J.; Wojtas, L.; Zaworotko, M J J Am Chem Soc 2011, 133, 748 [47] Li, B.; Zhang, Z.; Li, Y.; Yao, K.; Zhu, Y.; Deng, Z.; Yang, F.; Zhou, X.; Li, G.; Wu, H.; Nijem, N.; Chabal, Y J.; Lai, Z.; Han, Y.; Shi, Z.; Feng, S.; Li, J Angew Chem Int Ed 2012, 51, 1412 [48] Deria, P.; A Gomez-Gualdron, D.; Bury, W.; Schaef, H T.; Wang, T C.; Thallapally, P K.; Sarjeant, A A.; Snurr, R Q.; Hupp, J T.; Farha, O K J Am Chem Soc 2015, 137, 13183 [49] Yang, D.; Odoh, S O.; Wang, T C.; Farha, O K.; Hupp, J T.; Cramer, C J.; Gagliardi, L.; Gates, B C J Am Chem Soc 2015, 137, 7391 [50] Liu, X.; Demir, N K.; Wu, Z.; Li, K J Am Chem Soc 2015, 137, 6999 [51] Feng, D.; Gu, Z-Y; Chen, Y-P.; Park, J.; Wei, Z.; Sun, Y.; Bosch, M.; Yuan, S.; Zhou, H-C J Am Chem Soc 2014, 136, 17714 [52] Phan, A.; Doonan, C J.; Uribe-Romo, F J.; Knobler, C B.; O'Keeffe, M.; Yaghi, O M Acc Chem Res 2010, 43, 58 [53] Hwang, Y.; Sohn, H.; Phan, A.; Yaghi, O M.; Candler, R N Nano Lett 2013, 13, 5271 [54] Hwang, Y.; Phan, A.; Galatsis, K.; Yaghi, O M.; Candler, R N J Micromech Microeng 2013, 23, 125027 [55] Nguyen, N T T.; Furukawa, H.; Gándara, F.; Nguyen, H T.; Cordova, K E.; Yaghi, O M Angew Chem Int Ed 2014, 53, 10645 [56] Nguyen, P T K.; Nguyen, H T D.; Pham, H Q.; Kim, J.; Cordova, K E.; Furukawa, H Inorg Chem 2015, 54, 10065 [57] Fracaroli, A M.; Furukawa, H.; Suzuki, M.; Dodd, M.; Okajima, S.; Gándara, F.; Reimer, J A.; Yaghi, O M J Am Chem Soc 2014, 136, 8863 [58] Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P Chem Eur J 2011, 17, 6643 [59] Wu, H.; Chua, Y S.; Krungleviciute, V.; Tyagi, M.; Chen, P.; Yildirim, T.; Zhou W J Am Chem Soc 2013, 135, 10525 [60] Yuan, S.; Lu, W.; Chen, Y-P.; Zhang, Q.; Liu, T-F.; Feng, D.; Wang, X.; Qin, J.; Zhou, H-C J Am Chem Soc 2015, 137, 3177 [61] Jiang, H-L.; Feng, D.; Liu, T-F.; Li, J-R.; Zhou, H-C J Am Chem Soc 2012, 134, 14690 [62] Ma, D-Y.; Li, Z.; Xiao, J-X.; Deng, R.; Lin, P-F.; Chen, R-Q.; Liang, Y-Q.; Guo, H-F.; Liu, B.; Liu, J-Q Inorg Chem 2015, 54, 6719 129 [63] Devic, T.; Horcajada, P.; Serre, C.; Salles, F.; Maurin, G.; Moulin, B.; Heurtaux, D.; Clet, G.; Vimont, A.; Greneche, J-M.; Ouay, B L.; Moreau, F.; Magnier, E.; Filinchuk, Y.; Marrot, J.; Lavalley, J-C.; Daturi, M.; Férey, G J Am Chem Soc 2010, 132, 1127 [64] Wang, Z.; Cohen, S M.; Chem Soc Rev 2009, 38, 1315 [65] Seo, J S.; Whang, D.; Lee, H.; Jun, S I.; Oh, J.; Jeon, Y J.; Kim, K Nature 2000, 404, 982 [66] Tanabe, K K.; Wang, Z.; Cohen, S M.; J Am Chem Soc 2008, 130, 8508 [67] Wu, C-D.; Hu, A.; Zhang, L.; Lin, W J Am Chem Soc 2005, 127, 8940 [68] Tanabe, K K.; Cohen, S M Angew Chem Int Ed 2009, 48, 7424 [69] Morris, W.; Doonan, C