Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 103 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
103
Dung lượng
1,06 MB
Nội dung
Header Page of 16 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN *** Đỗ Đình Khải LẬPTRÌNHKIỂMSOÁTNHIỆTĐỘTHIẾTBỊPHẢNỨNGHÓAHỌC LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội – 2012 Footer Page of 16 Header Page of 16 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN *** Đỗ Đình Khải LẬPTRÌNHKIỂMSOÁTNHIỆTĐỘTHIẾTBỊPHẢNỨNGHÓAHỌC Chuyên ngành: Hóa kỹ thuật Mã số: 62 44 37 LUẬN VĂN THẠC SĨ KHOA HỌC Người hướng dẫn khoa học: TS Hoàng Văn Hà Hà Nội – 2012 Footer Page of 16 Header Page of 16 MỤC LỤC MỤC LỤC 5 LỜI CẢM ƠN 7 DANH MỤC BẢNG 8 DANH MỤC HÌNH 10 LỜI NÓI ĐẦU 14 CHƯƠNG TỔNG QUAN 15 1.1 Biodiezen 15 1.1.1 Khái niệm ưu nhược điểm trình sử dụng 15 1.1.2 Các tiêu chuẩn kỹ thuật 16 1.1.3 Tổng hợp biodiezen 19 1.1.3.1 Một vài nguyên liệu phổ biến 19 1.1.3.2 Một vài phương pháp tổng hợp 19 1.2 Thiết kế thiếtbị trao đổi nhiệt 24 1.2.1 Một vài thiếtbị trao đổi nhiệt thường gặp 24 1.2.2 Tính toán truyền nhiệt 26 1.3 Mô trình sử dụng Matlab – Simulink 30 CHƯƠNG PHƯƠNG PHÁP NGHIÊN CỨU VÀ TÍNH TOÁN 34 2.1 Đặt vấn đề 34 2.2 Thành phần dầu đậu nành nhãn hiệu Simply 36 2.3 Động họcphảnứng chuyển đổi este 38 2.4 Khối lượng riêng 47 Footer Page of 16 Header Page of 16 2.5 Nhiệt dung riêng 51 2.6 Độ dẫn nhiệt 54 2.7 Độ nhớt 56 2.8 Hệ số truyền nhiệt chung 61 2.9 Tính toán trình truyền nhiệt 61 2.10 Mô trình truyền nhiệt 70 CHƯƠNG KẾT QUẢ VÀ THẢO LUẬN 71 3.1 Biến thiên nồng độ chất độ chuyển hóa 71 3.2 Kiểmsoátnhiệtđộ cho trình truyền nhiệtthiếtbị CSTR 84 3.3 Ảnh hưởng điều kiện phảnứng tới việc kiểmsoátnhiệtđộphảnứngtrình truyền nhiệt 87 3.3.1 Kết mô Simulink điều kiện phảnứng giữ ổn định 88 3.3.2 Kết mô Simulink thay đổi nhiệtđộ dòng nguyên liệu 89 3.3.3 Kết mô Simulink thay đổi lưu lượng dòng cấp nhiệt 90 3.3.4 Kết mô Simulink thay đổi đồng thời nhiệtđộphảnứng lưu lượng dòng cấp nhiệt 92 3.3.5 Kết mô Simulink thay đổi đồng thời lưu lượng dòng cấp nhiệt, nhiệtđộ lưu lượng dòng nguyên liệu 94 KẾT LUẬN 97 TÀI LIỆU THAM KHẢO 100 Footer Page of 16 Header Page of 16 LỜI CẢM ƠN Em xin chân thành cảm ơn thầy TS Hoàng Văn Hà, Bộ môn Công nghệ hóa học, Khoa Hóa học, Trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội giao hướng dẫn em hoàn thành luận văn Em xin cảm ơn thầy cô, anh chị Bộ môn Công nghệ hóahọc Khoa Hóa học, Trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội động viên, tư vấn, hỗ trợ, tạo điều kiện trình thực đề tài Đỗ Đình Khải Footer Page of 16 Header Page of 16 DANH MỤC BẢNG Bảng 1.1 Tiêu chuẩn chất lượng biodiezen ASTM D 6751 16 Bảng 1.2 Tiêu chuẩn chất lượng biodiezen EN 14214 17 Bảng 1.3 Hiệu suất bị ảnh hưởng thời gian nhiệtđộphảnứng 21 Bảng 2.1 Thành phần axit béo dầu ăn Simply 36 Bảng 2.2 Thành phần axit béo dầu ăn Simply 38 Bảng 2.3 Các giá trị số ko 41 Bảng 2.4 Năng lượng hoạt hóa 41 Bảng 2.5 Sự phụ thuộc khối lượng riêng dầu ăn vào nhiệtđộ 47 Bảng 2.6 Sự phụ thuộc khối lượng riêng metanol vào nhiệtđộ 48 Bảng 2.7 Sự phụ thuộc khối lượng riêng glyxerol vào nhiệtđộ 49 Bảng 2.8 Sự phụ thuộc khối lượng riêng nước (ρ1) vào nhiệtđộ 49 Bảng 2.9 Nhiệt dung riêng dầu đậu nành phụ thuộc nhiệtđộ 51 Bảng 2.10 Nhiệt dung riêng metanol phụ thuộc nhiệtđộ 52 Bảng 2.11 Nhiệt dung riêng nước phụ thuộc nhiệtđộ 53 Bảng 2.12 Độ dẫn nhiệt metanol phụ thuộc nhiệtđộ 54 Bảng 2.13 Độ dẫn nhiệt nước phụ thuộc nhiệtđộ 55 Bảng 2.14 Độ nhớt dầu đậu nành phụ thuộc nhiệtđộ 56 Bảng 2.15 Độ nhớt metanol phụ thuộc nhiệtđộ 57 Bảng 2.16 Độ nhớt glyxerol phụ thuộc nhiệtđộ 57 Bảng 2.17 Độ nhớt nước phụ thuộc nhiệtđộ 58 Footer Page of 16 Header Page of 16 Bảng 2.18 Độ nhớt vài metyl este phụ thuộc nhiệtđộ 59 Bảng 3.1 Nồng độ chất thời điểm kết thúc phảnứng chế độ khuấy Re 6200 nhiệtđộ khác 78 Bảng 3.2 Nồng độ este thời điểm 1500 giây nhiệtđộ khác 79 Bảng 3.3 Thời gian đạt nồng độ este mong muốn nhiệtđộ khác 79 Bảng 3.4 Độ chuyển hóa thời điểm 1500 giây nhiệtđộ khác 79 Bảng 3.5 Thời gian đạt độ chuyển hóa mong muốn nhiệtđộ khác 80 Bảng 3.6 Sai lệch giá trị mô từ hai phần mềm 81 Footer Page of 16 Header Page of 16 DANH MỤC HÌNH Hình 1.1 Sự phụ thuộc định tính sản phẩm theo thời gian 22 Hình 1.2 Thiếtbị trao đổi nhiệt kiểu ống lồng ống 24 Hình 1.3 Thiếtbị trao đổi nhiệt kiểu giàn tưới 25 Hình 1.4 Thiếtbị trao đổi nhiệt kiểu ống chùm 25 Hình 1.5 Sơ đồthiếtbị trao đổi nhiệt kiểu ống xoắn 29 Hình 1.6 Thư viện khối chuẩn Simulink 32 Hình 1.7 Mô hình mô giá trị khối lượng riêng metanol thay đổi nhiệtđộ thay đổi 33 Hình 1.8 Biến thiên nhiệtđộ thay đổi giá trị khối lượng riêng metanol nhiệtđộ thay đổi 33 Hình 2.1 Sơ đồ mô thiếtbị truyền nhiệt 34 Hình 2.2 Phổ đồ xác định thành phần axit béo dầu ăn Simply 36 Hình 3.1 Biến thiên nồng độ chất trình chuyển hóa dầu đậu nành 60 phút 50oC Re 6200 theo kết thực nghiệm Noureddini 72 Hình 3.2 Biến thiên nồng độ chất trình chuyển hóa dầu đậu nành 60 phút 50oC Re 6200 mô Excel 72 Hình 3.3 Biến thiên nồng độ chất trình chuyển hóa dầu đậu nành 60 phút 50oC Re 6200 mô Matlab 72 Hình 3.4 Biến thiên nồng độ chất trình chuyển hóa dầu đậu nành 60 phút 55oC Re 6200 mô Excel 73 10 Footer Page of 16 Header Page of 16 Hình 3.5 Biến thiên nồng độ chất trình chuyển hóa dầu đậu nành 60 phút 55oC Re 6200 mô Matlab 73 Hình 3.6 Biến thiên nồng độ chất trình chuyển hóa dầu đậu nành 60 phút 60oC Re 6200 mô Excel 74 Hình 3.7 Biến thiên nồng độ chất trình chuyển hóa dầu đậu nành 60 phút 60oC Re 6200 mô Matlab 74 Hình 3.8 Biến thiên nồng độ chất trình chuyển hóa dầu đậu nành 60 phút 65oC Re 6200 mô Excel 75 Hình 3.9 Biến thiên nồng độ chất trình chuyển hóa dầu đậu nành 60 phút 65oC Re 6200 mô Matlab 75 Hình 3.10 Ảnh hưởng nhiệtđộ thời gian tới độ chuyển hóa tạo metyl este Re 6200 theo kết thực nghiệm Noureddini (■) 30oC, (▲) 40oC, (∆) 50oC, (●) 60oC, (□) 70oC 76 Hình 3.11 Biến thiên giá trị độ chuyển hóaphảnứng chuyển đổi este 60 phút, Re 6200, nhiệtđộ 50oC 76 Hình 3.12 Biến thiên giá trị độ chuyển hóaphảnứng chuyển đổi este 60 phút, Re 6200, nhiệtđộ 55oC 77 Hình 3.13 Biến thiên giá trị độ chuyển hóaphảnứng chuyển đổi este 60 phút, Re 6200, nhiệtđộ 60oC 77 Hình 3.14 Biến thiên giá trị độ chuyển hóaphảnứng chuyển đổi este 60 phút, Re 6200, nhiệtđộ 65oC 77 Hình 3.15 Biến thiên số tốc độphảnứng ki theo nhiệtđộ 82 11 Footer Page of 16 Header Page 10 of 16 Hình 3.16 Ảnh hưởng nhiệtđộ thời gian phảnứng lên độ chuyển hóa 50oC, (▲) Re 6200, (□) Re 12400, theo thực nghiệm H Noureddini 82 Hình 3.17 Biến thiên giá trị độ chuyển hóaphảnứng chuyển đổi este 60 phút, Re 12400, nhiệtđộ 50oC mô Matlab 83 Hình 3.18 Biến thiên nồng độ chất trình chuyển hóa dầu đậu nành 60 phút 50oC Re 12400 mô Matlab 84 Hình 3.19 Dữ liệu xác định điểm hoạt động ổn định thiếtbị CSTR 85 Hình 3.20 Độ chuyển hóa giá trị khảo sát mô Simulink 88 Hình 3.21 Nhiệtđộtrình vận hành ổn định 88 Hình 3.22 Nhiệtđộ dòng cấp thay đổi nhiệtđộ dòng nguyên liệu thay đổi 89 Hình 3.23 Độ chuyển hóa thay đổi nhiệtđộ dòng nguyên liệu thay đổi 89 Hình 3.24 Biến thiên giá trị lưu lượng dòng nước cấp 91 Hình 3.25 Mối quan hệ nhiệtđộ dòng cấp nhiệt lưu lượng nước trình trao đổi nhiệt 91 Hình 3.26 Hệ số truyền nhiệt chung thay đổi lưu lượng dòng cấp thay đổi 92 Hình 3.27 Giá trị độ chuyển hóa không đổi thời gian phảnứng thay đổi lưu lượng dòng nước 92 Hình 3.28 Độ chuyển hóa thay đổi nhiệtđộphảnứng lưu lượng dòng cấp nhiệt thay đổi 93 12 Footer Page 10 of 16 Header Page 89 of 16 Hình 3.24 Biến thiên giá trị lưu lượng dòng nước cấp Hình 3.25 Mối quan hệ nhiệtđộ dòng cấp nhiệt lưu lượng nước trình trao đổi nhiệt Từ Hình 3.25 3.26, lưu lượng nước tăng dần, nhiệtđộ dòng nước vào hệ thống giảm dần nhiệtđộ nước tăng dần tới chúng không đổi khoảng 63oC ổn định lưu lượng dòng nước lớn giúp trình truyền nhiệt diễn nhanh khoảng đầu phản ứng, sau nước nhanh chóng khỏi thiếtbị (thời gian lưu ngắn) Nguyên nhân trình truyền nhiệt diễn nhanh hệ số truyền nhiệt chung Uo tăng dần 91 Footer Page 89 of 16 Header Page 90 of 16 Hình 3.26 Hệ số truyền nhiệt chung thay đổi lưu lượng dòng cấp thay đổi Giá trị độ chuyển hóa không thay đổi (X = 85,25%) giá trị nhiệtđộ chế độ khuấy trộn không đổi Hình 3.27 Giá trị độ chuyển hóa không đổi thời gian phảnứng thay đổi lưu lượng dòng nước 3.3.4 Kết mô Simulink thay đổi đồng thời nhiệtđộphảnứng lưu lượng dòng cấp nhiệt Chúng tiếp tục khảo sát trình truyền nhiệt thay đổi điều kiện vận hành thiếtbịNhiệtđộphảnứng lưu lượng dòng cấp nhiệt đồng thời bổ sung tín hiệu tăng liên tục 0,1 đơn vị Nhiệtđộ dòng nước cấp nhiệt cần thay đổi giá trị độ chuyển hóa, hệ số truyền nhiệt chung,… thay đổi kết mô đây: 92 Footer Page 90 of 16 Header Page 91 of 16 Hình 3.28 Độ chuyển hóa thay đổi nhiệtđộphảnứng lưu lượng dòng cấp nhiệt thay đổi Hình 3.29 Nhiệtđộ dòng cấp nhiệt thay đổi nhiệtđộ nguyên liệu lưu lượng dòng cấp thay đổi 93 Footer Page 91 of 16 Header Page 92 of 16 Khi nhiệtđộphảnứng tăng độ chuyển hóa tăng nhiệtđộphảnứng tăng làm tăng giá trị số tốc độphảnứng làm tốc độphảnứng tăng, độ chuyển hóa tăng Khi lưu lượng dòng cấp nhiệt tăng làm tăng hệ số truyền nhiệt chung Uo dẫn tới tăng khả truyền nhiệt Vì thời gian đạt cân giảm, độ chuyển hóa tăng 3.3.5 Kết mô Simulink thay đổi đồng thời lưu lượng dòng cấp nhiệt, nhiệtđộ lưu lượng dòng nguyên liệu Chúng khảo sát ảnh hưởng điều kiện tiến hành phảnứng tới độ chuyển hóatrình truyền nhiệt đồng thời thay đổi ba liệu ban đầu: + Nhiệtđộ dòng nguyên liệu thay đổi theo dạng hình sin với tín hiệu bổ sung đơn vị, + Lưu lượng dòng nguyên liệu tăng từ 3,3.10-5 lên 3,3.10-3, + Lưu lượng dòng cấp nhiệt bổ sung tín hiệu tăng dần 0,1 đơn vị Kết mô sau: Hình 3.30 Độ chuyển hóa thay đổi nhiệtđộ dòng nguyên liệu, lưu lượng dòng nguyên liệu lưu lượng dòng cấp nhiệt thay đổi 94 Footer Page 92 of 16 Header Page 93 of 16 Hình 3.31 Nhiệtđộ dòng cấp nhiệt vào thay đổi nhiệtđộ dòng nguyên liệu, lưu lượng dòng nguyên liệu lưu lượng dòng cấp nhiệt thay đổi Tại điều kiện vận hành độ chuyển hóa thấp, biến thiên theo đồ thị hình sin từ 11,99 tới 12,13% đồng thời nhiệtđộ ban đầu dòng cấp cần cao, gần 1000oC Điều không hợp lý nhiệtđộ sôi nước 100oC Nguyên nhân kết lưu lượng dòng nguyên liệu lưu lượng dòng cấp nhiệt tăng dần dẫn tới thời gian lưu giảm, hệ phảnứng chưa thực trình truyền nhiệt đưa nhiệtđộphảnứng lên 60oC dòng hỗn hợp phảnứng dòng nước khỏi thiếtbị Vì nhiệtđộ dòng nước vào hệ thống phải lớn để kịp thời truyền nhiệt cho hỗn hợp phảnứng Như mô hình mô cho phép dự đoán tính khả thi thực nghiệm điều kiện vận hành khác Và cách kiểm tra điều kiện tiến hành khác tìm giới hạn thông số thực nghiệm 95 Footer Page 93 of 16 Header Page 94 of 16 Ngoài từ mô hình mô khảo sát biến thiên đại lượng khác khối lượng riêng, nhiệt dung riêng, độ nhớt, độ chuyển hóa, hệ số truyền nhiệt, dựa vào khối Scope đặt khối hàm Ví dụ nhiệtđộ nguyên liệu ban đầu 25oC, biến thiên dạng hình sin, độ nhớt hỗn hợp phảnứng giảm nhiệtđộ nguyên liệu tăng ngược lại Hình 3.32 Nhiệtđộ nguyên liệu thay đổi theo dạng hình sin Hình 3.33 Độ nhớt hỗn hợp phảnứng thay đổi theo chiều nghịch với thay đổi nhiệtđộ dòng nguyên liệu Như thay đổi tín hiệu vào kết hợp thay đổi nhiều tín hiệu vào, Simulink cho phép mô toàn biến thiên trình truyền nhiệt, từ cho phép tính toán, kiểm soát, dự đoán biến đổi thông số toàn trìnhphảnứng nhằm đạt yêu cầu ban đầu đặt 96 Footer Page 94 of 16 Header Page 95 of 16 KẾT LUẬN Trong luận văn thu kết sau: Thu thập giá trị khối lượng riêng, nhiệt dung riêng, độ dẫn nhiệt, độ nhớt phụ thuộc nhiệtđộ dầu đậu nành, metanol, glyxerol, nước este tạo thành phảnứng biodiezen hóa Sử dụng Matlab Simulink để lậptrình tính toán, mô động họcphảnứng chuyển đổi este điều chế biodiezen thiếtbịphảnứng khuấy gián đoạn khuấy liên tục Từ nghiên cứu trình truyền nhiệt, kiểmsoát điều kiện tiến hành phản ứng: nhiệtđộ dòng, lưu lượng dòng,… nhằm đạt giá trị độ chuyển hóa mong muốn Đối với mô hình phảnứng khuấy gián đoạn, xác định nồng độ chất độ chuyển hóa điều kiện khuấy Re 6200 nhiệtđộ 50oC, 55oC, 60oC, 65oC thời gian 60 phút 50oC 55oC 60oC 65oC [TG] 0,088 0,081 0,074 0,069 [DG] 0,055 0,054 0,053 0,052 [MG] 0,013 0,015 0,016 0,017 [G] 0,629 0,634 0,636 0,638 [Me] 2,748 2,712 2,682 2,656 [E] 1,970 1,984 1,993 2,000 X (%) 88,77 89,70 90,45 91,11 Từ kết thu tương đồng với thực nghiệm Noureddini kết luận mô hình phản ánh thực nghiệm điều kiện phảnứng Đồng 97 Footer Page 95 of 16 Header Page 96 of 16 thời khẳng định mô hình không phù hợp mở rộng áp dụng điều kiện khuấy Re 12400 Ở giai đoạn đầu phản ứng, tốc độ khuấy trộn lớn ảnh hưởng tới tốc độphản ứng, làm tăng độ chuyển hóa Khi phảnứng gần đạt tới trạng thái cân nhiệtđộ định tới độ chuyển hóa Đối với thiếtbị khuấy liên tục, điều kiện khuấy 60 vòng/giây 60 phút, nguyên liệu có tỷ lệ mol metanol : dầu :1 bơm vào bể phảnứng với lưu lượng thể tích L/phút, nước nóng bơm vào ống xoắn truyền nhiệt dài 17m đặt lòng thiếtbị CSTR với lưu lượng 0,05 kg/giây thì: + Lượng nhiệt nước nóng cần cung cấp cho hỗn hợp phảnứng để trì phảnứng 60oC 1949,4 W + Nhiệtđộ dòng nước cấp nhiệt vào khỏi ống xoắn 70,3oC 61oC + Độ chuyển hóa đạt 85,25% thấp thiếtbị khuấy gián đoạn (88,77%) phù hợp lý thuyết kỹ thuật tiến hành phảnứng Tiến hành mô trình truyền nhiệtthiếtbị CSTR Simulink điều kiện vận hành ổn định, độ chuyển hóatrình có giá trị 85,25%, nhiệtđộ dòng nước cấp nhiệt vào 70,3oC 61oC Khi thay đổi nhiệtđộ dòng nguyên liệu vào hệ thống theo dạng hình sin, Simulink mô kết nhiệtđộ dòng nước cấp nhiệt thay đổi theo hình sin ngược chiều biến thiên với chiều biến đổi nhiệtđộ dòng nước 98 Footer Page 96 of 16 Header Page 97 of 16 Khi thay đổi lưu lượng dòng cấp nhiệt tăng dần giữ cố định điều kiện vận hành khác, mô hình Simulink cho biết trình truyền nhiệt diễn nhanh hơn, nhiệtđộ dòng nước nóng vào ống xoắn thấp dần Khi tăng đồng thời nhiệtđộphảnứng lưu lượng dòng cấp mô hình Simulink, tốc độphảnứng tăng, thời gian đạt cân giảm giá trị độ chuyển hóa tăng từ 85,25% lên 86,51% 100 giây mô 10 Khi tăng đồng thời lưu lượng dòng cấp nhiệt, nhiệtđộ lưu lượng dòng nguyên liệu, mô hình Simulink cho kết mô giá trị độ chuyển hóa thấp nhiệtđộ dòng cấp cần xấp xỉ 1000oC lưu lượng dòng cấp dòng nguyên liệu tăng nên thời gian lưu giảm, để đạt nhiệtđộphảnứng 60oC cần nhiệtđộ dòng cấp lớn Điều không hợp lý Vì từ mô hình xác định giới hạn điều kiện tiến hành phảnứng 11 Từ mô hình lậptrình Matlab mô hình mô Simulink khảo sát biến thiên đại lượng khác phảnứng khối lượng riêng, nhiệt dung riêng, độ nhớt, hệ số truyền nhiệt,… dựa vào phép nội suy hàm Matlab từ khối Scope Simulink Đồng thời áp dụng mô hình nguồn nguyên liệu khác dầu đậu nành 99 Footer Page 97 of 16 Header Page 98 of 16 TÀI LIỆU THAM KHẢO Tiếng Việt Nguyễn Hồng Thanh, Nguyễn Trần Tú Nguyên, Nguyễn Thị Phương Thoa (2009), ”Điều chế biodiezen từ mỡ cá basa phương pháp hóa siêu âm”, Tạp chí phát triển KH&CN, Tập 12, Số 03 Huỳnh Trang Thanh, Lê Thị Thanh Hương (2007), “Điều chế biodiezen từ mỡ cá tra sử dụng xúc tác K2CO3/ γ-Al2O3”, Trường Đại học Công nghiệp TP HCM Tiếng Anh Chen Yingming, Xiao Bo, Chang Jie, Fu Yan, Lv Pengmei, Wang Xuewei (2009), “Synthesis of biodiesel from waste cooking oil using immobilized lipase in fixed bed reactor”, Energy Conversion and Management, Vol 50 (3), p 668 - 673 Cheng Li-Hua, Yen Shih-Yang, Su Li-Sheng, Chen Junghui (2010), “Study on membrane reactors for biodiesel production by phase behaviors of canola oil methanolysis in batch reactors”, Bioresource Technology, Vol 101 (17), p 6663 - 6668 Cintas Pedro, Mantegna Stefano, Gaudino Emanuela Calcio, G Cravotto iancarlo (2010), “A new pilot flow reactor for high-intensity ultrasound irradiation Application to the synthesis of biodiesel”, Ultrasonics Sonochemistry, Vol 17 (6), p 985 - 989 Coulson & Richardson’s (2005), Chemical Engineering, Vol 6, Elservier Butterworth – Heinemann, Oxford, p.778 – 780 100 Footer Page 98 of 16 Header Page 99 of 16 D Darnoko and M Cheryan (2000), “Kinetics of Palm Oil Transesterification in a Batch Reactor”, JAOCS, Vol 77 (12), p 1263 - 1267 D O Soetan (2010), “Biodiesel processor design & manufacture”, The Design and Manufacture of Biodiesel Processors, p.228 Dossin Tanguy F., Reyniers Marie-Francoise, Berger Rob J., Marin Guy B (2006), “Simulation of heterogeneously MgO-catalyzed transesterification for fine-chemical and biodiesel industrial production”, Applied Catalysis B: Environmental, Vol 67 (1-2), p 136 - 148 10 Dube M.A., Tremblay A.Y., Liu J (2007), “Biodiesel production using a membrane reactor”, Bioresource Technology, Vol 98 (3), p 639 - 647 11 F A L Machado, E B Zanelato, A O Guimarães, E C da Silva, A M Mansanares (2012), “Thermal Properties of Biodiesel and Their Corresponding Precursor Vegetable Oils Obtained by Photopyroelectric Methodology”, Int J Thermophys, (33), p.1848 - 1855 12 Furutaa Satoshi, Matsuhashi Hiromi, Arata Kazushi (2006), “Biodiesel fuel production with solid amorphous-zirconia catalysis in fixed bed reactor”, Biomass and Bioenergy, Vol 30 (10), p 870 - 873 13 Furutaa Satoshi, Matsuhashi Hiromi, Arata Kazushi (2004), “Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure”, Catalysis Communications, Vol (12), p 721 - 723 14 Glycerine Producers Association (1963), Physical properties of glycerine and its solutions, Glycerine Producers' Association, New York, p.4 15 Guana Guoqing, Kusakabe Katsuki (2008), “Synthesis of biodiesel fuel using an electrolysis method”, Chemical Engineering Journal, Vol 153 (1-3), p 159 - 163 101 Footer Page 99 of 16 Header Page 100 of 16 16 Hama Shinji, Yamaji Hideki, Fukumizu Takahiro, Numata Takao, Tamalampudi Sriappareddy, Kondo Akihiko, Noda Hideo, Fukuda Hideki (2007), “Biodiesel-fuel production in a packed-bed reactor using lipase producing Rhizopus oryzae cells immobilized within biomass support particles”, Biochemical Engineering Journal, Vol 34 (3), p 273 - 278 17 Hasanoğlu Ayça, Salt Yavuz, Keleşer Sevinç, Dinçer Salih (2009), “The esterification of acetic acid with ethanol in a pervaporation membrane reactor”, Desalination, Vol 245 (1-3), p 662 - 669 18 Hingu Shishir M., Gogate Parag R., Rathod Virendra K (2010), “Synthesis of biodiesel from waste cooking oil using sonochemical reactors”, Ultrasonics Sonochemistry, Vol 17 (5), p 827 - 832 19 Hong Wei Xiang, Arno Laesecke, Marcia L Huber (2006), “A New Reference Correlation for the Viscosity of Methanol”, Physical and Chemical Properties Division, National Institute of Standards and Technology, Vol 35 (4), p 1611 20 Hossein Noureddini, B.C Teoh, L Davis Clements (1992), "Densities of Vegetable Oils and Fatty Acids", JAOCS, Vol 69 (12), p.14, 1184 - 1188 21 Hossein Noureddini and D Zhu (1997), “Kinetics of Transesterification of Soybean Oil”, JAOCS, Vol 74 (11), p 1457 - 1461 22 K.J Bell, A.C Mueller (2001), Volverine tube heat transfer engineering data book, Wolverien Tube Inc, p 77 - 84 23 Knothe G., Gerpen J V., Krahl J (2005), The Biodiesel Handbook, Champaign, IL: AOCS Press, p 37, 51 102 Footer Page 100 of 16 Header Page 101 of 16 24 Lu Pengmei, Yuan Zhenhong, Li Lianhua, Wang Zhongming, Luo Wen (2010), “Biodiesel from different oil using fixed-bed and plug-flow reactors”, Renewable Energy, Vol 35 (1), p 283 - 287 25 Luis FelipeRamírez Verduzco (2012), “Density and viscosity of biodiesel as a function of temperature: Empirical models”, Renewable and Sustainable Energy Reviews, Vol 19, p 652 - 665 26 Luis Felipe Ramírez Verduzco, Javier Esteban Rodríguez Rodríguez, Alicia del Rayo Jaramillo-Jacob (2012), “Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition”, Fuel, Vol 19, p 102 - 111 27 M L V Ramires, C A Nieto de Castro, Y Nagasaka, A Nagashima, M J Assael and W A Wakeham (1994), “Standard Reference Data for the Thermal Conductivity of Water”, American Institute of Physics and American Chemical Society, p 1380 28 Michael Allen and Gumpon Prateepchaikul (2003), “The modelling of the biodiesel reaction”, The Journey to Forever 29 Maria Jorge Pratas, Samuel Freitas, Mariana B Oliveira, Sılvia C Monteiro, Alvaro S Lima and Joao A P Coutinho, “Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters”, J Chem Eng Data, Vol 55, p 3983 - 3990 30 N.E Dorsey (1940), Viscosity of water taken from Properties of Ordinary Water-Substance, New York, p 184 31 O.O Fasina and Z Colley (2008), “Viscosity and specific heat of vegetable oils as a function of temperature 35°C to 180°C”, International Journal of Food Properties, (11), p 738 - 746 103 Footer Page 101 of 16 Header Page 102 of 16 32 Ravindra Pogaku, Jegannathan Kenthorai Raman, Gujjula Ravikumar (2012), “Evaluation of Activation Energy and Thermodynamic Properties of EnzymeCatalysed Transesterification Reactions”, Advances in Chemical Engineering and Science, Vol 2, p 150 - 154 33 Samuel V D Freitas, Maria Jorge Pratas, Roberta Ceriani, Alvaro S Lima and Joao A P Coutinho (2011), “Evaluation of Predictive Models for the Viscosity of Biodiesel”, Energy Fuels, Vol 25, p 352 - 358 34 Shibasaki-Kitakawa Naomi, Honda Hiroki, Kuribayashi Homare, Toda Takuji, Fukumura Takuya, Yonemoto Toshikuni (2007), “Biodiesel production using anionic ion-exchange resin as heterogeneous catalyst”, Bioresource Technology, Vol 98 (2), p 416 - 421 35 Thanh Le Tu, Okitsu Kenji, Sadanaga Yasuhiro, Takenaka Norimichi, Maeda Yasuaki, Bandowa Hiroshi (2010), “A two-step continuous ultrasound assisted production of biodiesel fuel from waste cooking oils: A practical and economical approach to produce high quality biodiesel fuel”, Bioresource Technology, Vol 101 (14), p 5394 - 5401 36 Wen Zhenzhong, Yu Xinhai, Tu Shan-Tung, Yan Jinyue, Dahlquist Erik (2009), “Intensification of biodiesel synthesis using zigzag micro-channel reactors”, Bioresource Technology, Vol 100 (12), p 3054 - 3060 37 Zykova T.B (1989), “Heat Capacity of Saturated Monovalent Alcohols”, Inzh.Fiz.Zh, (56), p 991 - 994 38 Biodiesel Professionals – solarix.eu 39 Matlab and Simulink for Technical Computing – mathworks.com 40 National Biodiezen Board, USA – biodiesel.org 104 Footer Page 102 of 16 Header Page 103 of 16 41 Tools and Basic Information for Engineering and Design of Technical Applications – engineeringtoolbox.com 42 The American Society for Testing and Materials (ASTM) – astm.org 105 Footer Page 103 of 16 ... hưởng tới phản ứng hóa học nhiệt độ, tốc độ khuấy trộn,… Trong luận văn lựa chọn nhiệt độ đối tượng cần kiểm soát lấy tên đề tài là: Lập trình kiểm soát nhiệt độ thiết bị phản ứng hóa học Để... chuyển hóa 71 3.2 Kiểm soát nhiệt độ cho trình truyền nhiệt thiết bị CSTR 84 3.3 Ảnh hưởng điều kiện phản ứng tới việc kiểm soát nhiệt độ phản ứng trình truyền nhiệt 87 3.3.1...Header Page of 16 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN *** Đỗ Đình Khải LẬP TRÌNH KIỂM SOÁT NHIỆT ĐỘ THIẾT BỊ PHẢN ỨNG HÓA HỌC Chuyên ngành: Hóa kỹ thuật Mã số: 62 44