Ôn luyện theo cấu trúc đề thi môn Toán Phần 1 Ôn thi tốt nghiệp THPT TS.Vũ Thế Hựu, Nguyễn Vĩnh Cận

30 361 0
Ôn luyện theo cấu trúc đề thi môn Toán Phần 1  Ôn thi tốt nghiệp THPT TS.Vũ Thế Hựu, Nguyễn Vĩnh Cận

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

510.76 6-454L d TS VO THE HlTU - NGUYEN VINH CAN TIICO C n U TRUC DC Till MON TS VU THE HlTU - NGUYEN VINH CAN ON LUVEN m THEO cAu TDUC DEI THI M6]\N ON THI TOTNGHIEP THPT QUOC GIA (2 1) lUHA XUAT BAN DAI HOC QUOC GIA HA NOI GIJII TICH Hoc va On luy§n theo CTDT mfln Toan THPT E I IK tX yYENflEl.fllllSOTOHIfPVflXIJCSU'' §1 HOAN VI, CHINH HdP, TO HOP KIEN THLTC Quy tac C Q n g va quy t ^ c n h a n a) Quy tdc cong : Neu tap hc(p A c6 m phan tuT, tap hop B c6 n phan tuf va giufa A va B khong CO phan tuf chung t h i c6 m + n each chon mot phan tuf thuoc A hoac thuoc B b) Quy tdc nhdn : De hoan mot cong viec A phai thuc hien hai cong doan Cong doan I CO m each thifc hien, cong doan I I c6 n each thiTc hien t h i c6 m n each de hoan cong viec A Tong quat, de hoan cong viec A phai qua k cong doan Cong doan thuf i (1 < i < k) c6 m i each t h i t h i c6 m i m m k each de hoan cong viec A Hoan vi Mot tap hop A hufu han c6 n phan tuf (n > 1) Moi each sap thuf tii cac phan tuf cua tap hop A dage goi la mot hoan vi cua n phan tuf cua A Dinh li : So hoan v i khac cua n phan tuf bang : P„ = n(n - l)(n - 2) 2.1 = n! C h i n h hofp Mot tap hop A hufu han gom n phan tijf (n > 1) va so nguyen k (0 < k < n) Moi tap hop cua A gom k phan tuf sap theo mot thuf t i i nhat dinh dLfOe goi la mot chinh hop chap k cua n phan tuf Dinh li : So chinh hop chap k cua n phan tuf bang : A;; = n ( n - l ) ( n - ) ( n - k + l ) = - ^, (n-k)! (Quy \x6c : 0! = 1) Tohtfp Cho tap hop A hufu han c6 n phan tuf (n > 1) va so' nguyen k (0 < k < n) Moi tap hop eon gom k phan tuf eiia A (khong tinh thuf tiJ cac phan tuf) goi la mot to hap chap k cua n phan tuf n! - A'' Binh li : So to hop chap k cua n phan tuf la : Cj^ =( n - k ) ! k ! k ! Hequd: Cl^Cl=l; ik-i C); = Cr" ; C);,, = C^ + C^ HQC fln luy?n theo CTDT mOn ToSn THPT BAI TAP Cho cac chff so 2, 3, 4, 5, 6, a) Co bao n h i e u so tir n h i e n c6 h a i chiJ so dirge tao n e n tCr t a p hgp eae chCr so da eho b) Co bao n h i e u so tir n h i e n c6 h a i ehuf so khac dugc tao n e n ttf tap hgj) cac chiJ so da cho CHI DAN a) b) De tao m o t so c6 h a i chuf so t a thiTe h i e n h a i eong doan : Chgn m o t chuf so l a m ehuf so h a n g ehuc : eo k e t qua c6 the Chgn m o t chuf so l a m ehuf so h a n g don v i : eo k e t qua c6 the Theo quy t&c n h a n so' k e t qua tao t h a n h cac so' c6 h a i ehuf so tCr tap hgp chuf so da eho la : n = x = 36 so L a p luan giong n h u eau a) n h i m g liTu y sir khac biet so vdi trirdng hgp t r e n d cho so dirge tao t h a n h eo h a i chCT so khac Do t a c6 k e t qua nhif sau : Chgn m o t chuf so l a m ehOf so h a n g ehuc : eo k e t qua eo t h e Chgn m o t ehuf so l a m chuf so hang don v i : eo