J.; Furukawa, H.; Banerjee, R.; Yaghi, O M J Am Chem Soc 2008, 130, 12626 [70] Fujita, M.; Kwon, Y J.; Washizu, S.; Ogura, K J Am Chem Soc 1994, 116, 1151 [71] Alaerts, L.; Séguin, E.; Poelman, H.; Thibault-Starzyk, F.; Jacobs, P A.; De Vos, D E Chem Eur J 2006, 12, 7353 [72] Henschel, A.; Gedrich, K.; Kraehnert, R.; Kaskel, S Chem Commun 2008, 4192 [73] Phan, A.; Czaja, A U.; Gándara, F.; Knobler, C B.; Yaghi, O M Inorg Chem 2011, 50, 7388 [74] Suslick, K S.; Bhyrappa, P.; Chou, J-H.; Kosal, M E.; Nakagaki, S.; Smithenry, D W.; Wilson, S R Acc Chem Res 2005, 38, 283 [75] Alkordi, M H.; Liu, Y.; Larsen, R W.; Eubank, J F.; Eddaoudi, M J Am Chem Soc 2008, 130, 12639 [76] Sun, C-Y.; Liu, S-X.; Liang, D-D.; Shao, K-Z.; Ren, Y-H.; Su, Z-M J Am Chem Soc 2009, 131, 1883 [77] Yuan, B.; Pan, Y.; Li, Y.; Yin, B.; Jiang, H Angew Chem Int Ed 2010, 49, 4054 [78] Wang, C.; deKrafft, K E.; Lin, W J Am Chem Soc 2012, 134, 7211 [79] Wong-Foy, A G.; Matzger, A J.; Yaghi, O M J Am Chem Soc 2006, 128, 3494 [80] Chen, B.; Zhao, X.; Putkham, A.; Hong, K.; Lobkovsky, E B.; Hurtado, E J.; Fletcher, A J.; Thomas K M J Am Chem Soc 2008, 130, 6411 [81] Pham, T.; Forrest, K A.; Banerjee, R.; Orcaj, G.; Eckert, J.; Space, B J Phys Chem C, 2015, 119, 1078 [82] Wang, X S.; Ma, S Q.; Forster, P M.; Yuan, D Q.; Eckert, J.; López, J J.; Murphy, B J.; Parise, J B.; Zhou, H-C Angew Chem Int Ed 2008, 47, 7263 [83] Mulfort, K L.; Hupp, J T J Am Chem Soc 2007, 129, 9604 [84] Peng, Y.; Srinivas, G.; Wilmer, C E.; Eryazici, I.; Snurr, R Q.; Hupp, J T.; Yildirim, T.; Farha, O K Chem Commun 2013, 49, 2992 130 [85] Wilmer, C E.; Farha, O K.; Yildirim, T.; Eryazici, I.; Krungleviciute, V.; Sarjeant, A A.; Snurr, R Q.; Hupp, J T Energy Environ Sci 2013, 6, 1158 [86] Guo, Z.; Wu, H.; Srinivas, G.; Zhou, Y.; Xiang, S.; Chen, Z.; Yang, Y.; Zhou, W.; O’Keeffe, M.; Chen, B Angew Chem., Int Ed 2011, 50, 3178 [87] Ma, S.; Sun, D.; Simmons, J M.; Collier, C D.; Yuan, D.; Zhou, H-C J Am Chem Soc 2008, 130, 1012 [88] Wu, H.; Zhou, W.; Yildirim, T J Am Chem Soc 2009, 131, 4995 [89] Jeong, N C.; Samanta, B.; Lee, C Y.; Farha, O K.; Hupp, J T J Am Chem Soc 2012, 134, 51 Lee, S.; Yaghi, O M J Am Chem Soc 2014, 136, 5271 Solovyeva, V.; Adil, K.; Spanopoulos, I.; Trikalitis, P N.; Emwas, A-H.; Eddaoudi, M J Am Chem Soc 2015, 137, 13308 [92] Li, H.; Eddaoudi, M.; Groy, T L.; Yaghi, O M J Am Chem Soc 1998, 120, 8571 [93] Nagao, Y.; Ikeda, R.; Kanda, S.; Kubozono, Y.; Kitagawa, H Mol Cryst Liq Cryst 2002, 379, 89 [94] Shigematsu, A.; Yamada, T.; Kitagawa, H J Am Chem Soc 2011, 133, 2034 [95] Tu, T N.; Phan, N Q.; Vu, T T.; Nguyen, H L.; Cordova, K E.; Furukawa, H J Mater Chem A 2016, 4, 3638 [96] Nguyen, N T T.; Furukawa, H.; Gándara, F.; Trickett, C A.; Jeong, H M.; Cordova, K E.; Yaghi, O M J Am Chem Soc 2015, 137, 15394 [97] Hurd, J A.; Vaidhyanathan, R.; Thangadurai, V.; Ratcliffe, C I.; Moudrakovski, I L.; Shimizu G K H Nat Chem 2009, 1, 705 [98] Wang, K.; Feng, D.; Liu, T-F.; Su, J.; Yuan, S.; Chen, Y-P.; Bosch, M.; Zou, X.; Zhou, H-C J Am Chem Soc 2014, 136, 13983 [99] Feng, D.; Wang, K.; Wei, Z.; Chen, Y.-P.; Simon, C M.; Arvapally, R K.; Martin, R L.; Bosch, M.; Liu, T.-F.; Fordham, S.; Yuan, D.; Omary, M A.; Haranczyk, M.; Smit, B.; Zhou, H-C Nat Commun 2014, 5, 5723 [100] Liu, Y.; Eubank, J F.; Cairns, A J.; Eckert, J.; Kravtsov, V Ch.; Luebke, R.; Eddaoudi, M Angew Chem Int Ed 2007, 46, 3278 [101] Cook, T R.; Zheng, Y-R.; Stang, P J Chem Rev 2013, 113, 734 [102] Furukawa, S.; Reboul, J.; Diring, S.; Sumida, K.; Kitagawa, S Chem Soc Rev 2014, 43, 5700 [103] O’Keeffe, M.; Peskov, M A.; Ramsden, S J.; Yaghi, O M Acc Chem Res 2008, 41, 1782 [104] Morris, W.; Volosskiy, B.; Demir, S.; Gándara, F.; McGrier, P L.; Furukawa, H.; Cascio, D.; Stoddart, J F.; Yaghi, O M Inorg Chem 2012, 51, 6443 131 [105] Zhang, Y-B.; Furukawa, H.; Ko, N.; Nie, W.; Park, H J.; Okajima, S.; Cordova, K E.; Deng, H.; Kim, J.; Yaghi, O M J Am Chem Soc 2015, 137, 2641 Chem Commun 2010, 46, 767 [107] Sabo, M.; Bohlmann, W.; Kaskel, S J Mat Chem 2006, 16, 2354 [108] Hendon, C H.; Tiana, D.; M Fontecave, Sanchez, C.; D'Arras, L.; Sassoye, C.; Rozes, L.; Mellot-Draznieks C.; Walsh, A J Am Chem Soc 2013, 135, 10942 [109] Yuan, S.; Liu, T-F.; Feng, D.; Tian, J.; Wang, K.; Qin, J.; Zhang, Q.; Chen, YP.; Bosch, M.; Zou, L.; Teat, S J.; Dalgarno, S J.; Zhou, H-C Chem Sci 2015, 6, 392 [110] Bueken, B.; Vermoortele, F.; Vanpoucke, D E P.; Reinsch, H.; Tsou, C.-C.; Valvekens, P.; De Baerdemaeker, T.; Ameloot, R.; Kirschhock, C E A.; Van Speybroeck, V.; Mayer, J M.; De Vos, D Angew Chem., Int Ed 2015, 54, 13912 [111] He, J.; Yan, Z.; Wang, J.; Xie, J.; Jiang, L.; Shi, Y.; Yuan, F.; Yu, F.; Sun, Y Chem Commun 2013, 49, 6761 [112] Wang, J L.; Wang, C.; Lin, W ACS Catal 2012, 2, 2630 [113] Uribe-Romo, F J.; Hunt, J R.; Klock, C.; O’Keeffe, M.; Yaghi, O M J Am Chem Soc 2009, 131, 4570 [114] Zhang, J.; Liu, L.; Liu, H.; Lin, M.; Li, S.; Ouyang, G.; Chen, L.; Su, C-Y J Mater Chem A 2015, 3, 10990 [115] Huang, N.; Krishna, R.; Jiang, D J Am Chem Soc 2015, 137, 7079 [116] Hong, K.; Chun, H Inorg Chem 2013, 52, 9705 [117] Hong, K.; Bak, W.; Chun, H Inorg Chem 2014, 53, 7288 [118] Rozes, L.; Sanchez, C Chem Soc Rev 2011, 40, 1006 [119] Papiernik, R.; Hubert-Pfalzgraf, L G.; Vaissermann, J.; Henriques Baptista Goncalves, M C J Chem Soc., Dalton Trans 1998, 2285 [120] Hoskins, B F.; Robson, R J Am Chem Soc 1990, 112, 1546 [121] Li, M.; Li, D.; O’Keeffe, M.; Yaghi, O M Chem Rev 2014, 114, 1343 [122] Furukawa, H.; Miller, M A.; Yaghi, O M J Mater Chem 2007, 17, 3197 [123] Liu, D.; Xie, Y.; Shao, H.; Jiang, X Angew Chem Int Ed 2009, 48, 4406 [124] Tranchemontagne, D J.; Mendoza-Cortes, J L.; O'Keeffe, M.; Yaghi, O M Chem Soc Rev 2009, 38, 1257 [125] Spek, A L J J Appl Crystallogr 2003, 36, [126] Fujishima, A.; Honda, K Nature 1972, 238, 37 [127] Xu, H.; Ouyang, S.; Liu, L.; Reunchan, P.; Umezawa, N.; Ye, J J Mater Chem A 2014, 2, 12642 [128] Alvaro, M.; Carbonell, E.; Ferrer, B.; Llabrés i Xamena, F X.; Garcia, H Chem Eur J 2007, 13, 5106 [129] Hausdorf, S.; Wagler, J.; Moßig, R.; Mertens, F O R L J Phys Chem A 2008, 112, 7567 132 [130] Cavka, J H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K P J Am Chem Soc 2008, 130, 13850 [131] Dan-Hardi, M.; Serre, C.; Frot, T.; Rozes, L.; Maurin, G.; Sanchez, C.; Ferey, G J Am Chem Soc 2009, 131, 10857 [132] Laurier, K G.; Vermoortele, F.; Ameloot, R.; De Vos, D E.; Hofkens, J.; Roeffaers, M B J Am Chem Soc 2013, 135, 14488 [133] Wang, D.; Huang, R.; Liu, W.; Sun, D.; Li, Z ACS Catal 2014, 4, 4254 [134] Civalleri, B.; Napoli, F.; Noel, Y.; Roetti, C.; Dovesi, R CrystEngComm 2006, 8, 364 [135] Wojciechowski, P M.; Zierkiewicz, W.; Michalska, D.; Hobza, P J Chem Phys 2003, 118, 10900 [136] Silva, C G.; Luz, I.; Llabrés I Xamena, F X.; Corma, A.; García, H Chem Eur J 2010, 16, 11133 [137] Guo, H.; Lin, F.; Chen, J.; Li, F.; Weng, W Appl Organometal Chem 2015, 29, 12 [138] Nasalevich, M A.; Goesten, M G.; Savenije, T J.; Kapteijn, F.; Gascon, J Chem Commun, 2013, 90, 10575 [139] Obare, S O.; Ito, T.; Meyer, G J J Am Chem Soc 2005, 128, 712 [140] Yuan, S.; Liu, T-F.; Feng, D.; Tian, J.; Wang, K.; Qin, J.; Zhang, Q.; Chen, YP.; Bosch, M.; Zou, L.; Teat, S J.; Dalgarno, S J.; Zhou, H-C Chem Sci 2015, 6, 392 [141] Bueken, B.; Vermoortele, F.; Vanpoucke, D E P.; Reinsch, H.; Tsou, C.-C.; Valvekens, P.; De Baerdemaeker, T.; Ameloot, R.; Kirschhock, C E A.; Van Speybroeck, V.; Mayer, J M.; De Vos, D Angew Chem., Int Ed 2015, 54, 13912 [142] Wen, L.; Zhao, J.; Lv, K.; Wu, Y.; Deng, K.; Leng, X.; Li, D Cryst Growth Des 2012, 12, 1603 [143] Lee, Y.; Kim, S.; Kang, J K.; Cohen, S M Chem Commun 2015, 51, 5735 [144] He, J.; Yan, Z.; Wang, J.; Xie, J.; Jiang, L.; Shi, Y.; Yuan, F.; Yu, F.; Sun, Y Chem Commun 2013, 49, 6761 [145] Wang, J L.; Wang, C.; Lin, W ACS Catal 2012, 2, 2630 [146] Nasalevich, M A.; van der