What effect consumers intention to buy counterfeit luxury brands the moderating role of product involvement and product knowledge evidence from vietnam
Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 78 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
78
Dung lượng
1,02 MB
Nội dung
UNIVERSITY OF ECONOMICS HO CHI MINH CITY International School of Business Nguyễn Hạo Nhiên WHATEFFECT CONSUMERS’ INTENTIONTOBUYCOUNTERFEITLUXURY BRANDS? THEMODERATINGROLEOFPRODUCTINVOLVEMENTANDPRODUCT KNOWLEDGE: EVIDENCEFROMVIETNAM MASTER OF BUSINESS (Honours) Ho Chi Minh City – Year 2015 UNIVERSITY OF ECONOMICS HO CHI MINH CITY International School of Business Nguyễn Hạo Nhiên WHATEFFECT CONSUMERS’ INTENTIONTOBUYCOUNTERFEITLUXURY BRANDS? THEMODERATINGROLEOFPRODUCTINVOLVEMENTANDPRODUCT KNOWLEDGE: EVIDENCEFROMVIETNAM ID: 22130049 MASTER OF BUSINESS (Honours) SUPERVISOR: Dr Ngô Viết Liêm Ho Chi Minh City – Year 2015 WHATEFFECT CONSUMERS‘ INTENTIONTOBUYCOUNTERFEITLUXURY BRANDS? i ACKNOWLEDGEMENTS Firstly, I would like to specially thank my supervisor, Dr Ngo Viet Liem, for his guidance Without him, this thesis would not have been finished Secondly, I would also like to thank my thesis committee, Dr Nguyen Dinh Tho, Dr Nguyen Thi Mai Trang, Dr Nguyen Thi Nguyet Que, and Dr Tran Ha Minh Quan, for their insightful comments Their advices helped me improve this thesis significantly Thirdly, I would like to acknowledge all the professors and staffs of International School of Business, University of Economics Ho Chi Minh City for providing me the best opportunities to study and develop deep understanding about research and business Finally, I would like to express my gratitude to my dear family and friends This thesis would have never come true without their encouragements and supports WHATEFFECT CONSUMERS‘ INTENTIONTOBUYCOUNTERFEITLUXURY BRANDS? ii TABLE OF CONTENTS ABSTRACT CHAPTER 1: INTRODUCTION 1.1 Research background 1.1.1 The emerging luxury market 1.1.2 Counterfeiting 1.2 Existing studies on counterfeiting 1.3 Research objectives 1.4 Scope ofthe study 1.5 Research significance 1.6 Research structure CHAPTER 2: LITERATURE REVIEW 2.1 Luxurybrands 2.2 Counterfeits 2.3 Counterfeit purchase intention 10 2.4 Value-expressive and social-adjustive function 10 2.5 Productinvolvement 12 2.6 Productknowledge 13 2.7 Summary 14 CHAPTER 3: RESEARCH METHODOLOGY 17 3.1 Data collection 17 3.2 Measurement 18 3.3 Luxurybrands 20 3.4 Measurement validation 20 3.5 Hypotheses tests 22 3.6 Summary 24 CHAPTER 4: DATA ANALYSIS 26 WHATEFFECT CONSUMERS‘ INTENTIONTOBUYCOUNTERFEITLUXURY BRANDS? iii 4.1 Pilot study 26 4.2 Data collection result and demographics 28 4.3 Measurement validation 28 4.3.1 Cronbach‘s alpha 28 4.3.2 Exploratory factor analysis 32 4.3.3 Confirmatory factor analysis 33 4.3.4 Composite reliability and average variance extracted 36 4.3.5 Divergent reliability and Pearson correlation 36 4.3.6 Final scales 37 4.4 Hypotheses tests 39 4.4.1 Model A 39 4.4.2 Model B 41 4.4.3 Model C 42 4.5 Discussion 43 4.6 Summary 45 CHAPTER 5: CONCLUSION 47 5.1 Overview 47 5.2 Managerial implications 47 5.3 Limitations and future research 48 References 51 Appendix A 55 Appendix B 56 Appendix C 57 Appendix D 60 Appendix E 61 Appendix F 67 Appendix G 68 WHATEFFECT CONSUMERS‘ INTENTIONTOBUYCOUNTERFEITLUXURY BRANDS? iv LIST OF TABLES Table 2.1: Summary of definitions 14 Table 2.2: Summary of hypotheses 15 Table 3.1: Measurement scales 19 Table 3.2: Summary of research criteria 24 Table 4.1: In-depth interview results 26 Table 4.2: Demographics .28 Table 4.3: Cronbach‘s alpha 29 Table 4.4: Item-total statistics for productknowledge scale 29 Table 4.5: Item-total statistics for counterfeit purchase intention scale 30 Table 4.6: Cronbach‘s alphas after item reduction 31 Table 4.7: KMO and Bartlett‘s test 32 Table 4.8: Promax rotation with Kaiser Normalization, k=4 33 Table 4.9: Modification indices covariances 34 Table 4.10: Composite score and average variance extracted .36 Table 4.11: Square root of average variance extracted and correlations 37 Table 4.12: Modified scales 37 Table 4.13: Summary of research criteria results 38 Table 4.14: Hierarchical multiple regression – Model A 40 Table 4.15: Hierarchical multiple regression – Model B 41 Table 4.16: Hierarchical multiple regression – Model C 42 Table 4.17: Hypothesis test results 45 WHATEFFECT CONSUMERS‘ INTENTIONTOBUYCOUNTERFEITLUXURY BRANDS? v LIST OF FIGURES Figure 2.1: Conceptual model 16 Figure 3.1: Research process 17 Figure 4.1: Modified confirmatory factor analysis model .35 Figure 4.2: Moderation effectofproductinvolvement on the relationship between valueexpressive function andcounterfeit purchase intention 40 Figure 4.3: Moderation effectofproductknowledge on the relationship between socialadjustive function andcounterfeit purchase intention 43 WHATEFFECT CONSUMERS‘ INTENTIONTOBUYCOUNTERFEITLUXURY BRANDS? ABSTRACT In recent years, luxury market is growing fast worldwide—particularly in Asia However, along with the growth is the emerging threat from counterfeits Despite many works on counterfeiting, more works are needed to investigate the impacts of psychological aspects on counterfeit purchasing intention Furthermore, the interaction effects ofthe psychological factors and two important constructs in consumer behavioral studies— productinvolvementandproduct knowledge—were also examined to further understand the problem In order to achieve the research objectives, five respondents took part in in-depth interviews to check the wordings of a 25-item questionnaire The revised questionnaire was used in the main survey 248 respondents participated in the survey, and 201 usable answers were retained Tests were conducted to examine the validity and reliability ofthe measurement scales, which resulted in the elimination of an item The hypotheses were then tested with hierarchical multiple regression method The results fromthe tests indicated that social-adjustive function significantly affected counterfeit purchase intention (p < 001) On the contrary, theeffectof valueexpressive function was found to be positive (β = 078) but insignificant (p = 271) Regarding tothe moderation effects, the interaction between productinvolvementand value-expressive function negatively and significantly affected counterfeit purchase intention (p = 029), while the impacts ofthe interaction between productinvolvementand social-adjustive function turned out to be insignificant (p = 268) The results also claimed that social-adjustive function was found to be negatively moderated by productknowledge (p = 042) It can be inferred fromthe findings that luxurybrands focusing on communicating the social-adjustive functions are more likely to face the risk of counterfeiting than those focusing on the value-expressive functions In order to reduce customers‘ intentiontobuy counterfeits, two marketing combinations—value-expressive function focused combined with campaigns strengthening product involvement, and social-adjustive focused combined WHATEFFECT CONSUMERS‘ INTENTIONTOBUYCOUNTERFEITLUXURY BRANDS? with campaigns strengthening product knowledge—are advised to be taken into consideration seriously, while other combinations have not been proven to be effective yet and require further investigation WHATEFFECT CONSUMERS‘ INTENTIONTOBUYCOUNTERFEITLUXURY BRANDS? Chapter INTRODUCTION This chapter tends to introduce the situation and characteristics ofluxury brands, as well as their war against counterfeits Chapter also summarizes previous studies on the subject, as well as the gaps should be filled Research objectives, research questions and research scope are stated Research structure is also described 1.1 Research background This section investigates the growing market ofluxurybrandsand products worldwide, especially in Asian countries It also gives an overview of battle against counterfeiting ofluxurybrands 1.1.1 The emerging luxury market In recent years, the market for luxury products is expanding faster and faster Though there are still disagreements in estimating luxury market size due to different methods, researchers all agree on the fast increase ofthe market (Heine & Phan, 2011; Ho, Moon, Kim, & Yoon, 2012; Truong, McColl, & Kitchen, 2008) According to Truong et al (2008), this fast increase oftheluxury market is due to two main reasons: Firstly, the economy has been better recently with improved business environment, resulting in lower unemployment rates (which lead to higher income and consumption) and lower production costs (which understandably lead to production expansion) Secondly, the market ofluxury products now does not contain only wealthy consumers, but also lower-class ones Truong et al (2008) summarize that the low-class consumers nowadays tend to purchase luxury products to imitate the high-class, to gain good feelings for the purpose of self-rewarding, or simply due tothe high-quality This results in a new kind ofluxury brand—which Truong et al (2008) call the masstige—a portmanteau of mass market and prestige market, indicating that theluxury market is now open tothe mass Moreover, Cavender and Kincade (2013) also state theroleof lower entry barriers Thanks to globalization, the level of managing and conducting business raises consequently, which enables potential players to join the luxury- WHATEFFECT CONSUMERS‘ INTENTIONTOBUYCOUNTERFEITLUXURY BRANDS? Appendix C Cronbach‘s alpha Value-expressive function Reliability Statistics Cronbach's Alpha N of Items 880 Item-Total Statistics Scale Mean if Item Scale Variance if Deleted Item Deleted VE1 VE2 VE3 VE4 10.87 10.69 10.49 11.17 Corrected Item- Cronbach's Alpha Total Correlation if Item Deleted 17.593 17.186 16.201 17.545 699 776 770 717 861 833 834 855 Social-adjustive function Reliability Statistics Cronbach's Alpha N of Items 835 Item-Total Statistics Scale Mean if Item Scale Variance if Deleted Item Deleted SA1 SA2 SA3 SA4 12.79 12.27 12.84 12.92 Corrected Item- Cronbach's Alpha Total Correlation if Item Deleted 16.746 16.520 15.528 15.844 568 668 761 672 835 790 748 788 Productknowledge Reliability Statistics Cronbach's Alpha N of Items 817 Item-Total Statistics Scale Mean if Item Scale Variance if Deleted Item Deleted PK1 PK2 PK3 10.25 10.24 9.76 18.988 18.045 20.223 Corrected Item- Cronbach's Alpha Total Correlation if Item Deleted 709 716 465 740 732 852 57 WHATEFFECT CONSUMERS‘ INTENTIONTOBUYCOUNTERFEITLUXURY BRANDS? Item-Total Statistics Scale Mean if Item Scale Variance if Deleted Item Deleted PK1 PK2 PK3 PK4 10.25 10.24 9.76 10.09 Corrected Item- Cronbach's Alpha Total Correlation if Item Deleted 18.988 18.045 20.223 17.782 709 716 