k e t qua eo the (vi chQ so p h a i khac chij; so h a n g ehue da ehgn triTdrc do) Theo quy tie n h a n : so eae so eo h a i chuf so khac dirge tao t h a n h tCr t a p hgp eha so da cho la : n' = x = so Cdch khac : M i so eo h a i ehiJ so tao t h a n h tCr chuf so da eho la mot tap hgp sap thuf t i i gom h a i p h a n tuf tu" p h a n tuf da cho Do so cac so C O h a i chuf so khac tao t h a n h tCr ehuf so da eho la so e h i n h hgp chap cua tap hgp p h a n tuf n = = 6.5 = so' Cho t a p hgp cac chuf so 0, 1, 2, 3, 4, 5, a) Co bao nhieu so tir n h i e n c6 chuf so tir tap hgp cac ehuf so da eho b) Co bao n h i e u so tiT n h i e n eo ehuf so khac tiTng doi tiT tap hgp eae chuf so da eho C H I DAN a) Co each ehgn chuf so hang n g h i n (chuf so dau t i e n phai khac 0), each ehgn chiT so' h a n g t r a m , each chgn chuf so' h a n g ehuc va each ehgn ehuf so h a n g don v i Theo quy t^c n h a n : so each tao t h a n h so tiT n h i e n chuf so tCr t a p hgp chij" so da eho l a : N = x x x = 2058 so b) Co each chgn chuf so' h a n g n g h i n , k h i ehgn xong ehC? so' h a n g n g h i n l a i chOr so khae v d i ehuf so h a n g n g h i n da chgn Vay c6 each chgn ehuf so h a n g t r a m K h i da chgn chiT so h a n g n g h i n va hang t r a m , eon l a i ehu: so khac v d i cac chuT so da chgn Do eo each a TS Vu Thg' Huu - Nguyen Wnh C?n chon chOf so h a n g chuc Ttfang t i i , c6 each chon chOf so h a n g dcfn v i Theo quy tac n h a n So cac so t u n h i e n c6 chijr so khac tCrng doi ducfc tao t h a n h til t a p hop chOf so da cho l a : N ' = X X X = so Cdch lap luan khdc : M o i so t i i n h i e n c6 chOr so khac tao t h a n h tCr t a p hop chCf so da cho l a m o t c h i n h h o p chap tCr t a p h o p chuf so ma cac c h i n h hop n a y k h o n g c6 chOf so' or dau Do so' cac so C O chOr so khac til chuf so l a : N' = = X X X - X X = so Mot to hoc sinh c6 10 ngufofi xep thCf td hang de vao Icfp H o i a) Co bao n h i e u each de to xep h a n g vao Idfp b) Co bao nhieu each de to xep h a n g vao Idp eho h a i b a n A va B cua to luon d i canh va A dufng triTdfc B CHI DAN a) So' each xep h a n g bang so' hoan v i cua 10 p h a n tuf N i = 10! = 3628800 each b) Coi h a i b a n A va B n h i i m o t ngifdi Do so each xep h a n g cua t o de vao Idp t r o n g h a i b a n A va B d i l i e n n h a u bang so h o a n v i cua p h a n tuf N2 = 9! = 362880 each Co bao nhieu each xep ngUc/i n g o i vao m o t b a n a n cho t r o n g cac trirdng hop sau : a) Sip ngiidi theo h a n g ngang cua m o t b a n a n d a i b) Sip ngLfcfi ngoi vong quanh m o t b a n a n t r o n CHI DAN a) M o i each ngoi theo h a n g ngang l a m o t hoan v i cua p h a n tuf So each sap xep la : 6! = 720 each b) Gia sijf ngiicfi a n dirge d a n h so thuf t u l a : 1, 2, 3, 4, 5, v a m o t each sap xep theo b a n t r o n nhiT h i n h /^^^T^K^ ^ \ ^ _ _ ^ j (1) (2) ^\ J Neu thi dai ban (3) (4) (5) (6) t a cat b a n t r o n d v i t r i giufa v a r o i t r a i d a i theo b a n ngang t a C O hoan v i (1) tiTcfng lirng m o t each xep ngudi n g o i theo b a n a n Tirong t i i cat d v i t r i giufa va N h i i vay m o t each sSp xep theo t r o n tifOng ufng v d i each sap xep theo b a n d a i Do so each Hpc v4 On luy$n theo CTDT mfln Toan THPT £3 xep ngiicri ngoi quanh b a n a n t r o n l a : N = — = 120 each M o t to CO 15 ngiJcfi gom n a m va niJ C a n lap n h o m cong tac c6 ngiTcfi H o i c6 bao n h i e u each t h a n h l a p n h o m t r o n g m o i triTofng hop sau day : a) N h o m c6 n a m va nvC b) So n a m va nOf t r o n g n h o m bSng c) P h a i CO i t n h a t m o t n a m CHI D A N 87 a) So each chon n a m t r o n g so n a m l a : Cg = " = 84 1.2.3 So each chon nuf t r o n g so nuf la : Cg = So each lap nhom gom nam va nuf (theo quy tac nhan) la : Ni = C^C^ = 504 each b) So each l a p n h o m gom n a m va nuf la : N = C ^ C ^ = — — = 540 each ' ' 1.2 1.2 c) So each t h a n h l a p n h o m ngudi t r o n g c6 i t n h a t n a m la : n a m , nuf hoSe n a m , nOr hoSc n a m , nuf hoSc n a m N = C^.C^+C^C^+C^C^+C^ ^ 6.5.4 9.8 6.5 9.8.7 ^ 9.8.7.6 = + + + = 1350 each 1.2.3 1.2 1.2 1.2.3 1.2.3.4 Ghi chu : Cung c6 the l a p l u a n nhiJ sau : Ca to CO 15 ngUdi So each l a p n h o m ngUcJi t u y y l a : ^4 15.14.13.12 , , Ci5 = — — = 1365 each 1.2.3.4 So each l a p n h o m ngudi t o a n nuf la : Cg = Cg = — ^ = 15 each So each l a p n h o m ngiTdi c6 i t n h a t n a m la : N = C^5 - C^ = 1365 - 15 = 1350 each T r o n g mSt p h a n g c6 n d i e m p h a n b i e t ( n > 3) t r o n g c6 dung k d i e m n k m t r e n m o t d i T d n g t h a n g (3 < k < n ) H o i c6 bao n h i e u t a m giae n h a n eac d i e m da cho la d i n h CHI D A N C i i d i e m k h o n g t h a n g h a n g tao t h a n h m o t t a m giae So eac t a p hdp d i e m t r o n g n d i e m la : C^ So eac t a p d i e m t r o n g k diem t r e n dirdng t h a n g la : C^ So t a m giae c6 d i n h la eac d i e m da cho l a : N = C ^ - C ^ t a m giae £ TS Vu ThS' Hi/u - Nguyen V i n h C?n a) Co bao n h i e u so tu n h i e n l a so chSn c6 chOr so doi m o t khac v a chiJ so dau t i e n l a chui so le b) Co bao nhieu so tuT n h i e n c6 chuf so doi m o t khac nhau, c6 dung chCif so le, chuf so chSn (chuf so dau t i e n phai khac 0) CHI D A N a) So can t i m c6 dang : so 0, 1, 2, 8, vdi x = ajagaga^Hgag aj ;t 0, aj vdi t r o n g 1< i ai, ae l a y cac chijr ;t j < - V i X la so chSn nen ag c6 each chon tii cac chuf so 0, 2, 4, 6, - V i a i la chuf so le nen c6 each chon tif cac chuf so 1, 3, 5, 7, Con l a i a a a a l a m o t c h i n h hop chap cua chuf so l a i sau k h i da chon ae va a i Theo quy tSc n h a n , so cac so can xac d i n h l a : N i = 5.5.Ag = 5.5.8.7.6.5 = 42000 so b) M o t so theo yeu cau de b a i gom chuf so tCr t a p X i = {0; 2; 4; 6; 81 va chuf so tii t a p hop X2 = { ; 3; 5; 7; 9) ghep l a i va l o a i d i cac day chuf so CO chuf so dufng dau So each l a y chuf so thuoc t a p X i l a : C = 10 each So each l a y p h a n tijf thuoc X2 l a : C = 10 each So each ghep p h a n tuf l a y tii X i v d i p h a n tuf l a y tii X2 l a : C^.C^ = 10.10 = 100 each So day so eo thuf tir cua p h a n tuf diicfc ghep l a i l a : 100.6! = 72000 day Cac day so c6 chuf so of dau gom chuf so khac cua X i v a chijf so cua X2 : So cac day so n h u t r e n l a : C ' C g S ! = 7200 day So cac so theo yeu cau de b a i l a : N2 = C ^ C ^ ! - C ^ C ^ ! = 72000 - 7200 = 64800 so M o t hop diing v i e n b i do, v i e n b i t r S n g va v i e n b i v a n g NgUcfi ta chon r a v i e n b i tii hop H o i c6 bao n h i e u each l a y de t r o n g so b i l a y r a k h o n g du ca m a u CHI D A N Cdch : So each chon v i e n b i k h o n g du m a u b a n g so each chon v i e n b a t k i trCr d i so each chon v i e n eo ca m a u N = C\, -{ClC\.C\+Cl.C\.C\+Cl.C\.C\) = 645 each Cdch : So each chon v i e n b i k h o n g du m a u b a n g so each chon v i e n m o t m a u (4 do, t r a n g va vang) eong v d i so each chon v i e n h a i m a u (1 do, t r a n g hoac do, t r a n g hoac do, t r S n g hoac do, v a n g hoSe do, v a n g hoac do, v a n g hoSc t r a n g , v a n g hoac t r a n g , v a n g hoac t r a n g , vang) N=C^ + + + C^C^ + ClCl + C^C^ + + C^C^ = 645 each Hoc va On luyen theo CTBT mfln ToSn THPT S DAN CHI Co 15 n a m va 15 nuf khach du l i c h duTng t h a n h vong t r o n quanh ngon lufa t r a i H o i c6 bao nhieu each xep de k h o n g c6 triTdng hop h a i ngiTdi cung g i d i canh ThiTc h i e n sAp xep b k n g each danh so" 30 cho t r e n diTdng t r o n tii den 30 va cho n a m duTng so le nuf dufng cho so chkn hoSc ngiioc l a i (2 each) Co 15! each sSp n a m dufng t r o n g eae ch6 so le (hoac ehSn) va 15! each sap nuf dufng t r o n g cac eho so ehSn (hoftc le) V i dudng t r o n 30 cho n e n m o i each sap xep nao xoay tua 30 eho theo diing t r a t tiT t a cung chi c6 m o t each sap t r e n ducfng t r o n (xem b a i so 4) Do so each sSp xep theo diiofng t r o n 30 k h a c h du l i c h theo yeu cau „ 2.(15!)(15!) ^ , , de la : N = = 14!.15! each 30 10 Chufng m i n h cac dSng thuTc : 1 = ——- (1) t r o n g A^ la c h i n h hop chap cua n a) -ir + —7r + - + A„ n b) c;; = c;;:'i + c;;:'^ + + c;::; (2) c;; la to hop chap r cua n CHI DAN a) V d i k e N , k > t a eo : A^ = k ( k - 1) J_ k(k -1) k-1 - ~ (*) T h a y k = 2, 3, n vao (*) ta c6 ve t r a i cua (1) l a : (1 1^ (1 1^ _^ _ n-1 ^ + — + + ( — n n 2j ^n-l nj U 3j b) Theo t i n h chat cua to hop ta c6 : u lr-l Cn-2 = Cn.3 + C;;_3 Cong ve v d i ve eae dang thufc t r e n t a dirgfc : c : ; = c - + C - U C - + + C - + C : Do C[ = C[:\ n e n thay C; d dSng thufc euoi boi C^:} t a dUdc dang thiJc (2) can chufng m i n h 11 Chufng m i n h b a t dSng thufc : C^QOI + C'OM ^ C^^i + t r o n g k e N , k < 2000, ^Zl la to hop chap k cua n phan tuf £ TS Vu ThS' Huu - Nguyen Vinh C$n 10 CHI DAN V d i < k < 1000 t h i CLi C ^ 2001! k!(2001-k)! pk ^ pk+1 ^ pk+2 '-^2001 - '-^2001 - ^ 0 (k + l ) ! ( 0 - k ) ! 2001! ^ ^ plOOO _ p l O O l - ••• - '-'2001 " '-^2001 k+ 2001-k ^ p k *-^2001 hay ax + b > 0; a, b e R, a ?i • N e u a > 0, ax + b > CO t a p n g h i e m x>- — a • N e u a < 0, ax + b > CO t a p n g h i e m x< — a D a u c u a n h i thufc b a c n h a t ax + b (a ;t 0) Nhi thufc bac n h a t : f = ax + b (a ^ 0) Gia t r i x = - — t a i f c6 gia t r i hkng goi l a n g h i e m cua n h i thufc a Ta CO d i n h 11 ve dau cua n h i thufc n h u sau : Dinh U + V6i cac gia tri x < - — t h i f = a x + b c dau t r a i v6i dau cua he so a a + V d i cac gia t r i , a) G i a i cac phuong t r i n h : 10-x 20-x 30-X = + 120 100 110 x > - — t h i f = ax + b c6 dau cung dau vcfi he so a a (1) Hoc va Sn luy?n theo CTDT mOn ToSn THPT S b) X - X - X + = c) x^ + x ' + 5x^2 + x - 12 = CHI DAN a) (1) o 10-X 100 -1 -90-X 100 X + 20-X 110 -90-X + 100 = « (2) (3) 30-X -1 120 -90-X + 110 (90 + x ) b ) x^ - x^ - o + 110 120 ^ 120 -1 -0 ^ = = Oci> X = -90 x^Cx - 1) - ( x - 1) = (x - l ) ( x ^ - 1) = x ' - l = o x - l = o X = ±1 c) x^ + 2x^ + 5x2 + x - 12 = o ( x ^ - ) + 2(x^ - ) + SCx^ - 1) + ( x - 1) = o ( x - l ) [ x ^ + Sx^ + x + 12] = 0 Vx) 1) G i a i , b i e n l u a n t h e o t h a m s o ' m phufong t r i n h : CHI DAN m \ m = 9x + m^ (1) ( I ) c : > ( m - ) x = m2 + m + N e u m ^ - ;t 0, n g h i a l a v i m X — + + m^ + m ±3 t h i phuTcfng t r i n h (1) c6 n g h i e m : m — m^ - m - N e u m = 3, p h u o n g t r i n h (1) c6 d a n g : x - = x + Phiicfng t r i n h n a y v6 n g h i e m N e u m = - t h i p h t f o n g t r i n h (1) c6 d a n g : x + = x + Phucfng t r i n h v so n g h i e m ( m o i so t h u c deu l a n g h i e m ciia p h i f o n g t r i n h ) C h o p h u o n g t r i n h : a^x + b = a x + ab (1) t r o n g a, b l a cac t h a m so t h i f c G i a i , b i e n l u a n t h e o a, b p h i / o n g trinh tren CHI DAN + ( l ) c : > a ( a - l ) x = b ( a - 1) N e u a(a - 1) 0, tufc l a n e u a ?t o v a a ;^ t h i (1) c6 n g h i e m d u y n h a t (a-l)b b X = + = a(a-l) — a N e u a = 0, p h u o n g t r i n h (1) c6 d a n g : Ox = - b T r o n g t r i r d n g h o p n a y c6 h a i k h a n a n g : 24 a N e u b = (tufc l a a = 0, b = 0) m o i so t h t f c d e u l a n g h i e m - N e u h ^ ( t i i c l a a = 0, b ?i 0) p h i i d n g t r i n h v n g h i e m - TS, Vu The Hi/u - Nguyen Vinh CSn + Neu a = 1, phtrcfng t r i n h (1) c6 dang : Ox = 0, phiicfng t r i n h c6 t a p n g h i e m la m o i so thuc 4, G i a i cac phifong t r i n h : a) (x - if + (x + 2f = (2x + 1)^ (1) b) 9ax^ - 18x^ - 4ax + = (2), a la t h a m so CHi DAN a) ( ) « (2x + l ) [ ( x - (x - I X x + 2) + (x + 2f] = (2x + 1)^ o (2x + l ) [ ( x - if - (x - l ) ( x + 2) + (x + 2f - (2x + 1)^] = (2x + l ) ( x + 2)(x - 1) = o b) (2) + + a) CHI a) b) x = X = - , x = ax(9x^ - 4) - 2(9x^ - 4) = (ax - 2)(3x + 2)(3x - 2) = 2 Neu a ?t 0, (2) c6 cac n g h i e m : x = —, x = ±— a Neu a = 0, (2) c6 cac n g h i e m : x = ± — G i a i cac bat phUcfng t r i n h dufdi day va bieu d i e n t a p n g h i e m cua no t r e n true so 3(x + 2) - > 2(x - 3) + b) (x - 2)^ + + x^ > 2^ - 3x - DAN -7 X c^3x + > x - 3x - 2x > - - X > - ^ Tap n g h i e m diTOc bieu d i e n h i n h ben inx a o x^ - 4x + + + x^ > 2x^ - 3x - o - x + 3x > - - o - x > - « x < ^ = Q -1 Bieu dien t a p n g h i e m b h i n h ben Hinh G i a i va b i e n l u a n theo t h a m so m b a t phirong t r i n h : x + _ CHI DAN — - > '^^"*"-(m + l ) x m m g ^ b (1) Dieu k i e n xac d i n h m ; t Chuyen ve, r u t gon t a diTOc : ( m + 2)x > — m + Neu m 5t va m > - ( t h i m + > 0) b a t phtfong t r i n h c6 n g h i e m X > m ( m + 2) + Neu m < - ( t a t n h i e n m ;^ 0) t h i (1) c6 t a p n g h i e m x < + Neu m = - bat phiJOng t r i n h t r d t h a n h Ox > - M o i so thuc deu la n g h i e m cua (1) m ( m9 + 2) G i a i , b i e n l u a n b a t phiTcfng t r i n h v d i t h a m so a va b: x + > — + — (1) b a HQC fln luy§n theo CTOT m5n Toan THPT S 25 CHI DAN (a^ - ab)x + - ab a-b, ,^ ^ , (1) ; — < — — ( a x - b) < (a 0, b 0) ab ab + N e u a = b ? i t h i (1) c6 dang Ox - < v6 n g h i e m + N e u a < b < hoSc < b < a t h i (1) c6 n g h i e m x < — a + N e u a < < b hoSc b < < a hoac b < a < hoSc < a < b t h i (1) c6 tap n g h i e m l a : x > — a G i a i cac b a t philcfng t r i n h : a) (2x - 3)(5 - x) > X + CHI DAN a) D u n g d i n h l i ve dau cua n h i thufc : ax + b (a 0) 2x - CO n g h i e m x = — Neu X < — t h i 2x - c6 dau a m ( t r a i dau v — t h i 2x - CO dau dtrong (cung dau vdi 2) Tuong tir - X > v d i X < va - X < v d i X > L a p bang xX e t dau cua t i c h (2x - 3)(5 - x) nhir sau : -co — 2x- - X + + + - +00 + - (2x - 3X5 - x) + Can cur bang x e t dau t a t h a y t a p n g h i e m cua b a t phildng t r i n h l a — < X < b) Dieu k i e n xac d i n h : x ^ - L a p bang x e t dau nhir cau a) : X 5 -5 -00 — — 2x- X + 2x-l X + 26 S TS Vu Thg' Huu - +CC - + + + - + 0 + Nguyin VTnh C§n a) CHI a) b) 10 Tap n g h i e m : - < x < — Giai cac b a t phiTcfng t r i n h : 3x-4 >2 b) x-2 x +2 DAN 3x-4 - > < o ^ ^ > o x+2 x+2 S S : X < - hoSc x > 11-x > o >0o x-2 x+1 (x - 2)(x + 1) DS :x 41 Tap n g h i e m cua he ( I ) l a : 19 X< — 11 • n •X 20 > 41 41x-20 ^ ^ 30 30 A 20 19 41 u 20 ^ 19 hay — < X < 41 G i a i b a t phuong t r i n h kep : x - < 2x + < x + (*) CHI D A N Bat phtfcrng t r i n h kep (*) la each v i e t khac cua he b a t phifong t r i n h sau JX- < 2x + (1) " x + < x + l (2) Bat phifong t r i n h (1) c6 t a p n g h i e m l a : x > - Bat phiiong t r i n h (2) c6 t a p n g h i e m l a : x < - Vay n g h i e m cua b a t phiiong t r i n h kep (*) l a : - < x < - HQC 6n luyen theo CTBT m6n Toan THPT £3 27 §2 PHUOfNG TRINH, BAT PHlICfNG TRINH BAC HAI MOT AN PhuToTng t r i n h b a c h a i m p t a n ax^ + bx + c = (a ?t 0) a) Cong thiic nghiem : Tong qudt : Biet thufc A = b^ - 4ac + Neu A < 0, (1) v6 nghiem + + + + + b) (1) Neu A = 0, (1) C O nghiem kep x = - — 2a Neu A > 0, (1) C O hai nghiem phan biet : _ -b-VA _ -b + V A ~ 2a ' " 2a ' Thu ggn : trudng hdp b = 2b', biet thufc thu gon A ' = b'^ - ac Ne'u A ' < 0, (1) v6 nghiem b' Neu A ' = 0, (1) C O nghiem kep x = a Neu A ' > 0, (1) C O hai nghiem phan biet : _ -b' - VA^ _ -b' + VA^ x, — , x, — a a Dinh li Vi-et : Neu Xi, X2 la hai nghiem cua phtfcrng trinh ax^ + bx + c = (a 0) t h i b = Xi + X2 = a P = X1X2 = - a Ung dung : Neu hai so c6 tong b&ng S va c6 tich bkng P t h i cac so la nghiem cua phuong t r i n h : x^ - Sx + P = fBAITAPJ Giai, bien luan theo tham so m phuong trinh : (m - D x ' - ( m + l)x + m = (1) 11 CHIDAN + Neu m - l = m = l , phuong trinh (1) la bac nhat, c6 nghiem nhat X = i + Neu m t l = > m - l t , ap dung cong thufc nghiem thu gon ta c6 : A' = (m + 1)^ - (m - Dm = 3m + + Neu m = — t h i A ' = 0, c6 nghiem kep x, = x„ = ^ = — 28 S] TS Vu The Hi^u - Nguyin VTnh Can + Neu m < — t h i A' < 0, v6 n g h i e m m ^1 m + + V3m + 1 t h i A' > 0, (1) CO h a i n g h i e m Xj = m >— • ' m-1 Vdti gia t r i nao cua t h a m so m cac phiTOng t r i n h cho durdi day cd n g h i e m chung 2x^ + m x - = (1) mx^ - x + = (2) + Neu 12 CHI D A N V d i m = 0, h a i phUdng t r i n h k h o n g cd n g h i e m chung Gia suf m 9t 0, b i e t thufc cua (1) l a : A i = m^ + > 0, V m , b i e t thuTc A2 cua (2) la : A2 = - m > v d i m < - Neu a l a n g h i e m chung t h i tCr (2) t a cd : a-2 ma^ - a + = 0=:>a = (3) m Thay vao (1) t h i dtroc : 2a^ + m a - = a-2 l-2m a' = m'+2' " m'+2 Thay vao (3) t a dUgfc he thijfc : a = m +4 l-2m ^m+4 m^ + 13 m'+2 ^ m'' + m + = m + m a - =0 => m = - 1, (Gia t r i m = - thda m a n dieu k i e n m < —) D a p so : m = - Cho phtfcfng t r i n h v d i t h a m s o ' m sau : x^ + ( m - l ) x + m - = (1) V d i gia t r i nao cija m phifcfng t r i n h cd cac n g h i e m x i , X2 t h o a m a n he thufc : x i + 3x2 = (*) CHI D A N B i e t thufc A = ( m - i f - ( m - 6) = m^ - 2 m + 25 T a can chpn gia t r i cua m cho A > de (1) cd n g h i e m X i , X2 Theo d i n h l i V i - e t : x i + X2 = - m TCr he thiic (*) t a cd : = x i + 3x2 X, ^ = xi + ( x i + X2) = 3(1 - m ) + x j = 3m - [(3m - 2f + ( m - l ) ( m - 2) + m - = => 12m(m - l ) = 0m = hoSc m = Cac gia t r i m = va m = t h d a m a n dieu k i e n A > V a y m = hoSc m = l a cac gia t r i can t i m Hue va Sn luy§n theo CTDT m6n Toan THPT S 14 Cho phtfcfng t r i n h wdi t h a m so m - 2(m + l)x + 2m + = (1) Xac d i n h cac gia t r i cua m de phifong t r i n h (1) c6 h a i n g h i e m X i , X2 cho bieu thiJc A = X j + X + l O X j X g d a t gia t r i n h o n h a t C H I D A N Gia suf (1) C O h a i n g h i e m x i , X2 t h i : A = xf + X2 + X X - (Xi + X ) ^ + 8X1X2 = ( m + 1? + 8(2m + 5) = ( m + 3)^ + A d a t m i n k h i m = - Gia t r i m = - thoa m a n dieu k i e n : A' = ( m + If - ( m + 5) > V a y m = - l a gia t r i can t i m 15 Cho phiiong t r i n h : x^ - 8x + 12 = (1) K h o n g can g i a i (1), h a y l a p m o t phuong t r i n h c6 h a i nghiem la n g h i c h dao cua cac n g h i e m cua (1) C H I D A N Goi cac n g h i e m cua (1) l a