1. Trang chủ
  2. » Ngoại Ngữ

Solution Manual for Semiconductor Physics and Devices 3ed (Neamen)

188 1,4K 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 188
Dung lượng 1,71 MB

Nội dung

Since Ψ1 is a solution, then This equation is not necessarily valid, which means that Ψ Ψ1 2 is, in general, not a solution to Schrodinger’s wave equation... Term with B2 represents inci

Trang 1

Chapter 1

Problem Solutions

1.1

(a) fcc: 8 corner atoms × 1/8 = 1 atom

6 face atoms × ½ = 3 atoms

Total of 4 atoms per unit cell

(b) bcc: 8 corner atoms × 1/8 = 1 atom

1 enclosed atom = 1 atom

Total of 2 atoms per unit cell

(c) Diamond: 8 corner atoms × 1/8 = 1 atom

6 face atoms × ½ = 3 atoms

4 enclosed atoms = 4 atoms

Total of 8 atoms per unit cell

(a) Simple cubic lattice; a=2r

Unit cell vol =a3 =( )r 3= r3

F

HG I KJ

4 43

d =4r=a 3⇒ =a 4 r

3 Unit cell vol = =F

H I K

343

2 atoms per cell, so atom vol = F

HG I KJ

2 43

F

HG I KJ F

H I K

2 4343100%

3 Unit cell vol = =F

H I K

383

8 atoms per cell, so atom vol 8 4

Ratio

r r

F

HG I KJ F

H I K

8 4383100%

From Problem 1.3, percent volume of fcc atoms

is 74%; Therefore after coffee is ground, Volume =0 74 3

cm

Trang 2

8 3

x x

13

11, ,

FH IK ⇒ (313 )(b)

14

12

14, ,

FH IK⇒ 121( )

Trang 3

(i) (100) plane, surface density,

Same as (a),(i); surface density 4.94 1014 2

(iii) (111) plane, surface density,

Same as (a),(iii), surface density 2.85 1014 2

(c)

Face centered cubic

(i) (100) plane, surface density

24.50 108 2

atoms x

4

3 4.50 102

(c) (111) plane, surface density,

6 3642

or

Trang 4

valence electrons per atom, so

Density of valence electrons 2 1023 3

An average of 4 valence electrons per atom,

Density of valence electrons 1 77 1023 3

x x

1.21

2 103

5 43

d

a O =146

Trang 5

λ ω

x

t constant Then

x x

6 625 10

5 4 10

34 25

x x

6 625 102.31 10

34 23

or

λ =0 287 A °(c) Tungsten Atom: At Wt = 183.92

x x

6 625 10

313 10

34 22

or

λ =0 0212 A °(d) A 2000 kg traveling at 20 m/s:

x x

6 625 10

4 10

34 4

or

λ =1 66 10− 28 °

Trang 6

6 625 10

7.1 10

34 26

λ E m

h e

e

HG I KJ

12

p

λ 100 2

21002

x x

6 625 10

1822 10

34 26

λ =364 A °(b)

26 31

4

6 625 10 3 10

1 10

10

or

E =1 99 10x − 15 J

.Now

x x

6 625 10

6 02 10

34 23

λ =0 11 A °

Trang 7

8 78 10

5 10

29

8 78 10

5 10

26

32

or ∆t=6 6 10x − 16 s

h aΨ Ψ1 2fwhich can be written as

2 2

2 1 2

2 2 2 1

2 1 2

Trang 8

Since Ψ1 is a solution, then

This equation is not necessarily valid, which

means that Ψ Ψ1 2 is, in general, not a solution to

Schrodinger’s wave equation

HG I KJ z

4

a

a o

2

a

a o

HG I KJ z

a

a o

P=0 865

Trang 9

2 22

Trang 10

1 48 1030

Energy in the (n+1) state is 1 48 1030

x − Joules larger than 10 mJ

42

92

162

2 2

2 2

x

x y z y

x y z z

mE XYZ

2 2

2

2

0h

Dividing by XYZ and letting k2 mE

2

2

=

h , we obtain

2 2

2 2

2 2 2

Trang 11

x y

,h Let ψ( )x y, = X x Y y( ) ( )

Then substituting,

Y X

Y y

mE XY

We can also define 1

2 2 2

Y y( =b)= ⇒0 k b y =n yπ

so that

k n

b y y

Now − −k x2 k y2+ mE =

2

20hwhich yields

E E

m

n a

n b

π b g

For n2 =2,n1=1Then

h π

Trang 12

Term with B2 represents incident wave, and

term with A2 represents the reflected wave

Term involving B1 represents the transmitted

wave, and the term involving A1 represents the

reflected wave; but if a particle is transmitted

into region I, it will not be reflected so that

x x

x x

F

HG I KJThe reflection coefficient is

T|

U V| W|

2 2

Trang 13

2.35

Region I, V =0(x<0 ; Region II, )

V =V O (0< <x a); Region III, V =0(x>a) (a) Region I;

ψ1( )x = A1expa fjK x1 +B1expa−jK x1 f (incident) (reflected) Region II;

ψ2( )x = A2expa fK x2 +B2expa f−K x2

Region III;

ψ3( )x = A3expa fjK x1 +B3expa−jK x1 f(b)

In region III, the B3 term represents a reflected wave However, once a particle is transmitted into region III, there will not be a reflected wave

which means that B3 =0 (c)

Trang 14

so from the boundary conditions, we want to

solve for A3 in terms of A1 Solving for A1 in

4

= + l b − gexpa f a f−exp −

−2jK K1 2 expa f a f s a fK a2 +exp −K a2 exp jK a2

We then find that

24

2 24

1 2 2 2 2

22

1

=FH IK FHG IKJ− ( )

hThen

Trang 15

The transmission coefficient is defined as

From boundary conditions, solve for A3 in terms

of A1 The boundary conditions are:

The general solutions can be written, keeping in

mind that ψ1 must remain finite for x<0, as

= −F

HG I KJ tanwhich gives

h

or E

mE a

Trang 16

/expand

a

r a

ψ100 is independent of θ and φ, so the wave

equation in spherical coordinates reduces to

/exp

d

r a

r d

r a

2 100

5 2 2

so that d

d dr

r a

r a

r a

r a

r a

m E

r a o

/exp

/exp

which gives 0 = 0, and shows that ψ100 is indeed

a solution of the wave equation

2.41

All elements from Group I column of the periodic table All have one valence electron in the outer shell

Trang 17

Chapter 3

Problem Solutions

3.1 If a o were to increase, the bandgap energy

would decrease and the material would

begin to behave less like a semiconductor

and more like a metal If a o were to

decrease, the bandgap energy would

increase and the material would begin to

behave more like an insulator

Region I, V x( )=0 , so substituting the proposed

solution into the wave equation, we obtain

exp

h = FH IK− ⋅ ( ) L FH −FH IK IK

exp

h +∂

exp

h = + ( ) L FH −FH IK IK

hThis equation can then be written as

In region II, V x( )=V O Assume the same form

exp

h +∂

( ) L F H F H I K I K

NM O QP UV W

2 2

u x

E t

exp

h + ( ) L FH −FH IK IK

h = ( ) L FH −FH IK IK

hThis equation can be written as

2

2 22

2 2 2

22

Trang 18

For the differential equation in u x2( ) and the

proposed solution, the procedure is exactly the

dx

du dx

du

dx

du dx

−(α+k B) exp −j(α+k a)

−(β−k C) exp −j(β−k b)

+(β+k D) exp j(β+k b) =0

3.5 Computer plot 3.6 Computer plot 3.7

Trang 19

2 2h

E1=1 0163 eV

E2 =15041 eV

so ∆E=0 488 eV

Trang 20

E1=0 8665 eV

E2 =1504 eV

so ∆E=0 638 eV

(c)

2π <ka<3π

1st point: αa =2.42 π

2nd point: αa=3 π

Trang 21

2

2 1h

2

2 2 1

2 22h

219

0 7 1 6 10 10 1 054 10

219

Trang 22

1 42 1 6 10

6 625 10

19 34

(c) Curve A: Effective mass is a constant

Curve B: Effective mass is positive around

k =0, and is negative around k = ±π

m

d E dk

2 2

2 2

x

x y z y

x y z z

2 2

2 2

+2mE2 ⋅XYZ =0

hDividing by XYZ, we obtain

2 2

2 2

Also, ψ(x y z, , )=0 at x =a , then X a( )=0 so

we must have k a x =n xπ, where

n x =1 2 3, , , Similarly, we have 1

2 2 2

Trang 23

The total number of quantum states in the

3-dimensional potential well is given (in k-space)