Veen, M.; Kapteijn, F.; Gascon, J CrystEngComm 2014, 16, 4919 [147] Wang, C.; Xie, Z.; deKrafft, K E.; Lin, W J Am Chem Soc 2011, 133, 13445 [148] Wang, C.; Xie, Z.; deKrafft, K E.; Lin, W J Am Chem Soc 2012, 134, 7211 [149] Fateeva, A.; Chater, P A.; Ireland, C P.; Tahir, A A.; Khimyak, Y Z.; Wiper, P V.; Darwent, J R.; Rosseinsky, M J Angew Chem., Int Ed 2012, 51, 7440 [150] Juan-Alcaniz, J.; Goesten, M.; Martinez-Joaristi, A.; Stavitski, E.; Petukhov, A V.; Gascon, J.; Kapteijn, F Chem Commun 2011, 47, 8578 [151] Li, W-N.; Lin, F.; Li, X-X.; Zhang, L-C.; You, W-S.; Jiang, Z-X J Coord Chem 2013, 66, 2829 133 [152] Liu, B.; Yang, J.; Yang, G-C.; Ma, J-F Inorg Chem 2012, 52, 84 [153] Qin, J-S.; Du, D-Y.; Guan, W.; Bo, X-J.; Li, Y-F.; Guo, L-P.; Su, Z-M.; Wang, Y-Y.; Lan, Y-Q.; Zhou, H-C J Am Chem Soc 2015, 137, 7169 [154] Gao, J.; Miao, J.; Li, P-Z.; Teng, W Y.; Yang, L.; Zhao, Y.; Liu, B.; Zhang, Q Chem Commun 2014, 50, 3786 [155] Mason, J A.; Darago, L E.; Lukens Jr, W W.; Long, J R Inorg Chem 2015, 54, 10096 [156] Bae, Y.-S.; Dubbeldam, D.; Nelson, A.; Walton, K S.; Hupp, J T.; Snurr, R Q Chem Mater 2009, 21, 4768 [157] Sudik, A C.; Millward, A R.; M J Am Chem Soc 2005, 127, 7110 [158] Wang, Z J.; Landfester, K.; Zhang, K A I Polym Chem 2014, 5, 3559 [159] Uemura, T.; Ono, Y.; Kitagawa, K.; Kitagawa, S Macromolecules 2008, 41, 87 [160] Kiskan, B.; Zhang, J.; Wang, X.; Antonietti, M.; Yagci, Y ACS Macro Lett 2012, 1, 546 [161] Fors, B P.; Hawker, C J Angew Chem Int Ed 2012, 51, 8850 [162] Long, J.; Wang, S.; Ding, Z.; Wang, S.; Zhou, Y.; Huang, L.; Wang, X Chem Commun 2012, 48, 11656 [163] Uemura, T.; Kitagawa, K.; Horike, S.; Kawamura, T.; Kitagawa, S.; Mizuno, M.; Endo, K Chem Commun 2005, 5968 [164] Vitorino, M J.; Devic, T.; Tromp, M.; Férey, G.; Visseaux, M Macromol Chem Phys 2009, 210, 1923 [165] Inokuma, Y.; Nishiguchi, S.; Ikemoto, K.; Fujita, M Chem Commun 2011, 47, 12113 [166] Uemura, T.; Mochizuki, S.; Kitagawa, S ACS Macro Lett 2015, 4, 788 134 ... 3.2 Titanium Organic Frameworks 64 3.3 Photocatalytic application of MOF-901, and MOF-902 65 3.3.1 Structural analysis of MOF-901 65 3.3.2 Photocatalysis performance of MOF-901... UNIVERSITY-HOCHIMINH CITY UNIVERSITY OF TECHNOLOGY-HOCHIMINH CITY HA LAC NGUYEN DESIGNED SYNTHESIS OF NOVEL METAL ORGANIC FRAMEWORKS FOR PHOTOCATALYST APPLICATION Major subject: TECHNOLOGY FOR ORGANIC COMPLEXES... Synthesis and Characterization of [Ti6O6(OiPr)6(AB)6] 29 2.2.3.3 Synthesis of MOF-901 29 2.2.3.4 Synthesis of MOF-902 30 2.2.3.5 Photocatalysis investigation based on MOF-901

Ngày đăng: 16/05/2017, 23:35

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN