1. Trang chủ
  2. » Giáo án - Bài giảng

Hàm lồi suy rộng và ứng dụng

50 305 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 50
Dung lượng 471,07 KB

Nội dung

Hàm lồi suy rộng và ứng dụng Hàm lồi suy rộng và ứng dụng Hàm lồi suy rộng và ứng dụng Hàm lồi suy rộng và ứng dụng Hàm lồi suy rộng và ứng dụng Hàm lồi suy rộng và ứng dụng Hàm lồi suy rộng và ứng dụng Hàm lồi suy rộng và ứng dụng Hàm lồi suy rộng và ứng dụng Hàm lồi suy rộng và ứng dụng Hàm lồi suy rộng và ứng dụng Hàm lồi suy rộng và ứng dụng Hàm lồi suy rộng và ứng dụng Hàm lồi suy rộng và ứng dụng Hàm lồi suy rộng và ứng dụng Hàm lồi suy rộng và ứng dụng Hàm lồi suy rộng và ứng dụng v Hàm lồi suy rộng và ứng dụng Hàm lồi suy rộng và ứng dụng Hàm lồi suy rộng và ứng dụng Hàm lồi suy rộng và ứng dụng

ổ tọ ỏ t ỡ s s tợ P trữớ sữ ữợ t t tổ t ổ t ỡ ổ trữớ ữ tr tử tự tổ tr sốt q tr t ứ q ổ ỡ ỡ q ỗ s ú ù t t ủ tổ t t ứ ụ Ket-noi.com Ket-noi.com kho kho tai tai lieu lieu mien mien phi phi ữủ t t trữớ sữ ữợ sỹ ữợ P ổ t q ự r tổ tr q tr ự t tổ tứ t q ợ sỹ tr trồ t ỡ tổ t tr tr ữủ ró ỗ ố t ứ ụ ử ỡ ởt số tự ổ t tử t số ỗ ỗ t tố ữ ỗ s rở tỹ ỗ ỗ Ket-noi.com Ket-noi.com kho kho tai tai lieu lieu mien mien phi phi ố q ỳ ỳ ỗ s rở ỵ tt tố ữ t tố ữ ợ r t tố ữ õ r t tự t t R Rn R = R {, +} f :XR int A A dom(f ) epi(f ) (x) f (x) (x) f (x) ||.|| |x| af f (A) coA (x, y) = {x + (1 )y | (0, 1)} (x, y] = {x + (1 )y | (0, 1]} [x, y] = {x + (1 )y | [0, 1]} L(f, ) = {x X | f (x) } ữớ t tỹ ổ t số tỹ s rở tứ R tr A õ A ỳ f tr ỗ t f t x rt f t x varphi t x tr ss f t x tr ổ Rn tr tt ố số x ỗ A ỗ A t ố x y t ố x y t õ ố x y t ự ữợ Ket-noi.com Ket-noi.com kho kho tai tai lieu lieu mien mien phi phi é ỵ t ỗ ỗ s rở õ ởt trỏ q trồ tr ỵ tt tố ữ ỳ t tr tr õ ỗ s rở ữủ t q t ự t ữủ t q s s tỹ ỗ ỗ ữủ sr tr tr ss ự t t trữ tỹ ỗ ỗ ổ trỡ q t tỹ ỡ ỡ ữợ õ ố q ỳ tr s ss ự tỹ ỗ t tỹ ỗ t ổ trỡ ữủ ỳ tự t ợ ố t s ỡ ỳ tự ố q ự ú tổ t ự ỗ s rở ự ự t tờ q ỗ s rở ữủ ỳ t t ỡ ỗ s rở ỳ ự tố ữ õ ự ỗ s rở ỳ t t ỡ ỗ s rở ỳ ự ỗ s rở t tự tố ữ õ ố tữủ ự ỗ s rở tr ổ Pữỡ ự t t ỗ ỗ s rở t tờ ủ ữủ ởt ự tờ q ỗ s rở ự ỹ õ õ ợ t ự tờ q ỗ s rở ự Ket-noi.com Ket-noi.com kho kho tai tai lieu lieu mien mien phi phi ữỡ ởt số tự r ữỡ ú t s tr ỳ ỡ t t ỗ ỗ tr ổ Rn ũ ợ ỳ t t trữ õ ỳ tự tr tr ữỡ ữủ tứ t ổ t ủ Rn := {x = (x1 , , xn )T : x1 , , xn R}, tr õ x1 x x = (x1 , , xn )T := xn ợ t (x1 , , xn )T + (y1 , , yn )T := (x1 + y1 , , xn + yn )T (x1 , , xn )T := (x1 , , xn )T , R t ởt ổ tỡ t n x = (x1, , xn)T Rn t xi t tồ tự i x tỡ ổ ổ ố Rn ữủ ỡ = (0, , 0)T r Rn t t ổ ữợ t , ữ s ợ x = (x1 , , xn )T , y = (y1 , , yn )T Rn n x, y = õ ợ x = (x1, , xn)T xi y i i=1 Rn t n x := (xi )2 x, x = i=1 tỡ x x0 Rn > t t B(x0 , ) := {x Rn : x x0 < } tr Rn õ t t x0 U Rn ợ x0 U tỗ t > s B(x0 , ) U F Rn õ U := Rn \ F V Rn x Rn tỗ t > s B(x, ) V tử t số f ữủ ỷ tử ữợ t x Rn ợ f (x) < ợ > tỗ t U x s Ket-noi.com Ket-noi.com kho kho tai tai lieu lieu mien mien phi phi f (x) f (y) (y U ) f (x) = + t ữủ ỷ tử ữợ t x ợ N > tỗ t U x s f (y) N (y U ) f ữủ ỷ tử ữợ f ỷ tử ữợ t x Rn f : X R õ f tử t x0 X ợ > tỗ t > s ợ x X B(x0, ) t õ f (x0 ) B(x0 , ) õ f tử tr X f tử t x0 X U Rn t số f : U R x0 = (x01 , , x0n )T U õ tỗ t > s ợ h R |h| < t õ x(h) = (x0 , , x0i1 , x0i + h, x0i+1 , , x0n ) U tỗ t ợ f (x0 , , x0i1 , x0i + h, x0i+1 , , x0n ) f (x0 ) lim h h0 t t õ r t xi f t x0 f (x ) xi f õ r ( fxi (x0 ) i = 1, , n t tỡ f xi (x ) f f T (x ), , (x )) x1 xn rt f t x0 ữủ f (x0 ) = ( f f T (x ), , (x )) x1 xn f f r x (x) tỗ t t x U t t õ x :U f R q t x x (x) tỗ t r t i i i Ket-noi.com Ket-noi.com kho kho tai tai lieu lieu mien mien phi phi f (x) < f ( x) = f ( x) < f ( x), t õ ổ tỗ t x ữ t t õ f tỹ ỗ tr X s r r ữủ tr ỵ ổ ú f : R R x ợ x f (x) = ợ < x < x ợ x õ f tỹ ỗ tr R ữ ợ x = 1/2 y = 1/2 = 1/10 t õ f (x) < f (y) f (x + (1 )y) = f (y) ỗ r ú t t ỳ ỗ õ t ũ s f : X R tr t X Rn õ f ỗ tr X x, y X, (x y), f (y) = f (x) f (y), ởt tữỡ ữỡ x, y X, f (x) < f (y) = (x y), f (y) < f ó f ỗ f : R R f (x) = x3 x ỗ tr R ỳ ổ ỗ ữ ỵ r ỗ tr trữớ ủ tờ qt ữ s tữỡ ữỡ ợ tr tr trữớ ủ õ f : X R ỗ tr t ỗ X Rn t õ ợ x, y X (0, 1) f (x) < f (y) = f (x + (1 )y) f (y) (1 )(x, y), tr õ (x, y) ởt số ữỡ tở x y f : X R tr t ỗ õ f ỗ tr X X Rn x X, y = 0, y, f (x) = = g(t) = f (x + ty), ợ t t ỹ t ữỡ t t = ự sỷ f ỗ tf (x) ợ t õ t õ f (x + ty) f (x) g(t) = f (x + ty) t ỹ t t t = ữủ sỷ ỵ ữủ tọ (x y), f (y) s r r f (y) f (x) t g(t) = f (y +t(xy)), t [0, 1] sỷ ự r f (x) < f (y) g(1) < g(0) g (0) > (xy), f (y) > t g t ỹ t ởt t0 (0, 1) õ g (t0) = (x y), f (y + t0 (x y)) = t0 ổ ỹ t ữỡ g t ợ tt g (0) = (x y), f (y) = t t tt t = ỹ t ữỡ g y ỹ t ữỡ f Ket-noi.com Ket-noi.com kho kho tai tai lieu lieu mien mien phi phi ữ õ ũ ợ tt ự g(1) < g(0) s s r sỹ tỗ t ởt ỹ ữỡ t0 (0, 1) g g (t0) = t ữủ t ợ tt f : X R tử tr t ỗ X Rn õ f ỗ tr X ợ x X f (x) = = y, 2f (x)y ữ f (x) = t f õ ỹ t ữỡ t x ự f : X R tr t ỗ X f f ỗ t t õ f t t Rn f : X R tr õ X Rn ởt t ỗ õ s tữỡ ữỡ f t t ợ tũ ỵ x, y X (xy), f (y) = f (x) = f (y) ự sỷ f t t õ t t õ (x y), f (y) = = f (x) = f (y) f ụ tỹ t t t õ f (x) = f (y) = (x y), f (y) = õ t t ữợ y, f (x) = f (x + ty) = f (x), t : x + ty X, y, f (x) = g(t) = f (x + ty) t ỹ t t t = ữ f f ỗ t õ f t t f : X R tr t X Rn õ f ỗ t tr X x, y X, x = y f (x) f (y) = (x y), f (y) > , ởt tữỡ ữỡ x, y X, x = y (x y), f (y) = f (x) < f (y) t t ỗ t s r t ỗ f : X R tr t ỗ õ f ỗ t tr X X Rn x X y = 0, y, f (x) = = g(t) = f (x + ty), ợ t t ỹ t ữỡ t t t = ự ữỡ tỹ ữ ự tr ỵ f : X R tử tr t ỗ X Rn õ f ỗ t tr X x X, y = 0, y, f (x) = = g(t) = f (x + ty), ợ t t = ự y, f (x)y > y, f (x)y = t ỹ t ữỡ t t Ket-noi.com Ket-noi.com kho kho tai tai lieu lieu mien mien phi phi ố q ỳ ỳ ỗ s rở f : X R t f ỗ t f ỗ f ỗ t f ỗ f tỹ ỗ t f tỹ ỗ ỷt f tỹ ỗ õ i) ii) iv) vi) f ỷ tử ữợ vii) i) iii) iv) v), iv) vi) v) vi) ự t r õ s ổ f ỗ f tỹ ỗ ỷt f tỹ ỗ ỷt ỷ tử ữợ f tỹ ỗ ự sỷ f ỗ tr X x, y X tr õ X t ỗ tr Rn ợ f (x) < f (y) sỷ tỗ t (0, 1) s + (1 )y) f (y) f (x ỹ h() = f (x + (1 )y) (0, 1) õ t õ ợ x0 = 0x + (1 0)y h (0 ) = x y, f (x0 ) = f (x) < f (x0) tứ t ỗ f t õ x x0 , f (x0 ) < ữ x x0 = (1 )(x y), (0, 1) x y, f (x0 ) < t ợ h (0) = tr ỵ t ữủ ữợ ởt số s t tr R f1 (x) = x + x3 f2 (x) = x3 f3 = f4 = x2 x ợ ợ ợ (x 1)2 ợ x s f (x0 ) f (x) ợ x B(x0 , ) tr õ B(x0 , ) t x0 ) sỷ r tỗ t x1 X ữ ổ tở B(x0 , ) s f (x1 ) < f (x0 ) f tỹ ỗ t t õ f (x1 + (1 )x0 ) < f (x0 ), (0, 1) ữ ợ < / x1 x0 t õ x1 + (1 )x0 X B(x0, ) õ f (x0) f (x1 + (1 )x0) ợ < < / x1 x0 t ợ x0 t sỷ r f tỹ ỗ t tr X õ x0 ỹ t ữỡ (P1) t x0 ỹ t ữỡ t ỹ t t t (P1) ự sỷ x0 x ỹ t ữỡ (P1) f (x0) f (x) õ f tỹ ỗ t tr X t õ f (x0 + (1 )x) < f (x) ợ (0, 1) x ổ ữỡ ữ õ t ởt ỹ t ữỡ f tỹ ỗ ỷt ữỡ x0 t sỷ r f tỹ ỗ tr X õ x0 ỹ t ữỡ t (P1) t x0 ỹ t t t t (P1) ự sỷ x0 ỹ t ữỡ t (P1) tỗ t U x0 tr Rn s ợ x U X x = x0 t õ f (x0 ) < f (x) sỷ r x0 ổ ỹ t t t õ tỗ t x X x = x0 s f (x) f (x0) f tỹ ỗ t õ f ( x + (1 )x0 ) f (x0 ), [0, 1] ữ ợ ọ t õ x + (1 )x0 U X t ợ x0 ữỡ t Ket-noi.com Ket-noi.com kho kho tai tai lieu lieu mien mien phi phi sỷ r f ỗ tr t D X D õ x0 ỹ t ữỡ t (P1) (x x0 ), f (x0 ) 0, x X ự x0 (P1) t () = f (x0 +(xx0)) t ỹ t tr [0, 1] t = õ (x x0 ), f (x0 ) = (0) ữủ s r trỹ t tứ ỗ f ỗ tr t ỗ (P1) f (x0) = q X t x0 sỷ r f tr t D ự X t (P1) Sol(P1) f tỹ ỗ tr X t Sol(P1) t ỗ f ỗ t tỹ ỗ t tr X t Sol(P1) ự t ởt tỷ x0 Sol(P1) = Sol(P1) = {x0} õ Sol(P1) = t õ õ ởt tỷ ự ợ = min{f (x) | x X} t õ Sol(P1) = L(f, ) f tỹ ỗ L(f, ) ỗ õ Sol(P1) ỗ ợ f ỗ t tỹ ỗ t tr X t q s r tứ ỵ ỵ f ỗ t tr t ỗ Sol(P1 ) = {x0 } f (x0 ) = q X t t õ X Rn õ x0 ỹ t t t t r t (P1) ợ y Rn x0 ỹ t t ọ t f tr t X {x Rn | x = x0 + y, 0} X Rn õ x0 ỹ t ữỡ t t r t (P1) ợ y Rn tỗ t (y) s f (x0 ) ỹ t t ọ t f tr t X {x Rn | x = x0 + y, (0, (y))} ữ ỵ r ỹ t ữỡ t t ổ t tt ỹ t ữỡ t s P f : R2 R f (x, y) = (y x2 )(y 2x2 ) õ ữỡ t t t x0 (0, 0) ữ x0 = (0, 0) ổ ỹ t ữỡ ợ ỳ tỹ ỗ tr t ỗ X Rn t õ t t (P1) f tỹ ỗ tr X t ỹ t ữỡ t t ỹ t ữỡ ự t t (P1) f tỹ ỗ ỷ t tr X t x0 ỹ t t x0 ỹ t ữỡ t t ự Ket-noi.com Ket-noi.com kho kho tai tai lieu lieu mien mien phi phi t tố ữ õ r t tự t t t t {f (x) | x X, gi (x) 0, i = 1, , m} , (P2 ) tr õ X Rn t ỗ f, gi : Rn R i = 1, , m x ởt (P2) t I(x) = {i | gi(x) = 0} t số r t sỷ f tr (P2) tỹ ỗ ỷ t tr X ợ i / I(x) gi tỹ ỗ tr X ợ i / I(x) gi tử t x õ min{f (x) | x X, gi (x) x 0, i I(x )} = f (x ) ự sỷ ự r tỗ t x0 X s gi(x0) ợ i I(x) f (x0) < f (x) õ ợ ộ (0, 1) t õ x = x0 + (1 )x X f (x ) < f (x ), gi (x ) max{gi (x ), gi (x )}, i I(x ) ợ ộ i / I(x) gi(x) < gi tử t x t õ gi(x) < ợ ọ õ x tọ r t (P2 ) t ợ x tố ữ t ữỡ tr ự ỳ t t ỗ s rở ự ỳ t t t tố ữ Ket-noi.com Ket-noi.com kho kho tai tai lieu lieu mien mien phi phi t tr ởt õ tố s ởt số ỳ t t ỡ ỗ ỗ s rở ởt số ự t t ỗ s rở ự t tố ữ t t t ộ ữ P t ỗ tt ý Pũ t ỗ t t P r r rtr r qs t st rtss rss t Pr r rt r s qs r rr Prs r qs ts s Ket-noi.com Ket-noi.com kho kho tai tai lieu lieu mien mien phi phi r trt qs ts t tt rr t rr s rr t sr r rr r r t rtrt qs ts r Pst s t s Pr rrts r ts s

Ngày đăng: 28/03/2017, 09:26

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN