1. Trang chủ
  2. » Luận Văn - Báo Cáo

Giao trinh bai tap dsp danh sach nhom bai tap chuong 6 03082015

34 327 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 34
Dung lượng 751,65 KB

Nội dung

Chapter z-Transform Nguyen Thanh Tuan, Click M.Eng to edit Master subtitle style Department of Telecommunications (113B3) Ho Chi Minh City University of Technology Email: nttbk97@yahoo.com  The z-transform is a tool for analysis, design and implementation of discrete-time signals and LTI systems  Convolution in time-domain  multiplication in the z-domain Digital Signal Processing z-Transform Content z-transform Properties of the z-transform Causality and Stability Inverse z-transform Digital Signal Processing z-Transform The z-transform  The z-transform of a discrete-time signal x(n) is defined as the power series: X ( z)    x (n ) z  n  x( 2) z  x ( 1) z  x (0)  x(1) z 1  x(2) z 2  n   The region of convergence (ROC) of X(z) is the set of all values of z for which X(z) attains a finite value ROC  {z  C | X ( z )    x ( n) z n  } n    The z-transform of impulse response h(n) is called the transform function of the filter: H ( z)   n h ( n ) z  n   Digital Signal Processing z-Transform Example  Determine the z-transform of the following finite-duration signals a) x1(n)=[1, 2, 5, 7, 0, 1] b) x2(n)=x1(n-2) c) x3(n)=x1(n+2) d) x4(n)=(n) e) x5(n)=(n-k), k>0 f) x6(n)=(n+k), k>0 Digital Signal Processing z-Transform Example  Determine the z-transform of the signal a) x(n)=(0.5)nu(n) b) x(n)=-(0.5)nu(-n-1) Digital Signal Processing z-Transform z-transform and ROC  It is possible for two different signal x(n) to have the same ztransform Such signals can be distinguished in the z-domain by their region of convergence  z-transforms: and their ROCs: ROC of a causal signal is the exterior of a circle Digital Signal Processing ROC of an anticausal signal is the interior of a circle z-Transform Example  Determine the z-transform of the signal x(n)  a nu(n)  b nu(n  1)  The ROC of two-sided signal is a ring (annular region) Digital Signal Processing z-Transform Properties of the z-transform  Linearity: if and z x1 (n)   X ( z ) with ROC1 z x2 (n)   X ( z ) with ROC2 then z x(n)  x1 (n)  x2 (n)   X ( z)  X1 ( z)  X ( z) with ROC  ROC1  ROC2  Example: Determine the z-transform and ROC of the signals a) x(n)=[3(2)n-4(3)n]u(n) b) x(n)=cos(w0 n)u(n) c) x(n)=sin(w0 n)u(n) Digital Signal Processing z-Transform Properties of the z-transform  Time shifting: if then z x(n)   X ( z) z x(n  D)   z  D X ( z)  The ROC of z  D X (z ) is the same as that of X(z) except for z=0 if D>0 and z= if D M Thus, we have to divide the denominator into the numerator, giving Digital Signal Processing 21 z-Transform Partial fraction expression method  Complex-valued poles: since D(z) have real-valued coefficients, the complex-valued poles of X(z) must come in complex-conjugate pairs Considering the causal case, we have Writing A1 and p1 in their polar form, say, with B1 and R1 > 0, and thus, we have As a result, the signal in time-domain is Digital Signal Processing 22 z-Transform Example  Determine the causal inverse z-transform of Solution: Digital Signal Processing 23 z-Transform Example (cont.) Digital Signal Processing 24 z-Transform Some common z-transform pairs Digital Signal Processing 25 z-Transform Review  Định nghĩa biến đổi z  Ý nghĩa miền hội tụ biến đổi z  Mối liên hệ miền hội tụ với đặc tính nhân ổn định tín hiệu/hệ thống-LTI rời rạc  Biến đổi z số tín hiệu bản: (n), anu(n), anu(-n-1)  Một số tính chất (tuyến tính, trễ, tích chập) biến đổi z  Phân chia đa thức biến đổi z ngược Digital Signal Processing 26 z-Transform Homework Digital Signal Processing 27 z-Transform Homework Digital Signal Processing 28 z-Transform Homework Digital Signal Processing 29 z-Transform Homework Digital Signal Processing 30 z-Transform Homework Digital Signal Processing 31 z-Transform Homework  Tìm biến đổi z miền hội tụ tín hiệu sau: 1) (n + 2) – (n – 2) 2) u(n – 2) 3) u(n + 2) 4) u(n + 2) – u(n – 2) 5) u(–n) 6) u(n) + u(–n) 7) u(n) – u(–n) 8) u(1–n) 9) u(|n|) 10) 2nu(–n) 11) 2nu(n–1) 12) 2nu(1–n) Digital Signal Processing 32 z-Transform Homework  Tìm biến đổi z miền hội tụ tín hiệu sau: 1) cos(n)u(n) 2) cos(n/2)u(n) 3) sin(n/2)u(n) 4) cos(n/3)u(n) 5) sin(n/3)u(n) 6) cos(n)u(n-1) 7) cos(n)u(1-n) 8) cos(n)u(-n-1) 9) 2ncos(n/2)u(n) 10) 2nsin(n/2)u(n) 11) 3ncos(n/3)u(n) 12) 3nsin(n/3)u(n) Digital Signal Processing 33 z-Transform Homework  Liệt kê giá trị mẫu (n=0, 1, 2, 3) tín hiệu nhân có biến đổi z sau: 1) 2z -1 /(1 – 2z -1) 2) 2z -1 /(1 + 2z -1) 3) 2/(1 – 4z -2) 4) 2/(1 + 4z -2) 5) 2z -1 /(1 – 4z -2) 6) 2z -1 /(1 + 4z -2) 7) 2z -2 /(1 – 4z -2) 8) 2z -2 /(1 + 4z -2) 9) 2z -1 /(1 – z -1 – 2z -2) 10) 2z -2 /(1 – z -1 – 2z -2) 11) 2z -1 /(1 – 3z -1 + 2z -2) 12) 2z -2 /(1 – 3z -1 + 2z -2) Digital Signal Processing 34 z-Transform [...]...  p1=0.5, p2=-0.5 - We have N=1 and M=2, i.e., N < M Thus, we can write where Digital Signal Processing 16 z-Transform Example 5od Digital Signal Processing 17 z-Transform Partial fraction expression method  If N=M Where and for i=1,…,M  If N> M Digital Signal Processing 18 z-Transform Example 6  Compute all possible inverse z-transform of Solution: - Find the poles: 1-0.25z-2 =0  p1=0.5, p2=-0.5... chia đa thức và biến đổi z ngược Digital Signal Processing 26 z-Transform Homework 1 Digital Signal Processing 27 z-Transform Homework 2 Digital Signal Processing 28 z-Transform Homework 3 Digital Signal Processing 29 z-Transform Homework 4 Digital Signal Processing 30 z-Transform Homework 5 Digital Signal Processing 31 z-Transform Homework 6  Tìm biến đổi z và miền hội tụ của các tín hiệu sau: 1)... – 2) 2) u(n – 2) 3) u(n + 2) 4) u(n + 2) – u(n – 2) 5) u(–n) 6) u(n) + u(–n) 7) u(n) – u(–n) 8) u(1–n) 9) u(|n|) 10) 2nu(–n) 11) 2nu(n–1) 12) 2nu(1–n) Digital Signal Processing 32 z-Transform Homework 7  Tìm biến đổi z và miền hội tụ của các tín hiệu sau: 1) cos(n)u(n) 2) cos(n/2)u(n) 3) sin(n/2)u(n) 4) cos(n/3)u(n) 5) sin(n/3)u(n) 6) cos(n)u(n-1) 7) cos(n)u(1-n) 8) cos(n)u(-n-1) 9) 2ncos(n/2)u(n)... possible inverse z-transform of Solution: - Find the poles: 1-0.25z-2 =0  p1=0.5, p2=-0.5 - We have N=2 and M=2, i.e., N = M Thus, we can write where Digital Signal Processing 19 z-Transform Example 6 (cont.) Digital Signal Processing 20 z-Transform Example 7 (cont.)  Determine the causal inverse z-transform of Solution: - We have N=5 and M=2, i.e., N > M Thus, we have to divide the denominator into... z-Transform Homework 8  Liệt kê giá trị các mẫu (n=0, 1, 2, 3) của tín hiệu nhân quả có biến đổi z sau: 1) 2z -1 /(1 – 2z -1) 2) 2z -1 /(1 + 2z -1) 3) 2/(1 – 4z -2) 4) 2/(1 + 4z -2) 5) 2z -1 /(1 – 4z -2) 6) 2z -1 /(1 + 4z -2) 7) 2z -2 /(1 – 4z -2) 8) 2z -2 /(1 + 4z -2) 9) 2z -1 /(1 – z -1 – 2z -2) 10) 2z -2 /(1 – z -1 – 2z -2) 11) 2z -1 /(1 – 3z -1 + 2z -2) 12) 2z -2 /(1 – 3z -1 + 2z -2) Digital Signal ... x1(n)=[1, 2, 5, 7, 0, 1] b) x2(n)=x1(n-2) c) x3(n)=x1(n+2) d) x4(n)=(n) e) x5(n)=(n-k), k>0 f) x6(n)=(n+k), k>0 Digital Signal Processing z-Transform Example  Determine the z-transform of the... p2=-0.5 - We have N=1 and M=2, i.e., N < M Thus, we can write where Digital Signal Processing 16 z-Transform Example 5od Digital Signal Processing 17 z-Transform Partial fraction expression method... tính, trễ, tích chập) biến đổi z  Phân chia đa thức biến đổi z ngược Digital Signal Processing 26 z-Transform Homework Digital Signal Processing 27 z-Transform Homework Digital Signal Processing

Ngày đăng: 09/12/2016, 07:31

TỪ KHÓA LIÊN QUAN