1. Trang chủ
  2. » Giáo án - Bài giảng

Đề thi HSG Toán 12 của Tỉnh Nam Định 2004

1 605 1
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 41 KB

Nội dung

ĐỀ THI CHỌN HỌC SINH GIỎI TOÁN 12 TỈNH NAM ĐỊNH NĂM 2004 Câu I (5,0 điểm). Giải bất phương trình . Câu II (6,0 điểm). 1) Cho phương trình Tìm tất cả các giá trị của tham số a, để phương trình có đúng 2 nghiệm phân biệt. 2) Chứng minh rằng với mọi giá trị của tham số m, hệ sau luôn có nghiệm (x;y) Câu III (6,0 điểm). Trong không gian với hệ tọa độ Oxyz. Cho 2 đường thẳng sao cho các đường thẳng: đôi một chéo nhau và vuông góc nhau. 1) Xét đường thẳng d bất kì đi qua O. Gọi thứ tự là góc giữa d với các đường thẳng . Chứng minh: 2) Biết rằng khoảng cách giữa hai đường thẳng bất kỳ trong ba đường thẳng cùng bằng 2 đơn vị độ dài. Một hình hộp ABCD.A'B'C'D' thỏa mãn B' và D thuộc ; A' và C' thuộc ; A và D' thuộc . Tính thể tích khối hộp ABCD.A'B'C'D'. Câu IV (3,0 điểm). Cho a, b là các số dương. Chứng minh rằng: . . ĐỀ THI CHỌN HỌC SINH GIỎI TOÁN 12 TỈNH NAM ĐỊNH NĂM 2004 Câu I (5,0 điểm). Giải bất phương trình . Câu. trình Tìm tất cả các giá trị của tham số a, để phương trình có đúng 2 nghiệm phân biệt. 2) Chứng minh rằng với mọi giá trị của tham số m, hệ sau luôn có

Ngày đăng: 19/06/2013, 01:25

TỪ KHÓA LIÊN QUAN

w