Since Ψ1 is a solution, then This equation is not necessarily valid, which means that Ψ Ψ1 2 is, in general, not a solution to Schrodinger’s wave equation... Term with B2 represents inci
Trang 1Chapter 1
Problem Solutions
1.1
(a) fcc: 8 corner atoms × 1/8 = 1 atom
6 face atoms × ½ = 3 atoms
Total of 4 atoms per unit cell
(b) bcc: 8 corner atoms × 1/8 = 1 atom
1 enclosed atom = 1 atom
Total of 2 atoms per unit cell
(c) Diamond: 8 corner atoms × 1/8 = 1 atom
6 face atoms × ½ = 3 atoms
4 enclosed atoms = 4 atoms
Total of 8 atoms per unit cell
(a) Simple cubic lattice; a=2r
Unit cell vol =a3 =( )r 3= r3
F
HG I KJ
4 43
d =4r=a 3⇒ =a 4 r
3 Unit cell vol = =F
H I K
343
2 atoms per cell, so atom vol = F
HG I KJ
2 43
F
HG I KJ F
H I K
2 4343100%
3 Unit cell vol = =F
H I K
383
8 atoms per cell, so atom vol 8 4
Ratio
r r
F
HG I KJ F
H I K
8 4383100%
From Problem 1.3, percent volume of fcc atoms
is 74%; Therefore after coffee is ground, Volume =0 74 3
cm
Trang 28 3
x x
13
11, ,
FH IK ⇒ (313 )(b)
14
12
14, ,
FH IK⇒ 121( )
Trang 3(i) (100) plane, surface density,
Same as (a),(i); surface density 4.94 1014 2
(iii) (111) plane, surface density,
Same as (a),(iii), surface density 2.85 1014 2
(c)
Face centered cubic
(i) (100) plane, surface density
−
24.50 108 2
atoms x
4
3 4.50 102
(c) (111) plane, surface density,
6 3642
or
Trang 4valence electrons per atom, so
Density of valence electrons 2 1023 3
An average of 4 valence electrons per atom,
Density of valence electrons 1 77 1023 3
x x
1.21
2 103
5 43
d
a O =146
Trang 5λ ω
x
t constant Then
x x
6 625 10
5 4 10
34 25
x x
6 625 102.31 10
34 23
or
λ =0 287 A °(c) Tungsten Atom: At Wt = 183.92
x x
6 625 10
313 10
34 22
or
λ =0 0212 A °(d) A 2000 kg traveling at 20 m/s:
x x
6 625 10
4 10
34 4
or
λ =1 66 10− 28 °
Trang 66 625 10
7.1 10
34 26
λ E m
h e
e
HG I KJ
12
p
λ 100 2
21002
x x
6 625 10
1822 10
34 26
λ =364 A °(b)
26 31
4
6 625 10 3 10
1 10
10
or
E =1 99 10x − 15 J
.Now
x x
6 625 10
6 02 10
34 23
λ =0 11 A °
Trang 78 78 10
5 10
29
8 78 10
5 10
26
32
or ∆t=6 6 10x − 16 s
h aΨ Ψ1 2fwhich can be written as
2 2
2 1 2
2 2 2 1
2 1 2
Trang 8Since Ψ1 is a solution, then
This equation is not necessarily valid, which
means that Ψ Ψ1 2 is, in general, not a solution to
Schrodinger’s wave equation
HG I KJ z
4
a
a o
2
a
a o
HG I KJ z
a
a o
P=0 865
Trang 92 22
Trang 101 48 1030
Energy in the (n+1) state is 1 48 1030
x − Joules larger than 10 mJ
42
92
162
2 2
2 2
x
x y z y
x y z z
mE XYZ
2 2
2
2
0h
Dividing by XYZ and letting k2 mE
2
2
=
h , we obtain
2 2
2 2
2 2 2
Trang 11x y
,h Let ψ( )x y, = X x Y y( ) ( )
Then substituting,
Y X
Y y
mE XY
We can also define 1
2 2 2
Y y( =b)= ⇒0 k b y =n yπ
so that
k n
b y y
Now − −k x2 k y2+ mE =
2
20hwhich yields
E E
m
n a
n b
π b g
For n2 =2,n1=1Then
h π
Trang 12Term with B2 represents incident wave, and
term with A2 represents the reflected wave
Term involving B1 represents the transmitted
wave, and the term involving A1 represents the
reflected wave; but if a particle is transmitted
into region I, it will not be reflected so that
x x
x x
F
HG I KJThe reflection coefficient is
T|
U V| W|
2 2
Trang 132.35
Region I, V =0(x<0 ; Region II, )
V =V O (0< <x a); Region III, V =0(x>a) (a) Region I;
ψ1( )x = A1expa fjK x1 +B1expa−jK x1 f (incident) (reflected) Region II;
ψ2( )x = A2expa fK x2 +B2expa f−K x2
Region III;
ψ3( )x = A3expa fjK x1 +B3expa−jK x1 f(b)
In region III, the B3 term represents a reflected wave However, once a particle is transmitted into region III, there will not be a reflected wave
which means that B3 =0 (c)
Trang 14so from the boundary conditions, we want to
solve for A3 in terms of A1 Solving for A1 in
4
= + l b − gexpa f a f−exp −
−2jK K1 2 expa f a f s a fK a2 +exp −K a2 exp jK a2
We then find that
24
2 24
1 2 2 2 2
22
1
=FH IK FHG IKJ− ( )
hThen
Trang 15The transmission coefficient is defined as
From boundary conditions, solve for A3 in terms
of A1 The boundary conditions are:
The general solutions can be written, keeping in
mind that ψ1 must remain finite for x<0, as
= −F
HG I KJ tanwhich gives
h
or E
mE a
Trang 16/expand
a
r a
ψ100 is independent of θ and φ, so the wave
equation in spherical coordinates reduces to
/exp
d
r a
r d
r a
2 100
5 2 2
so that d
d dr
r a
r a
r a
r a
r a
m E
r a o
/exp
/exp
which gives 0 = 0, and shows that ψ100 is indeed
a solution of the wave equation
2.41
All elements from Group I column of the periodic table All have one valence electron in the outer shell
Trang 17Chapter 3
Problem Solutions
3.1 If a o were to increase, the bandgap energy
would decrease and the material would
begin to behave less like a semiconductor
and more like a metal If a o were to
decrease, the bandgap energy would
increase and the material would begin to
behave more like an insulator
Region I, V x( )=0 , so substituting the proposed
solution into the wave equation, we obtain
exp
h = FH IK− ⋅ ( ) L FH −FH IK IK
exp
h +∂
exp
h = + ( ) L FH −FH IK IK
hThis equation can then be written as
In region II, V x( )=V O Assume the same form
exp
h +∂
( ) L F H F H I K I K
NM O QP UV W
2 2
u x
E t
exp
h + ( ) L FH −FH IK IK
h = ( ) L FH −FH IK IK
hThis equation can be written as
2
2 22
2 2 2
22
Trang 18For the differential equation in u x2( ) and the
proposed solution, the procedure is exactly the
dx
du dx
du
dx
du dx
−(α+k B) exp −j(α+k a)
−(β−k C) exp −j(β−k b)
+(β+k D) exp j(β+k b) =0
3.5 Computer plot 3.6 Computer plot 3.7
Trang 192 2h
E1=1 0163 eV
E2 =15041 eV
so ∆E=0 488 eV
Trang 20E1=0 8665 eV
E2 =1504 eV
so ∆E=0 638 eV
(c)
2π <ka<3π
1st point: αa =2.42 π
2nd point: αa=3 π
Trang 212
2 1h
2
2 2 1
2 22h
219
0 7 1 6 10 10 1 054 10
219
Trang 221 42 1 6 10
6 625 10
19 34
(c) Curve A: Effective mass is a constant
Curve B: Effective mass is positive around
k =0, and is negative around k = ±π
m
d E dk
2 2
2 2
x
x y z y
x y z z
2 2
2 2
+2mE2 ⋅XYZ =0
hDividing by XYZ, we obtain
2 2
2 2
Also, ψ(x y z, , )=0 at x =a , then X a( )=0 so
we must have k a x =n xπ, where
n x =1 2 3, , , Similarly, we have 1
2 2 2
Trang 23The total number of quantum states in the
3-dimensional potential well is given (in k-space)
by
g k dk T( ) = πk dk⋅a
π
2 3 3where
Substituting these expressions into the density of
states function, we obtain
31 3 2
34 3
π
πb g* /Now
31 3 2
34 3
π
Trang 24m m C V n p
Trang 25As a 1st approximation for T>0, assume the
probability of n=5 state being occupied is the
same as the probability of n=4 state being
empty Then
1
11
n n n x y z =221 122 contains both an electron =
and an empty state, so
1 1
11
111
a f=
=+
E kT E kT
a f
Hence, we have that
f E1a f1 = −1 f E2a f2 Q.E.D
Trang 26
1
1 0 011
1
1
11
Then
Trang 271exp
exp(a) T=0, For
dE F
dE F
At E E df
dE F
11
11
Trang 28Using results of Problem 3.35, the answers to
part (b) are exactly the same as those given in
kT F
Trang 29d g f
x kT
C F
a f ∝1 − FH IK−
2
1 2 /exp
/expThis yields
Let E V − ≡E x
Trang 30NM O QP
exp
expwhere
kT i
( ) ( ) =47.5
1 04 10
19 19
Trang 310which becomes
kT O
F
E C
11
kT O
NM O QP1
r O
1 =∈ FH IK*For Germanium, ∈ =r 16,m*=0 55 m O
E m
O S
Trang 32r O
p O =4.5 10x 15cm− 3
, p O >n O ⇒ p-type (b)
n
O i
HG I KJln
x x
.and
n
C O
HG I KJln
x x
b gexp .
or p O =9.67 10x − 3cm− 3
Trang 33HG I KJln
HG I KJln
n n
p
x x O
i O
HG I KJln
x x
i O
Trang 34
Then
p x( )′ = ′K x′exp( )− ′x
To find the maximum of p E( )→ p x( )′ , set
dp x dx
b gexp .
= 2.8 1019 (−4.737)
Trang 35= 4.7 1017 (−3 224)
b gexp .
= 7 1018 (−4.332)
i O
13
2.4 102.95 10
n O =1 95 10x 13 cm− 3
.(b)
i
2 2Then
HG I KJ
5 102
p n
n
x x O
i O
2exp =
d d
=8 85 10− 4.And
E−E F =aE E− Cf a+ E C −E Ff
or
E−E F =kT+0 245.Then
Trang 36Also
p n
n
x x O
i O
i O
p O =1 62 10x − 3cm− 3
.(b)
p O = N a =1016cm− 3
n n
p
x O
i O
16
18 1010
n O =3 24 10x − 4cm− 3
.(c)
n O = p O =n i = x cm−
18 106 3
p O = N a = cm−
1014 3and
n n
p
x O
i O
14
3 28 1010
n O =1 08 10x 5 cm− 3
.(e)
Trang 37p n
n
x O
N a > N d ⇒ p-type (b)
i
2 2
n n
p
x x O
i O
n O = x cm−
4.23 1011 3(c)
Total ionized impurity concentration
i O
n O = x cm−
1125 1015 3
n O > p O ⇒ n-type
Trang 38p O = n i ⇒
.And
p n
n
x O
i O
16
15 1010
p O =2.25 10x 4 cm− 3(b)
N a > N d ⇒ p-type
p O = N a−N d =3 10x 16−2 10x 15
or
p O =2.8 10x 16 cm− 3Then
n n
p
x x O
i O
16
15 102.8 10
p n
n
x x O
i O
4
15 104.5 10
N d =5 10x 15cm− 3
Donor impurity concentration
HG I KJlnFor Germanium:
Trang 39p O N a N a n
i
= 2 + FH IK2 +
2 2
HG I KJlnFor Germanium,
so
N d = x cm−
1 2 1016 3
Trang 40x x
HG I KJln
p O < N a, Donors must be added
HG I KJln
x x
HG I KJln
HG I KJln
HG I KJln
x x
E F −E Fi =0 0024 eV
Trang 41HG I KJln
x x
HG I KJln
HG I KJln
HG I KJln
x x
E Fi−E F =0 3294 eV
Trang 42(page left blank)
Trang 43(ii) For GaAs doped at N a = cm−
σ ≈eµp p O ⇒
0 01 1 6 1019 480 =b x − g ( )p O
5.3
A
L A
v d =(1100 500)( )⇒ v d =5 5 10x 5cm s
Trang 44or
µn =3333cm V2 −s
/(b)
1 2 10
4 6 t t =8 33 10x − 11s
−107.5 10
4
6 t t =1 33 10x − 11 s
.(b)
Silicon: ForΕ =50 kV cm/ ,
v d =9.5 10x 6 cm s
/ Then
t d
t d
−109.5 10
t d
t d
−10
Trang 45n n
p
x
x O
Note: For the doping concentrations obtained in
part (b), the assumed mobility values are valid
N d =9.26 10x 14cm− 3(b)
Trang 46which yields 2.625 10
300
11012
Trang 47HG I KJ.
exp
exp
E kT E kT
1500 =0 00050 0 000667 0 0020 + +
0 01019
16 15
Trang 485.24
J eD dn
n x
4
x n
or
J x n( =0)=2 A cm2
/Then
p dif, = − pb g1015 FH IK FH IK−1 exp −
or
Trang 49x
x d
exp
x
x d
Trang 505.31
kT i
2
.(i) At x=0, J n = −2.95 10x 3 A cm2
/(ii) At x=5µm , J n = −23 7 A cm2
x x
Trang 51= −( ) FH IK− − −
3 3
dN x dx
Trang 52(b)
E V
W
x H
n I B
edV
x z H
µn
x x
I L enV Wd
= − ⇒ n=8 68 10x 14cm− 3
(c) µn
x x
I L enV Wd
Trang 53R n
x n
6 625 10 3 10
6300 10
10
6.5
We have ∂
We can write ∇ •( )pΕ = • ∇ + ∇ •Ε p p Ε
and ∇ • ∇ = ∇p 2p
so
Trang 54τδ
Multiply Equation (1) by µn n and Equation (2)
by µp p , and then add the two equations
Trang 55In steady-state, δp= ′gτ
So that ∆σ =ebµn+µpgb gg′τpO
6.11
n-type, so that minority carriers are holes Uniform generation throughout the sample means we have
δτ
Trang 56( )
t nO
δτ
δ
The solution is of the form
δn= ′gτnO 1 exp− a−t τnOfNow
14 20
or
τnO = − s
106(c)
Determine t at which
0 75 1014 3
We have
0 75 1014 10 114 x = −expa−t τnOfwhich yields
Trang 57R p p
R
x pO
O
pO
pO O pO
τ τ
2.25 1010
4 11
pO
δ
τ
102.25 10
14 7
From part (a), τpO =2.25 10x − 7 s
nO
2
δ δτ
Trang 58For x→ ∞, δn remains finite, so that B=0
Then the solution is
x x n
n
10
115
Trang 59δ
expSubstituting into the differential equation
pO
2
0exp( )−µ exp( )− exp( )=
In order that δp=0 for x>0, use the minus
sign for x>0 and the plus sign for x<0
Then the solution is
n L n
n O
µ =FH IK so we can define
µn n O O
L L n
Trang 60.Then
α =5 75 102 − 1
(c)
Force on the electrons due to the electric field is
in the negative x-direction Therefore, the
effective diffusion of the electrons is reduced and
the concentration drops off faster with the
applied electric field
continuous at x= −L; The flux must be continuous so that
δp G
O p
= ′ (3 − ) for L< <x 3L
δp G L
O p
= ′ (3 + ) for −3L< < −x L
6.26
µp O
18756
2
Trang 61
x Dt
x Dt
/
expAlso
into the differential equation, we find 0 0= ,
HG I KJln
x x
Trang 62HG I KJln
x x
x x
n
O i
HG I KJlnand
n
O i
i
O i
HG I KJ ( )
0 01Then
p p
p O O
+
δ
exp 0 01 1 010
Trang 63x x
g O = R O since these are the thermal equilibrium
generation and recombination rates If g′ =0 ,
δ =τ =
+ −1
107 1
(b)
Intrinsic, n O = p O =n i
Then R
δ =τ +τ = − + − ⇒
107 5 107 R
δ =
+ −
1 67 106 1
Trang 642 2
2
δ δτ
Trang 65Applying the boundary conditions, we find
δn δn x
W O
D O n
6.42
Computer Plot
Trang 66(page left blank)
Trang 67HG I KJln
x x
HG I KJln
Trang 68x x
n
a d i
HG I KJ
Trang 69n d a
HG n N I KJ
a i
x x
x x
Trang 70We can write
N N C V = N N CO VOF H T I K
3003
g
2
HG I KJexpNow
a d i
a d i
2 1
2 2
2 1
x
l −ln 2.8 1019 1 04 10 19 + UV W
2
kT g
1
kT g
bi bi
g
g
2 1
E kT
so that E
Trang 71HG I KJln
x D n
=0 1320
Trang 72x x
x x
Trang 73NM O QP F
a d i
2
22
a d i
or ∆V bi =17.95mV
18 15
18 16
16 15
1 2
Trang 74( ) ( )
=
+
++
18 16
18 15
1 2
C
V j
Trang 751 21
+
−L
Trang 76N
eV
x x d
1 2
x x
x x
14 19
A one-sided junction and assume V R >>V bi, then
eN p
R a
NM2 O QP
1 2 /
so
Trang 7714 16
y=mx b+
V
x R
Trang 78HG I KJ
(c) p-region d
Ε = −
eN
x x aO
a f
We also have
Trang 79At x= +x O and x= −x O, Ε =0
So 0
2Set φ=0 at x= −x O, then
0
3 3
3
Trang 811 2
HG I KJln(a)
D
a n
N
D N D a
n nO
a n
p pO
which yields N
N a d
=14.24 Now
N a = x cm−
1 01 1016 3
Trang 82eD n
L
eD p L
n
n pO n
n pO n
p nO p
i a
p nO
n pO
a d
ττ
nO pO
n N e
L
n N
e L
n N
n
n n i a n
n
i a p p i d
D t
eD n L
eD p L
D
L N D
p nO p
n
n a n
D L
N N
n n n n p p a d
Trang 830 95
25
15 825
15 8
1010
HG I KJln
x x
HG I KJln
110
10 910
HG I KJexp
I
x x
−
−
3 76 104.48 10
16 15
a t
p nO
p
p
pO i d
10
2.4 1010
6
13 2 16
or
I S = x − A
2.91 109(a)
or I = − = −I S 2.91nA
Trang 84n
a d i
The total current is
Trang 85I I eV
kT
x x L
32.83
16
10 32.4 10
Trang 86= L FH IK−
Then we find the total number of excess
electrons in the p-region to be:
eV kT i
HG I KJ
exp
exp
or I
2
x x
Trang 87a n
or
I CT E
kT S
g
HG I KJ
3exp
eV kT f
0 510
b g b g
or kT
kT
C V a n
110
1010
x
E kT
g
exp
or exp +
1104.66 10
Trang 88HG I KJ
L
NMexp 1 O QP = Aexpb+x L n pg+Bexpb−x L n pg
and the boundary condition at x=x n+W n gives
nO
a t
n p
a t
p
n p
HG I KJexp
sinh
sinh1
HG I KJ
V W L
p nO
a t
n p
coshThen
J eD p
L
W L
V V p
p nO
p
n p
a t
HG I KJ
2expFor the temperature range 300≤ ≤T 320K,
neglect the change in N C and N V
So
kT
eV kT D
Trang 891
1 1 2 2
−
−10
ω
ωω
For a forward-bias voltage, the junction capacitance is
HG21 I KJ b τ τ gwhere
I Aen
N
V pO
i d p
pO
a t
HG I KJ2
τ exp
Trang 90a
n nO
a t
or
V pO
a t
or
V nO
a t
or
V d
a t
pO pO
HG21 I KJ b τ gNow
τpO t
Trang 91n pO
n
a t
HG I KJexp
L
A e N n
2 5
HG I KJln
3 10
3 10
or V =1 98 V
(b) For R=0
V =0 477 V
Trang 92a t
D S
D
a
S t
a t
x x
Trang 93+ − O
QP
110
a t gen
a t
x
a t gen S
2
2.73 104.16 10 6 56 10
7 11
D
a n
10
77.710
−
O QP
Trang 94x x
14 19
17 34
V rec
i O
a t
HG I KJ
2τ exp 2 =
14 19
17 34
Reverse-bias; ratio of generation to ideal diffusion current:
I
I
x x gen
Trang 95Ratio =1 29 106
x For V a =0 5 V
kT i
O
a a
+
η η
Trang 96R n eV
kT i
x x
3 10
1810
610
HG I KJexpAlso
which yields exp V
D t
22
Trang 97I J A V
V S
a t
B d
19 18 14
Trang 98From Figure 8.25, the breakdown voltage is
approximately 300 V So, in each case,
breakdown is reached first
τ =0 2
Then
erf t
I I
erf S
F
τ = + =
11
0 2
where
erf 0 2 =erf(0 447 )=0 473
We obtain I
I R F
0 473 1
I I R F
pO
pO
R F
HG I KJ − FH IK
τ ln 1 10 ln 1 2
17
b g
or
t S =11 10x − 7 s
.Also
C avg =18 4.2+ = pF
The time constant is
Trang 99x x
Trang 100(page left blank)
Trang 101HG I KJln
bi d
N
HG I KJln
Trang 102C= ′C A
so
C=15pF