by

g k dk T( ) = πk dka

π

2 3 3where

Substituting these expressions into the density of

states function, we obtain

31 3 2

34 3

π

πb g* /Now

31 3 2

34 3

π

Trang 24

m m C V n p

Trang 25

As a 1st approximation for T>0, assume the

probability of n=5 state being occupied is the

same as the probability of n=4 state being

empty Then

1

11

n n n x y z =221 122 contains both an electron =

and an empty state, so

1 1

11

111

a f=

=+

E kT E kT

a f

Hence, we have that

f E1a f1 = −1 f E2a f2 Q.E.D

Trang 26

1

1 0 011

1

1

11

Then

Trang 27

1exp

exp(a) T=0, For

dE F

dE F

At E E df

dE F

11

11

Trang 28

Using results of Problem 3.35, the answers to

part (b) are exactly the same as those given in

kT F

Trang 29

d g f

x kT

C F

a f ∝1 − FH IK−

2

1 2 /exp

/expThis yields

Let E V − ≡E x

Trang 30

NM O QP

exp

expwhere

kT i

( ) ( ) =47.5

1 04 10

19 19

Trang 31

0which becomes

kT O

F

E C

11

kT O

NM O QP1

r O

1 =∈ FH IK*For Germanium, ∈ =r 16,m*=0 55 m O

E m

O S

Trang 32

r O

p O =4.5 10x 15cm− 3

, p O >n O ⇒ p-type (b)

n

O i

HG I KJln

x x

.and

n

C O

HG I KJln

x x

b gexp .

or p O =9.67 10x − 3cm− 3

Trang 33

HG I KJln

HG I KJln

n n

p

x x O

i O

HG I KJln

x x

i O

Trang 34

Then

p x( )′ = ′K x′exp( )− ′x

To find the maximum of p E( )→ p x( )′ , set

dp x dx

b gexp .

= 2.8 1019 (−4.737)

Trang 35

= 4.7 1017 (−3 224)

b gexp .

= 7 1018 (−4.332)

i O

13

2.4 102.95 10

n O =1 95 10x 13 cm− 3

.(b)

i

2 2Then

HG I KJ

5 102

p n

n

x x O

i O

2exp =

d d

=8 85 10− 4.And

EE F =aE ECf a+ E CE Ff

or

EE F =kT+0 245.Then

Trang 36

Also

p n

n

x x O

i O

i O

p O =1 62 10x − 3cm− 3

.(b)

p O = N a =1016cm− 3

n n

p

x O

i O

16

18 1010

n O =3 24 10x − 4cm− 3

.(c)

n O = p O =n i = x cm

18 106 3

p O = N a = cm

1014 3and

n n

p

x O

i O

14

3 28 1010

n O =1 08 10x 5 cm− 3

.(e)

Trang 37

p n

n

x O

N a > N d ⇒ p-type (b)

i

2 2

n n

p

x x O

i O

n O = x cm

4.23 1011 3(c)

Total ionized impurity concentration

i O

n O = x cm

1125 1015 3

n O > p O ⇒ n-type

Trang 38

p O = n i

.And

p n

n

x O

i O

16

15 1010

p O =2.25 10x 4 cm− 3(b)

N a > N d ⇒ p-type

p O = N aN d =3 10x 16−2 10x 15

or

p O =2.8 10x 16 cm− 3Then

n n

p

x x O

i O

16

15 102.8 10

p n

n

x x O

i O

4

15 104.5 10

N d =5 10x 15cm− 3

Donor impurity concentration

HG I KJlnFor Germanium:

Trang 39

p O N a N a n

i

= 2 + FH IK2 +

2 2

HG I KJlnFor Germanium,

so

N d = x cm

1 2 1016 3

Trang 40

x x

HG I KJln

p O < N a, Donors must be added

HG I KJln

x x

HG I KJln

HG I KJln

HG I KJln

x x

E FE Fi =0 0024 eV

Trang 41

HG I KJln

x x

HG I KJln

HG I KJln

HG I KJln

x x

E FiE F =0 3294 eV

Trang 42

(page left blank)

Trang 43

(ii) For GaAs doped at N a = cm

σ ≈eµp p O

0 01 1 6 1019 480 =b x − g ( )p O

5.3

A

L A

v d =(1100 500)( )⇒ v d =5 5 10x 5cm s

Trang 44

or

µn =3333cm V2 −s

/(b)

1 2 10

4 6 t t =8 33 10x − 11s

−107.5 10

4

6 t t =1 33 10x − 11 s

.(b)

Silicon: ForΕ =50 kV cm/ ,

v d =9.5 10x 6 cm s

/ Then

t d

t d

−109.5 10

t d

t d

−10

Trang 45

n n

p

x

x O

Note: For the doping concentrations obtained in

part (b), the assumed mobility values are valid

N d =9.26 10x 14cm− 3(b)

Trang 46

which yields 2.625 10

300

11012

Trang 47

HG I KJ.

exp

exp

E kT E kT

1500 =0 00050 0 000667 0 0020 + +

0 01019

16 15

Trang 48

5.24

J eD dn

n x

4

x n

or

J x n( =0)=2 A cm2

/Then

p dif, = − pb g1015 FH IK FH IK−1 exp −

or

Trang 49

x

x d

exp

x

x d

Trang 50

5.31

kT i

2

.(i) At x=0, J n = −2.95 10x 3 A cm2

/(ii) At x=5µm , J n = −23 7 A cm2

x x

Trang 51

= −( ) FH IK− − −

3 3

dN x dx

Trang 52

(b)

E V

W

x H

n I B

edV

x z H

µn

x x

I L enV Wd

= − ⇒ n=8 68 10x 14cm− 3

(c) µn

x x

I L enV Wd

Trang 53

R n

x n

6 625 10 3 10

6300 10

10

6.5

We have ∂

We can write ∇ •( )pΕ = • ∇ + ∇ •Ε p p Ε

and ∇ • ∇ = ∇p 2p

so

Trang 54

τδ

Multiply Equation (1) by µn n and Equation (2)

by µp p , and then add the two equations

Trang 55

In steady-state, δp= ′gτ

So that ∆σ =enpgb gg′τpO

6.11

n-type, so that minority carriers are holes Uniform generation throughout the sample means we have

δτ

Trang 56

( )

t nO

δτ

δ

The solution is of the form

δn= ′gτnO 1 exp− a−t τnOfNow

14 20

or

τnO = − s

106(c)

Determine t at which

0 75 1014 3

We have

0 75 1014 10 114 x = −expa−t τnOfwhich yields

Trang 57

R p p

R

x pO

O

pO

pO O pO

τ τ

2.25 1010

4 11

pO

δ

τ

102.25 10

14 7

From part (a), τpO =2.25 10x − 7 s

nO

2

δ δτ

Trang 58

For x→ ∞, δn remains finite, so that B=0

Then the solution is

x x n

n

10

115

Trang 59

δ

expSubstituting into the differential equation

pO

2

0exp( )−µ exp( )− exp( )=

In order that δp=0 for x>0, use the minus

sign for x>0 and the plus sign for x<0

Then the solution is

n L n

n O

µ =FH IK so we can define

µn n O O

L L n

Trang 60

.Then

α =5 75 102 − 1

(c)

Force on the electrons due to the electric field is

in the negative x-direction Therefore, the

effective diffusion of the electrons is reduced and

the concentration drops off faster with the

applied electric field

continuous at x= −L; The flux must be continuous so that

δp G

O p

= ′ (3 − ) for L< <x 3L

δp G L

O p

= ′ (3 + ) for −3L< < −x L

6.26

µp O

18756

2

Trang 61

x Dt

x Dt

/

expAlso

into the differential equation, we find 0 0= ,

HG I KJln

x x

Trang 62

HG I KJln

x x

x x

n

O i

HG I KJlnand

n

O i

i

O i

HG I KJ ( )

0 01Then

p p

p O O

+

δ

exp 0 01 1 010

Trang 63

x x

g O = R O since these are the thermal equilibrium

generation and recombination rates If g′ =0 ,

δ =τ =

+ −1

107 1

(b)

Intrinsic, n O = p O =n i

Then R

δ =τ +τ = − + − ⇒

107 5 107 R

δ =

+ −

1 67 106 1

Trang 64

2 2

2

δ δτ

Trang 65

Applying the boundary conditions, we find

δn δn x

W O

D O n

6.42

Computer Plot

Trang 66

(page left blank)

Trang 67

HG I KJln

x x

HG I KJln

Trang 68

x x

n

a d i

HG I KJ

Trang 69

n d a

HG n N I KJ

a i

x x

x x

Trang 70

We can write

N N C V = N N CO VOF H T I K

3003

g

2

HG I KJexpNow

a d i

a d i

2 1

2 2

2 1

x

l −ln 2.8 1019 1 04 10 19 + UV W

2

kT g

1

kT g

bi bi

g

g

2 1

E kT

so that E

Trang 71

HG I KJln

x D n

=0 1320

Trang 72

x x

x x

Trang 73

NM O QP F

a d i

2

22

a d i

or ∆V bi =17.95mV

18 15

18 16

16 15

1 2

Trang 74

( ) ( )

=

+

++

18 16

18 15

1 2

C

V j

Trang 75

1 21

+

−L

Trang 76

N

eV

x x d

1 2

x x

x x

14 19

A one-sided junction and assume V R >>V bi, then

eN p

R a

NM2 O QP

1 2 /

so

Trang 77

14 16

y=mx b+

V

x R

Trang 78

HG I KJ

(c) p-region d

Ε = −

eN

x x aO

a f

We also have

Trang 79

At x= +x O and x= −x O, Ε =0

So 0

2Set φ=0 at x= −x O, then

0

3 3

3

Trang 81

1 2

HG I KJln(a)

D

a n

N

D N D a

n nO

a n

p pO

which yields N

N a d

=14.24 Now

N a = x cm

1 01 1016 3

Trang 82

eD n

L

eD p L

n

n pO n

n pO n

p nO p

i a

p nO

n pO

a d

ττ

nO pO

n N e

L

n N

e L

n N

n

n n i a n

n

i a p p i d

D t

eD n L

eD p L

D

L N D

p nO p

n

n a n

D L

N N

n n n n p p a d

Trang 83

0 95

25

15 825

15 8

1010

HG I KJln

x x

HG I KJln

110

10 910

HG I KJexp

I

x x

3 76 104.48 10

16 15

a t

p nO

p

p

pO i d

10

2.4 1010

6

13 2 16

or

I S = xA

2.91 109(a)

or I = − = −I S 2.91nA

Trang 84

n

a d i

The total current is

Trang 85

I I eV

kT

x x L

32.83

16

10 32.4 10

Trang 86

= L FH IK−

Then we find the total number of excess

electrons in the p-region to be:

eV kT i

HG I KJ

exp

exp

or I

2

x x

Trang 87

a n

or

I CT E

kT S

g

HG I KJ

3exp

eV kT f

0 510

b g b g

or kT

kT

C V a n

110

1010

x

E kT

g

exp

or exp +

1104.66 10

Trang 88

HG I KJ

L

NMexp 1 O QP = Aexpb+x L n pg+Bexpb−x L n pg

and the boundary condition at x=x n+W n gives

nO

a t

n p

a t

p

n p

HG I KJexp

sinh

sinh1

HG I KJ

V W L

p nO

a t

n p

coshThen

J eD p

L

W L

V V p

p nO

p

n p

a t

HG I KJ

2expFor the temperature range 300≤ ≤T 320K,

neglect the change in N C and N V

So

kT

eV kT D

Trang 89

1

1 1 2 2

−10

ω

ωω

For a forward-bias voltage, the junction capacitance is

HG21 I KJ b τ τ gwhere

I Aen

N

V pO

i d p

pO

a t

HG I KJ2

τ exp

Trang 90

a

n nO

a t

or

V pO

a t

or

V nO

a t

or

V d

a t

pO pO

HG21 I KJ b τ gNow

τpO t

Trang 91

n pO

n

a t

HG I KJexp

L

A e N n

2 5

HG I KJln

3 10

3 10

or V =1 98 V

(b) For R=0

V =0 477 V

Trang 92

a t

D S

D

a

S t

a t

x x

Trang 93

+ − O

QP

110

a t gen

a t

x

a t gen S

2

2.73 104.16 10 6 56 10

7 11

D

a n

10

77.710

O QP

Trang 94

x x

14 19

17 34

V rec

i O

a t

HG I KJ

2τ exp 2 =

14 19

17 34

Reverse-bias; ratio of generation to ideal diffusion current:

I

I

x x gen

Trang 95

Ratio =1 29 106

x For V a =0 5 V

kT i

O

a a

+

η η

Trang 96

R n eV

kT i

x x

3 10

1810

610

HG I KJexpAlso

which yields exp V

D t

22

Trang 97

I J A V

V S

a t

B d

19 18 14

Trang 98

From Figure 8.25, the breakdown voltage is

approximately 300 V So, in each case,

breakdown is reached first

τ =0 2

Then

erf t

I I

erf S

F

τ = + =

11

0 2

where

erf 0 2 =erf(0 447 )=0 473

We obtain I

I R F

0 473 1

I I R F

pO

pO

R F

HG I KJ − FH IK

τ ln 1 10 ln 1 2

17

b g

or

t S =11 10x − 7 s

.Also

C avg =18 4.2+ = pF

The time constant is

Trang 99

x x

Trang 100

(page left blank)

Trang 101

HG I KJln

bi d

N

HG I KJln

Trang 102

C= ′C A

so

C=15pF

Ngày đăng: 21/12/2016, 10:57

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w