465 687 740 732 852 745 Productknowledge after deleting PK3 Reliability Statistics Cronbach's Alpha N of Items 852 Item-Total Statistics Scale Mean if Item Scale Variance if Deleted Item Deleted PK1 PK2 PK4 6.56 6.56 6.40 Corrected Item- Cronbach's Alpha Total Correlation if Item Deleted 10.227 9.218 9.512 727 774 675 793 743 843 Productinvolvement Reliability Statistics Cronbach's Alpha N of Items 933 10 Item-Total Statistics Scale Mean if Item Scale Variance if Deleted Item Deleted PI1 PI2 PI3 PI4 PI5 PI6 PI7 PI8 PI9 PI10 42.47 42.48 42.66 42.48 42.14 42.46 42.22 42.08 42.04 42.28 124.070 127.291 124.475 119.221 121.734 125.059 118.212 119.984 120.218 116.864 Counterfeit purchase intention Reliability Statistics Cronbach's Alpha N of Items Corrected Item- Cronbach's Alpha Total Correlation if Item Deleted 677 625 686 771 743 712 823 784 756 770 929 931 929 924 926 927 922 924 925 925 58 WHATEFFECT CONSUMERS‘ INTENTIONTOBUYCOUNTERFEITLUXURY BRANDS? Reliability Statistics Cronbach's Alpha N of Items 896 Item-Total Statistics Scale Mean if Item Scale Variance if Deleted Item Deleted CP1 CP2 CP3 5.83 5.85 6.28 10.575 10.698 12.184 Corrected Item- Cronbach's Alpha Total Correlation if Item Deleted 850 870 674 802 786 952 59 WHATEFFECT CONSUMERS‘ INTENTIONTOBUYCOUNTERFEITLUXURY BRANDS? Appendix D Exploratory factor analysis KMO and Bartlett’s test KMO and Bartlett's Test Kaiser-Meyer-Olkin Measure of Sampling Adequacy Bartlett's Test of Sphericity Approx Chi-Square 868 3.270E3 df 276 Sig .000 Factor loading, Promax rotation with Kaiser Normalisation, k=4 Structure Matrix Component PI7 PI8 PI10 PI9 PI4 PI5 PI6 PI3 PI1 PI2 VE2 VE3 VE1 VE4 SA3 SA4 SA2 SA1 CP2 CP1 CP3 PK2 PK1 PK4 866 846 822 820 813 799 765 742 738 676 236 226 166 229 304 236 294 169 027 070 054 354 417 348 287 165 335 088 197 263 259 106 138 160 880 868 836 836 374 380 440 391 073 109 071 221 290 186 315 158 266 169 252 279 262 217 187 298 395 501 357 388 881 838 811 738 236 268 162 303 316 381 209 -.037 204 -.016 098 153 104 -.099 -.142 102 116 147 037 051 252 141 205 260 941 933 834 021 042 022 312 185 368 223 489 283 418 420 329 442 271 224 112 297 411 374 295 153 -.039 -.003 088 905 877 828 Extraction Method: Principal Component Analysis Rotation Method: Promax with Kaiser Normalization 60 WHATEFFECT CONSUMERS‘ INTENTIONTOBUYCOUNTERFEITLUXURY BRANDS? Appendix E Confirmatory factor analysis Original model Regression weights VE1 VE2 VE3 VE4 < < < < - value-expressive function value-expressive function value-expressive function value-expressive function Estimate 1.000 1.081 1.202 1.031 S.E C.R P 093 101 095 11.682 11.854 10.898 *** *** *** Label 61 WHATEFFECT CONSUMERS‘ INTENTIONTOBUYCOUNTERFEITLUXURY BRANDS? SA1 SA2 SA3 SA4 PK1 PK2 PK4 CP1 CP2 CP3 PI1 PI2 PI3 PI4 PI5 PI6 PI7 PI8 PI9 PI10 < < < < < < < < < < < < < < < < < < < < - social-adjustive function social-adjustive function social-adjustive function social-adjustive function ProductknowledgeProductknowledgeProductknowledgeCounterfeit purchase intentionCounterfeit purchase intentionCounterfeit purchase intentionProductinvolvementProductinvolvementProductinvolvementProductinvolvementProductinvolvementProductinvolvementProductinvolvementProductinvolvementProductinvolvementProductinvolvement Estimate 1.000 1.089 1.304 1.238 1.000 1.113 1.010 1.000 1.000 728 1.000 886 986 1.267 1.191 990 1.355 1.233 1.208 1.417 S.E C.R P 131 142 142 8.306 9.206 8.714 *** *** *** 087 090 12.788 11.282 *** *** 045 059 22.276 12.354 *** *** 105 110 123 116 104 122 118 120 134 8.463 8.975 10.303 10.276 9.476 11.119 10.425 10.038 10.607 *** *** *** *** *** *** *** *** *** 62 Label Standardized regression weights VE1 VE2 VE3 VE4 SA1 SA2 SA3 SA4 PK1 PK2 PK4 CP1 CP2 CP3 PI1 PI2 PI3 PI4 PI5 PI6 PI7 PI8 PI9 PI10 < < < < < < < < < < < < < < < < < < < < < < < < - value-expressive function value-expressive function value-expressive function value-expressive function social-adjustive function social-adjustive function social-adjustive function social-adjustive function ProductknowledgeProductknowledgeProductknowledgeCounterfeit purchase intentionCounterfeit purchase intentionCounterfeit purchase intentionProductinvolvementProductinvolvementProductinvolvementProductinvolvementProductinvolvementProductinvolvementProductinvolvementProductinvolvementProductinvolvementProductinvolvement Estimate 749 837 851 782 622 732 869 784 833 865 749 942 965 691 676 642 685 799 796 727 872 810 776 826 Modification Indices Covariances M.I Par Change M.I Par Change e24 < > CPI 5.968 0.305 e15 < > CPI 9.323 -0.411 e24 < > VEF 5.743 0.193 e15 < > e24 11.192 -0.284 WHATEFFECT CONSUMERS‘ INTENTIONTOBUYCOUNTERFEITLUXURY BRANDS? e22 < > CPI 5.305 -0.263 e15 < > e21 e22 < > PK 11.132 -0.279 e15 < > e20 19.3 0.348 e22 < > e23 64.906 0.575 e15 < > e19 6.129 -0.194 e21 < > CPI 4.828 0.223 e15 < > e17 38.327 0.547 e21 < > PK 4.022 -0.149 e13 < > e23 4.053 0.106 e21 < > e24 13.767 0.234 e12 < > e23 7.567 -0.152 e21 < > e23 6.871 -0.165 e11 < > SAF 7.617 0.223 e20 < > PK 4.314 0.177 e11 < > e14 5.918 0.294 e19 < > e24 7.068 0.192 e11 < > e13 4.019 -0.131 e19 < > e23 7.997 -0.203 e10 < > e22 6.632 -0.191 e19 < > e21 25.801 0.296 e10 < > e18 5.924 0.192 e19 < > e20 8.571 -0.198 e10 < > e16 5.667 0.201 e18 < > PK 10.256 0.285 e10 < > e13 5.203 0.124 e18 < > e22 9.155 -0.211 e9 < > e20 14.065 0.273 e17 < > CPI 4.37 -0.271 e8 < > e24 5.803 -0.202 e17 < > PK 4.88 0.21 e8 < > e11 6.026 0.253 e17 < > e24 11.867 -0.281 e7 < > VEF 4.45 -0.154 e17 < > e21 10.853 -0.218 e6 < > e19 6.051 0.191 e17 < > e20 7.691 0.212 e5 < > e24 4.057 0.203 e17 < > e19 5.405 -0.175 e5 < > e19 5.28 -0.213 e16 < > PK 4.751 0.208 e5 < > e8 4.1 -0.215 e16 < > e22 7.889 -0.211 e3 < > SAF 4.652 0.138 e16 < > e18 9.006 0.239 e1 < > e5 9.682 0.332 CMIN Model Default model Saturated model Independence model NPAR 58 300 24 CMIN 525.735 000 3421.605 DF 242 276 P 000 CMIN/DF 2.172 000 12.397 RMR, GFI Model Default model Saturated model Independence model RMR 153 000 846 GFI 817 1.000 264 AGFI 773 PGFI 659 200 243 RFI rho1 825 IFI Delta2 911 1.000 000 TLI rho2 897 Baseline Comparisons Model Default model Saturated model Independence model NFI Delta1 846 1.000 000 000 000 CFI 910 1.000 000 RMSEA Model Default model Independence model RMSEA 077 239 LO 90 068 232 HI 90 086 246 PCLOSE 000 000 7.233 63 -0.185 WHATEFFECT CONSUMERS‘ INTENTIONTOBUYCOUNTERFEITLUXURY BRANDS? Modified model Regression weights VE1 VE2 VE3 VE4 SA1 SA2 < < < < < < - VEF VEF VEF VEF SAF SAF Estimate 1.000 1.082 1.203 1.031 1.000 1.088 S.E C.R P 093 101 095 11.683 11.854 10.897 *** *** *** 131 8.308 *** Label 64 WHATEFFECT CONSUMERS‘ INTENTIONTOBUYCOUNTERFEITLUXURY BRANDS? SA3 SA4 PK1 PK2 PK4 CP1 CP2 CP3 PI1 PI2 PI3 PI4 PI5 PI6 PI7 PI8 PI9 < < < < < < < < < < < < < < < < < - SAF SAF PK PK PK CPI CPI CPI PI PI PI PI PI PI PI PI PI Estimate 1.304 1.238 1.000 1.112 1.009 1.000 999 728 1.000 923 988 1.320 1.192 1.019 1.375 1.202 1.181 S.E .142 142 C.R 9.210 8.717 P *** *** 087 089 12.831 11.296 *** *** 045 059 22.289 12.356 *** *** 111 087 132 124 111 131 125 127 8.339 11.392 10.035 9.643 9.189 10.528 9.605 9.281 *** *** *** *** *** *** *** *** Label Standardized regression weights VE1 VE2 VE3 VE4 SA1 SA2 SA3 SA4 PK1 PK2 PK4 CP1 CP2 CP3 PI1 PI2 PI3 PI4 PI5 PI6 PI7 PI8 PI9 PI10 < < < < < < < < < < < < < < < < < < < < < < < < - VEF VEF VEF VEF SAF SAF SAF SAF PK PK PK CPI CPI CPI PI PI PI PI PI PI PI PI PI PI Estimate 749 837 851 782 622 731 869 784 834 865 749 942 965 691 660 653 670 813 779 731 865 771 741 833 CMIN Model Default model Saturated model Independence model NPAR 61 300 24 CMIN 391.168 000 3421.605 DF 239 276 P 000 CMIN/DF 1.637 000 12.397 65 WHATEFFECT CONSUMERS‘ INTENTIONTOBUYCOUNTERFEITLUXURY BRANDS? RMR, GFI Model Default model Saturated model Independence model RMR GFI AGFI PGFI 144 000 846 863 1.000 264 828 688 200 243 RFI rho1 868 IFI Delta2 952 1.000 000 TLI rho2 944 Baseline Comparisons Model Default model Saturated model Independence model NFI Delta1 886 1.000 000 000 000 CFI 952 1.000 000 RMSEA Model Default model Independence model RMSEA 056 239 LO 90 046 232 HI 90 066 246 PCLOSE 146 000 66 WHATEFFECT CONSUMERS‘ INTENTIONTOBUYCOUNTERFEITLUXURY BRANDS? 67 Appendix F Pearson correlation test Correlations ValueExpressive SocialAdjustive ValueExpressive Pearson Correlation Sig (2-tailed) N SocialAdjustive ProductKnowledge ProductInvolvement CounterfeitPurchase Intention Pearson Correlation 201 496 ** Sig (2-tailed) 000 N 201 Pearson Correlation ProductKnowled CounterfeitPurchas ge ProductInvolvement eIntention 496** 271** 254** 078 000 000 000 271 201 201 201 201 388 ** 311 ** 248** 000 000 000 201 201 201 201 271** 388** 438** 020 Sig (2-tailed) 000 000 000 780 N 201 201 201 201 201 Pearson Correlation 254** 311** 438** 058 Sig (2-tailed) 000 000 000 416 N 201 201 201 201 201 Pearson Correlation 078 248** 020 058 Sig (2-tailed) 271 000 780 416 N 201 201 201 201 ** Correlation is significant at the 0.01 level (2tailed) 201 WHATEFFECT CONSUMERS‘ INTENTIONTOBUYCOUNTERFEITLUXURY BRANDS? 68 Appendix G Hierarchical multiple regression tests Model A Model Summaryd Change Statistics Model R R Square Adjusted R Square Std Error ofthe Estimate R Square Change F Change df1 df2 Sig F Change DurbinWatson 078a 078b 173c 006 006 030 001 -.004 015 1.62697 1.63107 1.61557 006 000 024 1.220 000 4.819 1 199 198 197 271 984 029 1.783 a Predictors: (Constant), ValueExpressive b Predictors: (Constant), ValueExpressive, PIcategorized c Predictors: (Constant), ValueExpressive, PIcategorized, VExPI d Dependent Variable: CounterfeitPurchaseIntention ANOVAd Model Sum of Squares df Mean Square F Sig 3.230 3.230 1.220 271a Residual 526.761 199 2.647 Total 529.991 200 3.231 1.616 607 546b Residual 526.760 198 2.660 Total 529.991 200 Regression 15.808 5.269 2.019 113c Residual 514.183 197 2.610 Total 529.991 200 Regression Regression a Predictors: (Constant), ValueExpressive b Predictors: (Constant), ValueExpressive, PIcategorized c Predictors: (Constant), ValueExpressive, PIcategorized, VExPI d Dependent Variable: CounterfeitPurchaseIntention Coefficientsa Unstandardized Coefficients Model B Std Error (Constant) 2.655 327 ValueExpressive 094 085 (Constant) 2.654 331 ValueExpressive 094 088 PIcategorized 005 238 (Constant) 1.954 457 ValueExpressive 308 131 Standardized Coefficients Beta t Sig 8.117 000 1.105 271 8.019 000 078 1.063 289 001 020 984 4.272 000 2.353 020 078 256 WHATEFFECT CONSUMERS‘ INTENTIONTOBUYCOUNTERFEITLUXURY BRANDS? PIcategorized 1.373 666 422 2.061 041 VExPI -.385 175 -.519 -2.195 029 69 a Dependent Variable: CounterfeitPurchaseIntention Model B Model Summaryd Change Statistics Model R R Square Adjusted R Square Std Error ofthe Estimate R Square Change F Change df1 df2 Sig F Change DurbinWatson 248a 250b 262c 061 063 069 057 053 054 1.58098 1.58391 1.58298 061 001 006 13.038 265 1.234 1 199 198 197 000 607 268 1.735 a Predictors: (Constant), SocialAdjustive b Predictors: (Constant), SocialAdjustive, PIcategorized c Predictors: (Constant), SocialAdjustive, PIcategorized, SAxPI d Dependent Variable: CounterfeitPurchaseIntention ANOVAd Model Sum of Squares df Mean Square F Sig Regression 32.589 32.589 13.038 000a Residual 2.500 6.628 002b 4.835 003c 497.402 199 Total 529.991 200 Regression 33.254 16.627 Residual 496.737 198 2.509 Total 529.991 200 Regression 36.345 12.115 Residual 493.646 197 2.506 Total 529.991 200 a Predictors: (Constant), SocialAdjustive b Predictors: (Constant), SocialAdjustive, PIcategorized c Predictors: (Constant), SocialAdjustive, PIcategorized, SAxPI d Dependent Variable: CounterfeitPurchaseIntention Coefficientsa Unstandardized Coefficients Standardized Coefficients Model B Std Error Beta (Constant) 1.683 380 SocialAdjustive 309 086 (Constant) 1.701 382 SocialAdjustive 320 088 256 PIcategorized -.118 229 -.036 (Constant) 1.248 559 SocialAdjustive 435 136 248 348 t Sig 4.432 000 3.611 000 4.453 000 3.628 000 -.515 607 2.234 027 3.197 002 WHATEFFECT CONSUMERS‘ INTENTIONTOBUYCOUNTERFEITLUXURY BRANDS? PIcategorized 710 780 218 910 364 SAxPI -.198 178 -.299 -1.111 268 70 a Dependent Variable: CounterfeitPurchaseIntention Model C Model Summaryc Change Statistics Model R R Square Adjusted R Square Std Error ofthe Estimate R Square Change F Change df1 df2 Sig F Change DurbinWatson 267a 302b 072 091 062 077 1.57648 1.56387 072 019 7.625 4.206 198 197 001 042 1.685 a Predictors: (Constant), PKcategorized, SocialAdjustive b Predictors: (Constant), PKcategorized, SocialAdjustive, SAxPK c Dependent Variable: CounterfeitPurchaseIntention ANOVAc Model Sum of Squares df Mean Square F Sig Regression 37.901 18.950 7.625 001a Residual 492.090 198 2.485 Total 529.991 200 Regression 48.188 16.063 6.568 000b Residual 481.803 197 2.446 Total 529.991 200 a Predictors: (Constant), PKcategorized, SocialAdjustive b Predictors: (Constant), PKcategorized, SocialAdjustive, SAxPK c Dependent Variable: CounterfeitPurchaseIntention Coefficientsa Unstandardized Coefficients Model B Std Error (Constant) 1.677 379 SocialAdjustive 359 092 PKcategorized -.354 242 (Constant) 748 588 SocialAdjustive 612 153 PKcategorized 1.218 803 SAxPK -.391 191 a Dependent Variable: CounterfeitPurchaseIntention Standardized Coefficients Beta t Sig 4.429 000 288 3.905 000 -.108 -1.462 145 1.272 205 490 3.990 000 371 1.516 131 -.601 -2.051 042 WHATEFFECT CONSUMERS‘ INTENTIONTOBUYCOUNTERFEITLUXURY BRANDS? 71 Moderation effects ofproductknowledge on the relationship between social-adjustive function andcounterfeit purchase intention Moderation effects ofproductinvolvement on the relationship between valueexpressive function andcounterfeit purchase intention ... effects WHAT EFFECT CONSUMERS INTENTION TO BUY COUNTERFEIT LUXURY BRANDS? 12 Consumers tend to purchase counterfeits, especially those of trendy brands brands containing high level of social-adjustive... Moderation effect of product knowledge on the relationship between socialadjustive function and counterfeit purchase intention 43 WHAT EFFECT CONSUMERS INTENTION TO BUY COUNTERFEIT LUXURY BRANDS? ... those in the case of lowinvolvement products WHAT EFFECT CONSUMERS INTENTION TO BUY COUNTERFEIT LUXURY BRANDS? 13 Besides, as proposed by Bian and Moutinho (2011), when the product involvement