1. Trang chủ
  2. » Ngoại Ngữ

Solution Manual for Semiconductor Physics and Devices 3ed (Neamen)

188 1,4K 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 188
Dung lượng 1,71 MB

Nội dung

Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual Chapter Problem Solutions Chapter Problem Solutions FG 4πr IJ H3K atoms per cell, so atom vol = 1.1 (a) fcc: corner atoms × 1/8 = atom face atoms × ½ = atoms Total of atoms per unit cell Then FG 4πr IJ H K × 100% ⇒ Ratio = (b) bcc: corner atoms × 1/8 = atom enclosed atom = atom Total of atoms per unit cell Ratio = 74% 16 r (c) Body-centered cubic lattice d = 4r = a ⇒ a = r (c) Diamond: corner atoms × 1/8 = atom face atoms × ½ = atoms enclosed atoms = atoms Total of atoms per unit cell Unit cell vol = a = F rI H 3K FG 4πr IJ H3K atoms per cell, so atom vol = 1.2 (a) Ga atoms per unit cell Density = b 5.65 x10 −8 g Then FG 4πr IJ H K × 100% ⇒ Ratio = F 4r I H 3K ⇒ Density of Ga = 2.22 x10 cm 22 −3 As atoms per unit cell, so that Density of As = 2.22 x10 cm 22 −3 (d) Diamond lattice (b) Body diagonal = d = 8r = a ⇒ a = Ge atoms per unit cell ⇒ Density = −8 5.65 x10 b Ratio = 68% g Unit cell vol = a Density of Ge = 4.44 x10 cm 22 −3 F 8r I = H 3K r FG 4πr IJ H3K atoms per cell, so atom vol 1.3 (a) Simple cubic lattice; a = 2r Then Unit cell vol = a = (2 r ) = 8r 3 FG 4πr IJ H K × 100% ⇒ Ratio = F 8r I H 3K 3 FG 4πr IJ H3K atom per cell, so atom vol = (1) Then FG 4πr IJ H K × 100% ⇒ Ratio = Ratio = 34% 1.4 From Problem 1.3, percent volume of fcc atoms is 74%; Therefore after coffee is ground, Ratio = 52.4% 8r (b) Face-centered cubic lattice d =2 2r d = 4r = a ⇒ a = c Unit cell vol = a = 2 r h = 16 2r Volume = 0.74 cm 3 Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual Chapter Problem Solutions Then mass density is 1.5 (a) a = 5.43 A so that r = ° a From 1.3d, a = (5.43) ρ= r =ρ= N ( At Wt ) NA 6.02 x10 1.9 (a) Surface density 1 = = −8 a 4.62 x10 ° b ° 14 3.31x10 cm 23 Density(A) = 118 x10 cm −3 x10 cm Density(B) = 118 (a) Vol density = −3 Surface density = 1.7 (b) b2.8x10 g ao ao (b) Same as (a) ° (c) = 2.28 x10 cm 22 ⇒ 1.01x10 cm 22 22 1.01x10 cm g 2 −2 1.10 B-type: atom per unit cell, so −8 Same for A atoms and B atoms (b) Same as (a) (c) Same material g 12 ° (b) Same as (a) (c) Same material so that rB = 0.747 A (b) A-type; atom per unit cell Density = ⇒ −8 2.04 x10 Na: Density = −8 −8 23 rA + 2rB = a ⇒ 2rB = 2.04 − 2.04 23 b4.62 x10 g Density of B = b4.62 x10 g ⇒ (a) a = rA = 2(1.02) = 2.04 A Now a = 18 + 1.0 ⇒ a = 2.8 A ° Density of A = 1.6 b ⇒ a = 4.62 A b5x10 g(28.09) ⇒ ρ = 2.33 grams / cm (a) a = 2(2.2 ) + 2(1.8) = A so that ° 22 = −8 1.8 g (c) Mass density b2.8x10 g ° (b) Number density −3 22 = ⇒ Density = x10 cm −8 5.43 x10 b −23 ρ = 2.21 gm / cm = = 118 A 8 Center of one silicon atom to center of nearest neighbor = 2r ⇒ 2.36 A 4.85 x10 Cl: Density (same as Na) = 2.28 x10 cm 22 1.11 Sketch −3 1.12 (a) −3 (d) Na: At.Wt = 22.99 Cl: At Wt = 35.45 So, mass per unit cell 1 (22.99) + (35.45) −23 = = 4.85 x10 23 6.02 x10 (b) F , , 1I ⇒ (313) H 1K F , , I ⇒ (121) H 4K ⇒ −3 −3 Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual 1.13 (a) Distance between nearest (100) planes is: d = a = 5.63 A = ° d = 3.98 A (iii) ° or (iii) FI HK c h b 4.50 x10 −8 (iii) 15 x10 cm 114 b g −2 g ⇒ 2.85 x10 cm 14 g −2 3a b g 1.16 −2 d = 4r = a then 4r 4(2.25) ° a= = = 6.364 A 2 (a) atoms Volume Density = −8 6.364 x10 −2 (110) plane, surface density, atoms −2 14 ⇒ 6.99 x10 cm −8 2 4.50 x10 b g 22 x10 cm 155 Same as (a),(iii), surface density 2.85 x10 cm −3 (b) Distance between (110) planes, a 6.364 = a = = ⇒ 2 or (111) plane, surface density, 14 g (c) (111) plane, surface density, atoms −2 14 = ⇒ 7.83 x10 cm −8 5.43 x10 14 b I K b Same as (a),(i); surface density 4.94 x10 cm = F H (b) (110) plane, surface density, atoms −2 14 = ⇒ 9.59 x10 cm −8 2 5.43 x10 (b) Body-centered cubic (i) (100) plane, surface density, (ii) g 6.78 x10 cm g b b (110) plane, surface density, atom −2 14 ⇒ 3.49 x10 cm −8 2 4.50 x10 (111) plane, surface density, 1 atoms = = = a a ( x) ⋅a ⋅ 2 = (110) plane, surface density, atoms −2 14 ⇒ 6.99 x10 cm −8 2 4.50 x10 14 g b −2 1.15 (a) (100) plane of silicon – similar to a fcc, atoms ⇒ surface density = −8 5.43 x10 ° = 14 ° Simple cubic: a = 4.50 A (i) (100) plane, surface density, atom −2 14 = ⇒ 4.94 x10 cm −8 4.50 x10 (ii) ⇒ 9.88 x10 cm (111) plane, surface density, 1 3⋅ + 3⋅ = = −8 3 4.50 x10 a 1.14 (a) b b4.50x10 g −8 = (c) Distance between nearest (111) planes is: a 5.63 d= a 3= = 3 or d = 3.25 A atoms (ii) (b)Distance between nearest (110) planes is: a 5.63 d= a 2= = 2 or Chapter Problem Solutions −2 (c) Face centered cubic (i) (100) plane, surface density g ⇒ Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual 4.50 A Chapter Problem Solutions ° 1.20 (c) Surface density atoms = = 2a b5x10 g(30.98) ⇒ (a) Fraction by weight ≈ b5x10 g(28.06) 16 22 b 6.364 x10 −8 g −6 x10 110 (b) Fraction by weight or 14 3.49 x10 cm b10 g(10.82) ≈ b5x10 g(30.98) + b5x10 g(28.06) ⇒ 18 −2 16 1.17 Density of silicon atoms = x10 cm valence electrons per atom, so 22 −3 23 Density of valence electrons x10 cm 7.71x10 and Volume density = −3 16 x100% ⇒ −5 x10 % 1x10 15 x10 22 ° We have a O = 5.43 A So d d 794 = ⇒ = 146 a O 5.43 aO 1.19 (b) Percentage = 15 ° 23 22 = x10 cm −6 Density of valence electrons 1.77 x10 cm x10 d d = 7.94 x10 cm = 794 A g (a) Percentage = So An average of valence electrons per atom, x10 −6 1.21 −3 1.18 Density of GaAs atoms atoms 22 −3 = = 4.44 x10 cm −8 5.65 x10 b 22 x100% ⇒ −6 x10 % −3 Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual Chapter Problem Solutions Chapter Problem Solutions p = 5.4 x10 2.1 Computer plot λ= 2.2 Computer plot h p = −25 6.625 x10 5.4 x10 kg − m / s −34 ⇒ −25 or λ = 12.3 A 2.3 Computer plot ° (ii) K.E = T = 100 eV = 1.6 x10 2.4 For problem 2.2; Phase = p= 2πx − ωt = constant λ λ= Then λ 2π dx dx ⋅ − ω = or = v = +ω λ dt 2π dt F I H K p For problem 2.3; Phase = 2πx λ p = 5.4 x10 mT ⇒ h p ⇒ λ = 1.23 A −17 −24 J kg − m / s ° (b) Proton: K.E = T = eV = 1.6 x10 p= + ωt = constant mT = b 1.67 x10 −27 −19 gb1.6x10 g −19 or p = 2.31x10 Then λ 2π dx dx ⋅ + ω = or = v p = −ω λ dt 2π dt F I H K λ= h p = −23 6.625 x10 2.31x10 kg − m / s −34 ⇒ −23 or λ = 0.287 A 2.5 E = hν = hc λ ⇒λ = hc b g So b6.625x10 gb3x10 g ⇒ 2.54 x10 λ= (4.90)b1.6 x10 g Gold: E = 4.90 eV = (4.90) 1.6 x10 −34 −19 For T = eV = 1.6 x10 J p= mT −5 cm b Cesium: E = 1.90 eV = (1.90) 1.6 x10 −19 g b6.625x10 gb3x10 g ⇒ 6.54 x10 λ= (1.90)b1.6 x10 g −34 λ= J −5 b gb1.6x10 g p = −22 6.625 x10 3.13x10 kg = m / s −34 −22 ⇒ λ = 0.0212 A cm ° (d) A 2000 kg traveling at 20 m/s: p = mv = (2000)(20) ⇒ or p = x10 kg − m / s (a) Electron: (i) K.E = T = eV = 1.6 x10 9.11x10 −27 or 2.6 mT = h 10 λ = 0.654 µm p= b p = 313 x10 −19 or J or or λ = 0.254 µm −19 2(183.92 ) 1.66 x10 = 10 −19 So ° (c) Tungsten Atom: At Wt = 183.92 E −31 −19 gb1.6x10 g λ= J h p = 6.625 x10 x10 −34 ⇒ or −19 λ = 1.66 x10 or −28 A ° J −19 Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual Chapter Problem Solutions or 2.7 E avg = kT = E = 1.822 x10 (0.0259) ⇒ Also or b b 9.11x10 −31 g(0.01727)b1.6x10 g h λ= −19 pavg = 7.1x10 = p −26 7.1x10 kg − m / s kg − m / s −34 h = λ ⇒ 1822 x10 −26 ⇒ ° −34 6.625 x10 125 x10 p = 5.3x10 or λ = 93.3 A −34 (b) p= −26 6.625 x10 λ = 364 A −26 Now 6.625 x10 = p or λ= gb2 x10 g ⇒ Now mE avg h −31 p = 1822 x10 Now = −3 J ⇒ E = 114 x10 eV p = mv = 9.11x10 E avg = 0.01727 eV pavg = −22 ⇒ −10 −26 kg − m / s Also ° p v= 2.8 = m 5.3 x10 −26 = 5.82 x10 m / s 9.11x10 −31 or hc E p = hν p = v = 5.82 x10 cm / s λp Now Now Ee = pe 2m and pe = h λe ⇒ Ee = FG h IJ 2m H λ K E= hc λp FG h IJ = 2m H λ K e e FG 10h IJ = 2m H λ K = b (a) E = hν = p or −21 hc λp hc = 100h −31 ⋅ mc = gb3x10 g mc E = 1.64 x10 −15 mv = hc λ b6.625x10 gb3x10 g = −34 1x10 −15 −10 J −15 b = 1.6 x10 −19 gV V = 12.4 x10 V = 12.4 kV ⇒ (b) p = b mE = = 6.02 x10 J = 10.3 keV −31 so 100 9.11x10 −23 −31 gb1.99 x10 g −15 kg − m / s Then b9.11x10 gb2 x10 g 2 −3 E = e ⋅ V ⇒ 1.99 x10 λ= 2.9 J ⇒ E = 9.64 x10 eV Now 100 −31 E = 1.99 x10 9.11x10 b9.11x10 gb5.82 x10 g 2.10 So (a) E = E = 1.54 x10 which yields 100h λp = mc Ep = E = mv = or Set E p = E e and λ p = 10λ e Then 10 h p = 6.625 x10 6.02 x10 −34 −23 ⇒ λ = 0.11 A ° Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual Chapter Problem Solutions 2.11 (a) ∆p = h ∆x 1.054 x10 = 10 −34 ⇒ −6 ∆p = 1.054 x10 −28 (b) ∆t = kg − m / s or ∆E = 3.16 x10 −20 −h J ⇒ ∆E = 0.198 eV = 1.054 x10 12 x10 −26 ∆p = 8.78 x10 (b) ∆E = ⋅ ( ∆p)2 = m ∆E = 7.71x10 −23 −h −34 ⇒ −10 kg − m / s b8.78x10 g ⋅ −26 x10 ∆E = ( ∆p)2 ⋅ m ∆E = 7.71x10 −26 b8.78x10 g ⋅ −26 = x10 + V ( x )Ψ2 ( x , t ) = jh ∂Ψ1 ( x , t ) ∂t ∂Ψ2 ( x , t ) ⋅ ∂ −26 ∂t Ψ1 ( x , t ) + Ψ2 ( x , t ) +V ( x ) Ψ1 ( x , t ) + Ψ2 ( x , t ) ∂ Ψ1 ( x , t ) + Ψ2 ( x , t ) ∂t which is Schrodinger’s wave equation So Ψ1 ( x , t ) + Ψ2 ( x , t ) is also a solution (b) If Ψ1 ⋅ Ψ2 were a solution to Schrodinger’s wave equation, then we could write kg − m / s −h ⇒ ∂ 2m ∂x −7 J ⇒ ∆E = 4.82 x10 eV aΨ ⋅ Ψ f + V ( x)aΨ ⋅ Ψ f 2 = jh 2.14 ∆p = ∂ Ψ2 ( x , t ) + V ( x )Ψ1 ( x , t ) = jh = jh −26 2 ⋅ ⇒ J ⇒ ∆E = 4.82 x10 eV ∂x 2m ∂x −29 (a) Same as 2.12 (a), ∆p = 8.78 x10 ∂ Ψ1 ( x , t ) ⋅ −h 2.13 s ∂x 2m Adding the two equations, we obtain −4 (b) 2m and 2.12 ∆x −16 2.16 (a) If Ψ1 ( x , t ) and Ψ2 ( x , t ) are solutions to Schrodinger’s wave equation, then −28 (a) ∆p = g⇒ p = hc h b (1) 1.6 x10 −19 ∆t = 6.6 x10 F I = pc H hK λ So ∆E = c( ∆p) = b3x10 gb1.054 x10 g ⇒ E= −34 or (b) hc 1.054 x10 ∂ ∂t aΨ ⋅ Ψ f which can be written as h ∆x = 1.054 x10 10 p = mv ⇒ ∆v = = 1.054 x10 −2 ∆p m LMΨ ∂ Ψ + Ψ ∂ Ψ + ∂Ψ ⋅ ∂Ψ OP 2m N ∂x ∂x Q ∂x ∂x LM ∂Ψ + Ψ ∂Ψ OP +V ( x )Ψ ⋅ Ψ = jh Ψ N ∂t ∂t Q Dividing by Ψ ⋅ Ψ we find −h L ∂ Ψ ∂ Ψ ∂Ψ ∂Ψ O ⋅ + ⋅ + M P m N Ψ ∂x Ψ ∂x Ψ Ψ ∂x ∂x Q L ∂Ψ + ∂Ψ OP +V ( x ) = jh M N Ψ ∂t Ψ ∂x Q −34 = 1.054 x10 −h −32 ⇒ −36 2 2 m/s 2 h ∆x = 1.054 x10 10 −10 ∆p = 1.054 x10 −34 ⇒ 1 2 1 2 −24 2 2 2.15 1 (a) ∆p = 2 or ∆v = x10 −32 1500 kg − m / s 11 1 Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual 2.19 Since Ψ1 is a solution, then −h ⋅ ∂ Ψ1 ⋅ + V ( x ) = jh ⋅ ⋅ Note that L P= z M N F −xIO expG J P dx H a KQ a F −2 x IJdx = expG z Ha K a F −a I F −2 x IJ = expG Ha K a H K or L F −2a IJ − 1OP = − expF −1I P = −1MexpG H 2K N H 4a K Q ao 2 1 ∂Ψ2 ∂ Ψ2 2 Ψ2 ∂t + V ( x ) = jh −h ao ∂Ψ2 o z Ψ( x , t ) dx = = A z +1 −1 A o F P= z G H F −xII expG J J dx H a KK a F −2 x IJdx = expG z Ha K a F −a I F −2 x IJ = expG Ha K a H K or LM F −1I OP P = −1 exp( −1) − exp H KQ N ao o ao o +1 =1 −1 z z F P = zG H A ⋅ sin ( nπx )dx LM x − sin(2nπx)OP N 4nπ Q ao o o ao ao o +1 o or =1 o P = −1 exp( −2 ) − which yields P = 0.865 which yields A = or A=+ ,− ao F −xII expG J J dx H a KK a F −2 x IJdx = F −a I expFG −2 x IJ = expG z Ha K aH2K Ha K a or o which yields P = 0.239 (c) 2.18 Ψ( x , t ) = A sin(nπx ) exp( − jωt ) +1 o ao 2 o o A = or A = +1 , − , + j , − j o ao sin (πx )dx LM x − sin(2πx)OP ⋅ N 4π Q Ψ( x , t ) dx = = A 2 ao which yields +1 which yields P = 0.393 (b) −1 or o o 2.17 Ψ( x , t ) = A sin(πx ) exp( − jωt ) +1 o o ∂Ψ ∂Ψ ⋅ ⋅ ⋅ − V ( x) = m Ψ1 Ψ2 ∂x ∂x This equation is not necessarily valid, which means that Ψ1 Ψ2 is, in general, not a solution to Schrodinger’s wave equation o o m Ψ2 ∂x Ψ2 ∂t Subtracting these last two equations, we obtain o ao Since Ψ2 is also a solution, we may write −h 2 = jh * 2 Ψ ⋅ Ψ dx = Function has been normalized (a) Now LM ∂ Ψ + ∂Ψ ∂Ψ OP m N Ψ ∂x Ψ Ψ ∂x ∂ x Q −h z ∞ ∂Ψ1 m Ψ1 ∂x Ψ1 ∂t Subtracting these last two equations, we are left with Chapter Problem Solutions 2,+ j 2,− j 12 o o Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual 2.20 (a) kx − ωt = constant Then ω dx dx = vp = + k −ω = 0⇒ dt dt k or vp = 15 x10 2.22 15 x10 hnπ E= ma b1.054 x10 g π n = 2b9.11x10 gb100 x10 g −34 2 2 −31 −22 E = 6.018 x10 n = 10 m / s −10 (J) or −3 E = 3.76 x10 n Then v p = 10 cm / s (b) (eV ) −3 k= 2π λ ⇒λ = 2π = k n = ⇒ E1 = 3.76 x10 eV 2π x10 15 −2 n = ⇒ E = 1.50 x10 eV or −2 λ = 41.9 A n = ⇒ E = 3.38 x10 eV ° Also 2.23 p= or h = λ 6.625 x10 41.9 x10 −34 −10 hnπ ⇒ (a) E = 2 ma 2 b1.054 x10 g π n = 2b9.11x10 gb12 x10 g −34 x10 p = 158 −25 kg − m / s 2 −31 Now E = hν = or hc λ E = 4.74 x10 b6.625x10 gb3x10 g = −34 41.9 x10 −17 −20 = 4.81x10 n −10 (J) So −10 J ⇒ E = 2.96 x10 eV E1 = 4.18 x10 −20 J ⇒ E1 = 0.261 eV E = 1.67 x10 −19 J ⇒ E = 1.04 eV (b) 2.21 b ψ ( x ) = A exp − j kx + ωt g E − E = hν = where or = λ= h b 9.11x10 −31 g(0.015)b1.6x10 g ω= E h = λ ∆E b6.625x10 gb3x10 g ⇒ 1.67 x10 −19 − 4.18 x10 −20 −6 or −34 λ = 1.59 µm or k = 6.27 x10 m hc ⇒λ= λ = 159 x10 m −19 1.054 x10 Now hc −34 mE k= or so 13 Chapter Problem Solutions −1 b (0.015) 1.6 x10 −19 1.054 x10 2.24 (a) For the infinite potential well g hnπ E= −34 so ω = 2.28 x10 rad / s 13 n = or 13 2 ma 2 2 ma E ⇒n = hπ 2 b gb10 g b10 g = 182 x10 b1.054 x10 g π 10 −5 −2 −34 −2 2 56 Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual n = 1.35 x10 28 ∆E = hπ ma hπ = or 2 ma (2n + 1) b1.054 x10 g π (2)b1.35x10 g ∆E = 2b10 gb10 g −34 28 −5 ∆E = 1.48 x10 −30 where K = J −30 Energy in the (n+1) state is 1.48 x10 Joules larger than 10 mJ (c) Quantum effects would not be observable where K = E1 = ma b1.054 x10 gπ = 2b1.66 x10 gb10 g −34 2 −27 where K = −14 E1 = 2.06 x10 eV where K = For an electron in the same potential well: −34 −31 2 2π −14 a 3π ∂x 2.26 Schrodinger’s wave equation 2m ∂x h We know that −a V ( x ) = for a 2 + mE and x ≤ ≤x≤ −a a 2 ma 16π h ma ∂ ψ ( x , y, z) + ∂ X 2 YZ +a 2 ∂y ∂ ψ ( x , y , z) + ∂z 2 mE ∂x ∂Y + XZ ∂y ∂ Z + XY ∂z + mE h Dividing by XYZ and letting k = obtain ψ ( x) = XYZ = mE h , we ∂ X ∂Y ∂ Z ⋅ + ⋅ + ⋅ +k =0 X ∂x Y ∂y Z ∂z We may set ∂x h Solution is of the form ψ ( x ) = A cos Kx + B sin Kx 2 ψ ( x , y , z) = h Use separation of variables, so let ψ ( x , y , z ) = X ( x )Y ( y )Z ( z ) Substituting into the wave equation, we get so in this region ∂ ψ ( x) 9π h + ( E − V ( x ))ψ ( x ) = ψ ( x ) = for x ≥ 2 so E = + ma so E = 4π ∂ ψ ( x , y , z) 2 2.27 The 3-D wave equation in cartesian coordinates, for V(x,y,z) = E1 = 3.76 x10 eV 4π h or ∂ ψ ( x) 2 so E = a Fourth mode: ψ ( x ) = B sin Kx or b1.054 x10 g π E = 2b9.11x10 gb10 g π h Third mode: ψ ( x ) = A cos Kx 2.25 For a neutron and n = 1: hπ π so E1 = a ma Second mode: ψ ( x ) = B sin Kx −2 h Boundary conditions: +a −a ,x= ψ ( x ) = at x = 2 So, first mode: ψ ( x ) = A cos Kx (n + 1)2 − n 2 mE where K = (b) Chapter Problem Solutions (1) 14 2 Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual Chapter Exercise Solutions (b) fF = + exp F 0.30 + 0.0259 I H 0.0259 K f F = 3.43 x10 E3.6 ⇒ F 400 I = 0.03453 H 300 K kT = ( 0.0259 ) (a) −6 fF = + exp E3.5 (a) + exp FE−E I H kT K + exp F F F E3.7 kT = 0.03453 eV − fF = so −6 ⇒ 0.35 I F + exp H 0.03453K −5 (b) F 0.35 + 0.0259 I + exp H 0.0259 K − fF = or − f F = 4.98 x10 1 − f F = 3.96 x10 (b) − fF = −5 (a) F 0.35 I + exp H 0.0259 K − f F = 1.35 x10 F 0.30 + 0.03453I ⇒ H 0.03453 K f F = 6.20 x10 Then − fF = f F = 1.69 x10 fF = F FE−E I H kT K = = F E − E I + expF E − E I + exp H kT K H kT K exp ⇒ (b) 1 − fF = − F I H 0.03453K 0.30 ⇒ 0.35 + 0.03453 I F + exp H 0.03453 K − f F = 1.46 x10 −7 22 −5 −4 Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual Chapter Exercise Solutions Chapter Exercise Solutions Now E4.1 ni = 2.8 x10 b no = 2.8 x10 exp 19 F −0.22 I H 0.0259 K 15 ni = 5.65 x10 ni = 2.38 x10 cm 12 E F − E v = 112 − 0.22 = 0.90 eV po = 1.04 x10 exp 19 E4.4 (a) 200K F −0.90 I H 0.0259 K b ni = 4.7 x10 or po = 8.43 x10 cm 24 Then −3 Now So gb I expF −112 I gFH 400 H 0.03453K 300 K 19 1.04 x10 or or no = 5.73 x10 cm 19 17 gb −3 I expF −1.42 I gFH 200 H 0.01727 K 300 K x10 18 or −3 ni = 1.904 Then E4.2 po = 7.0 x10 exp 18 ni = 1.38 cm F −0.30 I H 0.0259 K (b) 400K po = 6.53 x10 cm 13 b −3 17 ni = 1.08 x10 eV E c − E F = 1.42 − 0.30 = 112 So no = 4.7 x10 exp 17 ni = 3.28 x10 cm −112 E4.5 (a) 200K or −3 2 18 20 Then ni = 2.16 x10 cm 10 −3 (b) 400K 19 F 400 I expF −0.66 I = b1.04 x10 gb6 x10 g H 300 K H 0.03453K i ni or I expF −0.66 I gb6x10 gFH 200 H 0.01727 K 300 K 19 ni = 4.67 x10 ni = 5.90 x10 −3 or F 200 I = 0.01727 For 200K : kT = ( 0.0259 ) H 300 K Now F 200 I expF −112 I n = b2.8 x10 gb1.04 x10 g H 300 K H 0.01727 K 19 b ni = 1.04 x10 E4.3 (a) 19 Then F I H 0.0259 K no = 0.0779 cm 18 or Now 19 18 or ni = 7.39 x10 Then ni = 7.68 x10 cm (b) I expF −1.42 I gb7 x10 gFH 400 H 0.03453K 300 K ni = 4.7 x10 or −3 29 Then −3 ni = 8.6 x10 cm 14 F 400 I = 0.03453 H 300 K For 400K : kT = ( 0.0259 ) 35 −3 Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual E4.6 E Fi − E midgap = E4.11 FG m IJ Hm K po = N a − N d = x10 − x10 16 * kT ln Chapter Exercise Solutions p 15 or * n F 0.067 I = (0.0259 ) ln H 0.48 K po = 1.5 x10 cm 16 Then or no = E F − E midgap = −38.2 meV ni po −3 b1.8x10 g = 16 15 x10 or E4.7 rn F m I = (1)(131 )F I Hm K H 0.067 K = n ∈r ao −4 no = 2.16 x10 cm o * E4.12 (b) so r1 ao n= = 195.5 Nd + FN I H2K Then E4.8 11 x10 = x10 + a f Then π a f N C F1 η F = π ni = 11x10 and b2.8x10 g(0.60) 19 po + pa NV exp a By trial and error v a 28 19 T ≅ 552 K E F − E v = (0.0259 ) ln 17 = 0.130 eV or po + pa g E4.13 19 pa i 19 LM −a E − E f OP 4N N kT Q = 1.04 x10 LM −0.045 OP exp 1+ 4b10 g N 0.0259 Q 1+ 14 −3 = b5x10 g + n 28 ni2 = N C NV exp E4.9 pa LM − E OP = 11x10 N kT Q FTI = b2.8 x10 gb1.04 x10 g H 300K L −112 OP × exp M N (0.0259)aT 300f Q 19 or no = 1.9 x10 cm 14 + ni which yields For η F = , F η F = 0.60 no = d 15 −3 E4.14 = 0.179 E F − E Fi = ( 0.0259 ) ln or E4.10 Computer plot LM x10 OP N 5x10 − x10 Q 18 16 LM1.7 x10 OP N 15 x10 Q E F − E Fi = 0.421 eV 36 15 17 10 Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual Chapter Exercise Solutions Chapter Exercise Solutions a σ ≅ eµ n N d − N a (b) b = 1.6 x10 E5.1 no = 10 − 10 = x10 cm 15 so po = Now ni no 14 14 b15 x10 g = 10 x10 b ρ= = 2.5 x10 cm −3 b −19 g g(1350)b9 x10 g(35) σ = 4.8 ⇒ ρ = 0.208 Ω − cm σ = eµ n N d = 14 so ρ b1.6x10 gµ N or J drf = 6.80 A / cm −1 E5.6 J drf = e µ n no + µ p po Ε ≈ eµ n no Ε = 1.6 x10 16 σ = 4.8 (Ω − cm) −3 14 f g(1000)b3x10 g ⇒ −19 −19 n d = = 10 0.1 Then µ n N d = 6.25x10 E5.2 J drf ≅ eµ p po Ε Then b 120 = 1.6 x10 Using Figure 5.4a, −19 N d ≅ x10 cm 16 −3 Then g (480) po (20) µ n ≈ 695 cm / V − s so −3 po = 7.81x10 cm = N a 16 19 E5.7 (a) R = E5.3 Use Figure 5.2 (a) V I = = 2.5 kΩ (b) R = 2.5 x10 = 10 ρ = 2.08 Ω − cm (i) µ n ≅ 500 cm / V − s , (ii) ≅ 1500 cm / V − s (b) b ρ 1.2 x10 −3 −6 g⇒ (i) µ p ≅ 380 cm / V − s ,(ii) ≅ 200 cm / V − s (c) From Figure 5.4a, N a ≅ x10 cm E5.4 E5.8 FG 10 IJ expFG − x IJ H 10 K H L K 2 Use Figure 5.3 [Units of cm / V − s ] J diff = eDn −3 (a) For N I = 10 cm ; µ n ≅ 1350 , µ p ≅ 480 : 15 −3 (b) N I = 15 x10 cm ; µ n ≅ 700 , µ p ≅ 300 : 17 −4 n −4 Dn = 25 cm / s , Ln = 10 cm = µm Then −x J diff = −40 exp A / cm −3 F I H K −3 (d) N I = x10 cm ; µ n ≅ 4500 , µ p ≅ 220 17 dx (a) x = ; J diff = −40 A / cm E5.5 (a) For −3 (b) x = µm ; J diff = −14.7 A / cm N I = x10 cm ; µ n ≅ 1000 cm / V − s , 16 −3 15 = − eDn (c) N I = 11 x10 cm ; µ n ≅ 800 , µ p ≅ 310 : 17 dn 15 (c) x = ∞ ; J diff = µ p ≅ 350 cm / V − s 51 Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual E5.10 At x = , E5.9 J diff = − eD p so b 20 = − 1.6 x10 dp FG x10 IJ dx H −L K Then F x10 IJ 6.4 = b1.6 x10 g(10)G H L K dx −19 J diff = − eD p g(10) (0 − 0.010) 15 p 17 Which yields or 17 15 = − eD p −19 ∆p = 1.25x10 = x10 − p p( x = 0.01) = 2.75 x10 cm dp p ∆p Then 17 Chapter Exercise Solutions −4 LP = 5x10 cm −3 52 Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual Chapter Exercise Solutions Chapter Exercise Solutions E6.1 δn(t ) = x10 FG −t IJ Hτ K F −t IJ expG H µs K 14 no δn(t ) = 10 15 (a) t = ; δn = 10 cm 15 LM1 − expFG t IJ OP N H µs K Q (c) As t → ∞ , δn( ∞ ) = x10 cm δn(t ) = δn(0) exp so 14 −3 E6.5 FG − x IJ HL K L = D τ = (10)b10 g = 31.6 µm Then F − x IJ cm δn( x ) = δp( x ) = 10 expG H 31.6 µmK δn( x ) = δp( x ) = δn(0) exp p −3 −6 P (b) t = µs ; δn = 3.68 x10 cm 14 (c) t = µs ; δn = 183 x10 cm 13 −3 −3 P po 15 −3 E6.2 R= δn E6.6 n-type ⇒ Minority carrier = hole dp d (δp( x )) = − eD p J diff = − eD p dx dx τ no Then 15 (a) R = (b) R = (c) R = 10 10 −3 ⇒ R = 10 cm s 21 −6 3.68 x10 10 J diff = −3 ⇒ R = 3.68 x10 cm s 20 −1 b g(10)b10 g expF −10 I H 31.6K −b316 x10 g − 1.6 x10 14 −6 −19 15 −3 or J diff = +0.369 A / cm Hole diffusion current 1.83 x10 10 −1 13 −6 ⇒ −3 R = 1.83x10 cm s 19 −1 J diff ( electrons) = − J diff (holes) so E6.3 (a) p-type ⇒ Minority carrier = electrons F −t IJ (b) δn(t ) = δn(0) expG Hτ K Then F −t IJ δn(t ) = 10 expG H µs K J diff = −0.369 A / cm E6.7 δp = cm −3 b exp − t τ po g b4πD t g expa −1 5f ⇒ δp = 73.0 (4π )(10)b10 g expa −5 5f ⇒ δp = 14.7 (4π )(10)b5x10 g expa −15 5f ⇒ δp = 115 (4π )(10)b15x10 g expa −25 5f ⇒ δp = 0.120 (4π )(10)b25x10 g 1/ p (a) E6.4 (a) p-type ⇒ Minority carrier = electrons L F −t IJ OP (b) δn(t ) = g ′τ M1 − expG N Hτ KQ or L F −t IJ OP δn(t ) = b10 gb5x10 gM1 − expG N H µs K Q (b) no no 20 Electron diffusion current no 15 (c) −6 (d) Then 63 −6 1/ 1/ −6 −6 1/ −6 1/ Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual x = µ p Ε o t = (386)(10)t (ii) x − µ p Ε o t (a) x = 38.6 µm ; (b) x = 193 µm −2 Then g ⋅ expLM −b x − µ Ε t g OP δp = b4πD t g MN D t PQ (a) (i) x − µ Ε t = 1.093x10 − (386)(10)b10 g = 7.07 x10 L −b7.07 x10 g OP expa −1 5f δp = ⋅ exp M (4π )(10)b10 g MN 4(10)b10 g PQ or L −b7.07 x10 g OP δp = 73.0 exp M MN 4(10)b10 g PQ b exp − t τ po b = 5.08 x10 − (386)(10) 15x10 (b) x = 579 µm ; (d) x = 965µm E6.8 Chapter Exercise Solutions p −6 g = −7.1x10 −3 δp = 1.05 E6.9 Computer Plot o 1/ p E6.10 p p (a) E F − E Fi = ( 0.0259 ) ln o −2 −6 −3 −6 −6 1/ (ii) E Fi − E Fp = (0.0259 ) ln b g = −7.07 x10 L −b−7.07 x10 g OP δp = 73.0 exp M MN 4(10)b10 g PQ −6 14 10 E6.11 (a) p-type −3 E Fi − E F = (0.0259 ) ln −6 (b) (i) x − µ p Ε o t (b) E Fn − E Fi = (0.0259 ) ln b = 2.64 x10 − (386)(10) 5x10 −2 FG 6x10 − 10 IJ H 1.5x10 K −6 L −b7.1x10 g OP δp = 14.7 exp M MN 4(10)b5x10 g PQ −3 g = 7.1x10 15 15 10 E Fi − E F = 0.3294 eV δp = 20.9 −3 FG x10 IJ ⇒ H 15 x10 K 14 10 E Fn − E Fi = 0.2460 eV E Fi − E Fp = (0.0259 ) ln −6 FG 5x10 + x10 IJ H 1.5x10 K 15 14 10 E Fi − E Fp = 0.3304 eV δp = 11.4 x − µ pΕ ot E6.12 b = 1.22 x10 − (386)(10) x10 −2 Then 10 FG 5x10 IJ ⇒ H 15 x10 K −3 (ii) 14 x − µ pΕ ot −3 Then 16 E Fi − E Fp = 0.2697 eV δp = 20.9 −3.21x10 − (386)(10) 10 or FG 10 + 5x10 IJ ⇒ H 1.5x10 K E Fn − E Fi = 0.3486 eV −6 Then 10 (b) E Fn − E Fi = (0.0259 ) ln −3 16 E F − E Fi = 0.3473 eV −3 FG 10 IJ ⇒ H 15 x10 K −6 g = −7.1x10 15 R= b = 6.50 x10 − (386)(10) 15x10 −2 −6 LM −b7.1x10 g OP MN 4(10)b15x10 g PQ −3 δp = 115 exp −3 an + δnfa p + δpf − n an + δn + n f + τ a p + δp + n f δp = 11.4 (c) (i) x − µ p Ε o t −3 n-type; no = 10 cm ; po = 2.25 x10 cm −3 g = 7.1x10 τ po o o i i no Then −3 −3 R = 1.83x10 cm s 20 −6 o δp = 1.05 64 −1 o i Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual Chapter 11 Exercise Solutions Chapter 11 Exercise Solutions E11.5 φ fp = 0.376 V E11.1 φ ms = (0.555 − 0.376) ⇒ φ ms = +0.179 V F 3x10 IJ = 0.376 V (a) φ = (0.0259 ) lnG H 15 x10 K R 4(11.7)b8.85x10 g(0.376) UV x =S T b1.6x10 gb3x10 g W 16 fp 10 1/ −14 dT −19 E11.6 From E11.3, φ ms = −0.981 V Cox = 16 or FG 10 IJ = 0.288 V H 15 x10 K R 4(11.7)b8.85x10 g(0.288) UV =S T b1.6x10 gb10 g W or VFB = φ ms − 15 10 −19 or Cox −7 F / cm b1.6x10 gb8x10 g = −0.981 − −19 1.73 x10 10 −7 E11.7 From E11.4, φ ms = −0.931 V b1.6x10 gb8x10 g = −0.931 − −19 FG 8x10 IJ = 0.342 V H 15 x10 K R 4(11.7)b8.85x10 g(0.342) UV =S T b1.6x10 gb8x10 g W 1.73 x10 −7 VFB = −1.01 V 10 −19 10 or 15 1/ −14 x dT Qss′ g = 1.73x10 15 VFB φ fn = (0.0259) ln 200 x10 −8 VFB = −1.06 V x dT = 0.863 µm E11.2 b (3.9) 8.85x10 −14 or 1/ −14 x dT t ox = Then x dT = 0.180 µm (b) φ fp = (0.0259 ) ln ∈ox E11.8 From E11.5, φ ms = +0.179 V 15 b1.6x10 gb8x10 g = +0.179 − −19 VFB x dT = 0.333 µm 10 1.73 x10 −7 or E11.3 FG 3x10 IJ = 0.376 V H 15 x10 K F E + φ IJ = φ′ − G χ′ + H 2e K 16 φ fp = (0.0259) ln φ ms VFB = +0.105 V E11.9 From E11.3, φ ms = −0.981 V and φ fp = 0.376 V 10 R 4(11.7)b8.85x10 g(0.376) UV = 0.18 µm x =S T b1.6x10 gb3x10 g W Now Q ′ ( max ) = b1.6 x10 gb3 x10 gb 0.18 x10 g g m −14 fp dT = 3.20 − (3.25 + 0.555 + 0.376) or −19 16 −19 φ ms = −0.981 V 16 SD or ′ ( max ) = 8.64 x10 C / cm QSD −8 E11.4 φ fp = 0.376 V From Equation [11.27b] φ ms = −(0.555 + 0.376) ⇒ φ ms = −0.931 V 163 −4 Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual b gb1.6x10 g F 250x10 I − 0.981 + 2(0.376) ×G H (3.9)b8.85x10 gJK −8 ′ Cmin −19 VTN = 8.64 x10 − 10 11 Cox −8 Chapter 11 Exercise Solutions FG ∈ IJ FG x IJ H ∈ KH t K = 1+ −14 VTN = +0.281 V FG 10 IJ = 0.288 V H 15 x10 K R 4(11.7)b8.85x10 g(0.288) UV = 0.863 µm x =S T b1.6x10 gb10 g W Then Q ′ ( max) = b1.6 x10 gb10 gb 0.863 x10 g dT ′ Cmin 15 Also ′ C FB 1/ 15 −19 Cox 1+ FG ∈ IJ FG IJ F kT I FG ∈ IJ H ∈ K H t K H e K H eN K ox s s ox a SD or ′ ( max ) = 1.38 x10 C / cm QSD −8 Also b = −8 −8 F 3.9 I F I 1+ H 11.7 K H 220 x10 K b g gb3x10 g (0.0259)(11.7) 8.85x10 −14 b1.6x10 −8 gb1.6x10 g = 1.28x10 C / cm Now, from Equation [11.28] V = b −1.38 x10 − 1.28 x10 g F 220x10 I + 0.97 − 2(0.288) ×G H (3.9)b8.85x10 gJK Qss′ = x10 −19 10 IJ ⇒ K = −4 15 ox = 0.294 Cox 10 −19 s F I FG H KH E11.10 From Figure 11.15, φ ms = +0.97 V −14 dT From E11.9, x dT = 0.18 µm Then ′ Cmin = −4 3.9 0.18 x10 Cox 1+ −8 11.7 250 x10 or φ fn = (0.0259) ln ox −19 16 or ′ C FB −8 Cox TP = 0.736 −8 E11.13 −14 or Cox = VTP = +0.224 V ∈ox t ox = b (3.9) 8.85x10 −14 200 x10 −7 −3 By trial and error, let N d = x10 cm , then φ fn = 0.383 , φ ms ≅ 1.07 , ′ ( max ) = 1x10 QSD −7 and F I a f H K F 50I (650)b1.73x10 gaV = H 2K = b2.81x10 gaV − 0.4 f GS or specified ID −3 GS Then E11.12 Cox −7 VTP = −0.405 V which is between the limits ′ Cmin g⇒ Cox = 1.73 x10 F / cm Now W µ n Cox VGS − VTN ID = L E11.11 16 −8 = a ∈ox f t ox + ∈ox ∈s xdT = ∈ox t ox VGS = V ⇒ I D = 1.01 mA VGS = V ⇒ I D = 7.19 mA t ox t ox + FG ∈ IJ x H∈ K VGS = V ⇒ I D = 19 mA ox dT s or 164 − 0.4 f Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual E11.14 F I µ C aV − V f 2H LK Now F W I (650)b1.73x10 g (1.75 − 0.4) 100 x10 = H LK which yields F W I = 0.976 H LK W ID = (b) φ fp = (0.0259 ) ln n ox GS TN ∈ox Cox = t ox = b (3.9) 8.85x10 −14 220 x10 −8 g = 1.57 x10 F 60I (310)b157 x10 gaV H 2K I = 1.46 x10 aV − 0.4 f or SG ∆V = (0.333) F / cm or D ∆V = (0.333) or − 0.4 f Cox = 1.73 x10 V / cm (a) γ = b 1.6 x10 −14 1.73 x10 γ = 0.105 V (i) F W I F 310I b157 x10 g(1.25 − 0.4) H L KH K −7 ∆V = (0.105) or F I = 11.4 H LK Cox = t ox = or b 200 x10 −8 g = 1.73x10 2(0.288) + − 2( 0.288) + − F / cm Cox = 1.73 x10 V / cm −19 gm = n ox GS T −7 g(11.7)b8.85x10 gb10 g −14 1.73 x10 16 g m = 2.91 mA / V 1/ −7 or γ = 0.333 V 2(0.288) F W I µ C aV − V f H LK = (20)(400)b1.73x10 g(2.5 − 0.4) or Cox 2( 0.288) ∆V = 0.0888 V −7 −7 2e ∈s N a b 10 E11.19 Now 1.6 x10 15 ∆V = 0.052 V ∆V = (0.105) (3.9) 8.85x10 FG 10 IJ = 0.288 V H 15 x10 K (ii) which yields W ∈ox −7 1/ VSG = V ⇒ I D = 3.74 mA −14 15 or (b) φ fp = (0.0259 ) ln E11.17 (a) g(11.7)b8.85x10 gb10 g −19 VSG = 1.5 V ⇒ I D = 1.77 mA −6 2(0.347 ) E11.18 SG 200 x10 = = 2( 0.347 ) + − ∆V = 0.269 V VSG = V ⇒ I D = 0.526 mA γ = (2)(0.347 ) + − 2(0.347) ∆V = 0.156 V Then E11.16 10 (ii) −3 16 −7 −7 ID = −7 FG 10 IJ = 0.347 V H 15 x10 K (i) −7 −6 E11.15 Chapter 11 Exercise Solutions 1/ 165 1/ Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual Now CM C gdT = + g m RL = + (2.91)(100) or CM C gdT E11.20 fT = = = 292 a µ n VGS − VT f 2πL (400)(2.5 − 0.4) b 2π 0.5 x10 −4 g or f T = 53.5 GHz 166 Chapter 11 Exercise Solutions Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual Chapter 12 Exercise Solutions Chapter 12 Exercise Solutions E12.1 I D1 I D2 Now −14 FG V IJ H V K = expFG V = F V IJ H expG HV K F I IJ − V = V lnG HI K GS exp − VGS GS t L 2(11.7)b8.85x10 g OP ∆L = M N b1.6x10 gb2 x10 g Q Vt GS −19 IJ K × or VGS 2(0.365) + 2.5 − 0.20 = t D2 Then VGS − VGS = (0.0259 ) ln(10) ⇒ VGS − VGS = 59.64 mV 0.1867 ⇒ L L = 0.934 µm E12.4 f 2L (1000)b10 gb10 g = aV 2b10 g or I ( sat ) = 0.50 x10 aV − 0.4 f or I ( sat ) = 50aV − 0.4 f µA (b) I ( sat ) = WC v aV − V f = b10 gb10 gb5x10 gaV or I ( sat ) = x10 aV − 0.4 f or I ( sat ) = 50aV − 0.4f µA (a) I D ( sat ) = E12.2 φ fp = ( 0.0259) ln FG x10 IJ = 0.365 V H 1.5x10 K 10 −19 or GS − VT −3 GS ID = L − ∆L I D′ ID E12.3 I D′ ID = = 1 − 0.1188 GS D 2( 0.365) + 0.60 GS D ox sat −3 GS −8 T GS L f 16 ∆L = 0.1188 µm I D′ − 0.4 −4 D 1/ 2(0.365) + 2.5 − × aV −4 VDS ( sat ) = VGS − VT = − 0.4 = 0.60 V Now L 2(11.7)b8.85x10 g OP ∆L = M N b1.6x10 gb2 x10 g Q µ n CoxW −8 16 −14 2( 0.365) + 0.40 Then D1 GS 16 ∆L = 0.1867 µm t or 1/ = 0.4 f −5 D ⇒ GS D GS = 1135 E12.5 L → kL = (0.7 )(1) ⇒ L = 0.7 µm = 1.25 ⇒ ∆L I F 1− H LK ∆L L = W → kW = (0.7 )(10) ⇒ W = µm 1.25 − t ox → kt ox = (0.7 )(250) ⇒ t ox = 175 A 1.25 Na → Na x10 15 ⇒ N a = 7.14 x10 cm 0.7 k VD → kVD = (0.7 )(3) ⇒ VD = 2.1 V or ∆L = 0.20 L VDS ( sat ) = 0.80 − 0.40 = 0.40 V 183 = ° 15 −3 Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual E12.6 Cox = ∈ox = t ox b (3.9) 8.85x10 250 x10 −14 −8 g = 1.38x10 or or −7 +0.4 = +0.959 + ∆V which yields ∆V = −0.559 V 15 Implant Donors for negative shift Now ∆VT Cox eDI ∆VT = ⇒ DI = Cox e so 10 1/ −14 x dT VT = VTO + ∆V FG 3x10 IJ = 0.316 V H 15 x10 K R 4(11.7)b8.85x10 g(0.316) UV =S T b1.6x10 gb3x10 g W φ fp = (0.0259) ln −19 15 −4 x dT = 0.522 x10 cm Now ∆VT = b − 1.6 x10 DI = gb3x10 gb0.522 x10 g 1.38 x10 R 0.3 LM + 2(0.522) − 1OPUV ×S T 0.8 N 0.3 QW −19 −4 15 VT = VTO + ∆V or ∆V = VT − VTO = −0.4 − 0.959 ⇒ ∆V = −1.359 V Implant donors for a negative shift Now eDI ∆V Cox ∆V = ⇒ DI = Cox e so 15 10 1/ −14 −19 15 x dT = 0.863 µm b ′ ( max) = 1.6 x10 QSD −19 DI = gb10 gb0.863x10 g −4 15 ′ ( max ) = 1.38 x10 QSD b −19 12 −8 −8 −9 10 −9 TN −8 −14 +0.35 + 2(0.288) or VTN = +0.959 V b (3.9 ) 8.85x10 −14 200 x10 −8 g = 1.73x10 −7 F / cm 1.6 x10 −19 g⇒ DI = 1.47 x10 cm gb5x10 g = 8x10 Then b1.38x10 − 8x10 gb200x10 g V = (3.9)b8.85x10 g Qss′ = 1.6 x10 b (1.359) 1.73x10 −7 or or Cox = −2 E12.8 Using the results of E12.7 VTO = +0.959 V F 10 IJ = 0.288 V = (0.0259 ) lnG H 15 x10 K R 4(11.7)b8.85x10 g(0.288) UV =S T b1.6x10 gb10 g W We find g⇒ 11 E12.7 φ ms ≅ +0.35 or 1.6 x10 −19 DI = 6.03 x10 cm ∆VT = −0.076 V x dT b (0.559) 1.73x10 −7 −7 or φ fp Chapter 12 Exercise Solutions Now 184 −2 Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual Chapter 15 Exercise Solutions Chapter 15 F I ⇒ I (max) = 1.33 A H 3K At the maximum power point, F 2I R 15 = 30 − H 3K Exercise Solutions I C ( max ) = E15.1 (a) Collector Region R ∈ aV + V f FG N IJ FG IJ UV x =S T e H N KH N + N K W Neglecting V compared to V ; R 2(11.7)b8.85x10 g(200) x =S T 1.6x10 F 10 IJ F I UV ×G H 10 K H 10 + 10 K W 1/ s bi R L a n d bi a which yields R L = 22.5 Ω d R (b) VCC = 15 V ⇒ I C ( max) = A −14 n VCE = VCC − I C RL We have = 15 − (2 ) RL ⇒ R L = 7.5 Ω Maximum power at the center of the load line, or at VCE = 7.5 V , I C = A Then P( max) = (1)(7.5) ⇒ P( max) = 7.5 W −19 1/ 16 14 16 14 or x n = 50.6 µm (b) Base Region RS 2(11.7)b8.85x10 g(200) T 1.6x10 F 10 IJ F ×G H 10 K H 10 + 10 C −14 xp = E15.3 VCE = VCC − I C RE ⇒ VCE = 20 − I C (0.2 ) so = 20 − I C ( max )(0.2 ) ⇒ I C ( max) = 100 mA −19 16 16 I UV KW 1/ 14 14 or x p = 0.506 µm E15.2 Maximum power at the center of the load line, or P( max) = ( 0.05)(10) ⇒ P( max) = 0.5 W (a) VCC = 30 V , VCE = 30 − I C RC Now, maximum power PT = 10 W , PT = 10 = I CVCE Maximum power at VCE = VCC = Then, maximum power at I C = 10 VCE E15.4 30 = For VDS = , I D ( max ) = = 15 V 10 15 = I D ( max ) = 1.2 A 24 20 ⇒ For I D = , VDS ( max ) = VDD ⇒ A VDS ( max) = 24 V Then, 223 Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual Maximum power at the center of the load line, or at I D = 0.6 A , VDS = 12 V Chapter 15 Exercise Solutions E15.6 θ dev − case = Then P( max) = (0.6)(12 ) ⇒ P( max) = 7.2 W Tj ,max − Tamb PD ,rated PD ( max) = E15.5 Power = I DVDS = (1)(12 ) = 12 W (c) Heat sink: Tsnk = Tamb + P ⋅ θ snk − amb or Tsnk = 25 + (12 )(4 ) ⇒ Tsnk = 73° C = = 200 − 25 50 = 3.5 ° C / W Tj ,max − Tamb θ dev − case + θ case − snk + θ snk − amb 200 − 25 ⇒ 3.5 + 0.5 + PD ( max ) = 29.2 W Now Tcase = Tamb + PD ( max ) θ case − snk + θ snk − amb = 25 + (29.2 )(0.5 + ) ⇒ (b) Case: Tcase = Tsnk + P ⋅ θ case − snk or Tcase = 73 + (12 )(1) ⇒ Tcase = 85° C Tcase = 98° C (a) Device: Tdev = Tcase + P ⋅ θ dev − case or Tdev = 85 + (12 )(3) ⇒ Tdev = 121° C 224 ... 0.0544 2 Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual b g k = 0.1 A * −1 ⇒ 10 m For Curve A: d E −1 x10 g g b10 g b1.054 2m b −34 dk which yields m −31 For Curve... Z 2 ⋅ = − k y and ⋅ = −kz Z ∂z Y ∂y From the boundary conditions, we find 28 Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual Now k y a = n y π and k z a = nz... X = A sin k x x nx π and X ( x = a ) = ⇒ k x = Chapter Problem Solutions 3h π 2 ma 2 ∆E = 15 2 Semiconductor Physics and Devices: Basic Principles, 3rd edition Solutions Manual a=4 A (i) ∆E =

Ngày đăng: 21/12/2016, 10:57

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w