x i , X2 t h i cac n g h i e m cua phiTOng t r i n h can lap C O cac n g h i e m l a : — , — PhiTOng t r i n h can l a p la : x^- 1 +• X 4- = x^ i ^ X + = T h a y x i + X2 = 8, X1X2 = 12 t a difoc phifong t r i n h can t i m : X + — = X 16 12 T i m cac gia t r i cua t h a m so m t r o n g cac t r i f d n g h o p sau : a) x^ - 6x^ + m = (1) c6 n g h i e m p h a n b i e t b) x^ - ( m - l)x^ + m - = (2) c6 h a i n g h i e m p h a n b i e t C H I D A N a) Phuong t r i n h (1) c6 n g h i e m neu phifong t r i n h : - 6X + m = C O h a i n g h i e m dtfong Dieu n a y x a y r a neu 'A' = - m > •S = > o < m < P =m >0 b) Phuong t r i n h (2) c6 h a i n g h i e m p h a n b i e t k h i phifong t r i n h : X ' - 2(m - 1)X + m - = CO dung m o t n g h i e m diiOng DS : m < 3 m TS Vu ThS Hyu - Nguygn Vinh CSn §3 BAT PHlJCfNG TRINH BAG HAIMQT AN KIEN THCfC D a u c u a tarn thu!c h^c h a i f(x) = ax^ + bx + c (a 0) (1) a) Dinh li ve dau cua tarn thiic bac hai : Goi A = b^ - 4ac l a b i e t thufc cua tarn thurc (1) • N e u A < 0, Vx G R, f(x) c6 cung dau v d i a, n g h i a l a : aflx) > 0, V x G R • N e u A = t h i f(x) = v d i x = - — 2a va f i x ) cung dau v d i a, v d i m o i x ^ - — , nghia l a : aflx) > Vx e R, f i x ) = c:> x = - — 2a 2a • Neu A > t h i f(x) c6 hai nghiem phan biet x i , X2 (xi < X2), f(x) t r a i dau v i a v6i X e (xi; X2) va cung dau v i he so a vcri x G ( - C O ; xi) hoac x e (X2; + 0, Vx G ( - 0 ; xi) hoSc Vx G (X2; +00) b) Dinh li ddo ve dau cua tarn thiic bac hai Cho tarn thurc f(x) = ax^ + bx + c (a ^ 0) v a so a Neu afla) < t h i f(x) c6 h a i n g h i e m x i < X2 va x i < a < X2 He qua Dieu k i e n can v a du de phiJOng t r i n h : fix) = ax^ + bx + c = (a ^ 0) CO h a i n g h i e m p h a n b i e t la CO so a G R I a f I a ) < He qua Dieu k i e n can va du de phiTOng t r i n h : f(x) = ax^ + bx + c = CO h a i n g h i e m t r o n g c6 m o t n g h i e m t r o n g k h o a n g (a; P), a < p l a cac so cho trirdc, l a : f(a)f(p) < c) So sdnh mot so vai cdc nghiem cua tarn thiic f i x ) = ax^ + bx + c (a 5^ 0) • Ne'u afia) < t h i x i < a < X2 • N e u afIa) = t h i a l a n g h i e m • Neu afIa) > t a x e t t h e m A = b^ - 4ac i) N e u A < t h i f i x ) v6 n g h i e m , k h o n g so sanh ii) Neu A > va — ^ - a > t h i a < xi < 2a iii) Neu A > va - — - a < t h i 2a X i < X2 X2 < a BAI TAP 17 X e t dau cua f i x ) = — theo su b i e n t h i e n cua x t r e n R x ' - x + 12 Hoc ya an luy$n theo CTDT mfln Toin THPT S 31 ... -1 -90-X 10 0 X + 20-X 11 0 -90-X + 10 0 = « (2) (3) 30-X -1 120 -90-X + 11 0 (90 + x ) b ) x^ - x^ - o + 11 0 12 0 ^ 12 0 -1 -0 ^ = = Oci> X = -90 x^Cx - 1) - ( x - 1) = (x - l ) ( x ^ - 1) = x '' -... < 10 00 t h i CLi C ^ 20 01! k!(20 01- k)! pk ^ pk +1 ^ pk+2 ''-^20 01 - ''-^20 01 - ^ 0 (k + l ) ! ( 0 - k ) ! 20 01! ^ ^ plOOO _ p l O O l - ••• - ''-''20 01 " ''-^20 01 k+ 20 01- k ^ p k *-^20 01

Ngày đăng: 09/02/2017, 11:02

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan