1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi thử thpt quốc gia 2017 môn toán trường thpt yên lạc vĩnh phúc

6 933 2

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 261,19 KB

Nội dung

SỞ GD&ĐT VĨNH PHÚC TRƯỜNG THPT YÊN LẠC ĐỀ THI KHẢO SÁT THPT QUỐC GIA LẦN NĂM HỌC 2016 - 2017 Môn: Toán 12 Thời gian làm bài: 90 phút Mã đề thi 132 Họ, tên thí sinh: SBD: Câu 1: Cho hàm số: y  x 1 Tìm tất giá trị m để đồ thị hàm số có ba đường tiệm mx  x  cận  m   A m  1  m   Câu 2: Cho hàm số: y    A   ;      m  B  m   m   C m  1  m   m   D  m  x 1 Trong khoảng sau khoảng hàm số không nghịch biến 3x  1  B  5;  C  ;   D  1;  3  Câu 3: Cho hàm số: y  sin x  3sin x  xét  0;   GTLN hàm số bằng: A B C D -1 Câu 4: Cho hình chóp S ABC có SA   ABC  ; SA  a Diện tích ABC 3a Khi tích khối chóp là: a3 A 3a B a3 C 3a D Câu 5: Gọi M, N GTLN, GTNN hàm số: y  x  x   1;3 Khi tổng M+N bằng: A 128 B C 127 D 126 Câu 6: Cho hình lăng trụ đứng có đáy tam giác Thể tích hình lăng trụ V Để diện tích toàn phần hình lăng trụ nhỏ cạnh đáy lăng trụ là: A 4V B V C 2V D 6V Câu 7: Cho hàm số y  mx   m  1 x   2m Tìm tất giá trị m để hàm số có điểm cực trị A  m  B 1  m  C m  D  m  Câu 8: Cho hàm số y  f  x  có đạo hàm f '  x   x  x  1 x  1 Số điểm cực trị hàm số A B C D  m  1 x  Đồ thị hàm số nhận trục hoành trục tung làm tiệm cận ngang Câu 9: Cho hàm số: y  x  n 1 tiệm cận đứng Khi tổng m+n bằng: A B C 1 D Câu 10: Cho hàm s ố y  x  2m x  2m  Xác định m để tiếp tuyến đồ thị hàm số giao điểm đồ thị với đường thẳng  d  : x  song song với đường thẳng    : y  12 x  A m  B m  C m  2 D m  Câu 11: Cho hàm số: y  x  x  x  Tìm điểm nằm đồ thị hàm số cho tiếp tuyến điểm có hệ số góc nhỏ A 1;8  B  8;1 C 1; 4  D  4;1 Trang 1/6 - Mã đề thi 132 Câu 12: Cho hàm số y  2 x  3x  Mệnh đề sau sai A Đồ thị hàm số nhận trục tung làm trục đối xứng B Đồ thị hàm số có điểm cực trị C Đồ thị hàm số không cắt trục hoành D Đồ thị hàm số qua điểm A 1;6  Câu 13: Cho hàm số y    khoảng  0;   2  m  1 sin x  Tìm tất giá trị tham số m sin x  m để hàm số nghịch biến  m  1  m  1 m  B  C  D  m  m  m  Câu 14: Cho hình chóp S ABCD có tất cạnh a Khi diện tích toàn phần hình chóp là: A 3a B (  1)a C (  1)a D a A 1  m  Câu 15: Cho hàm số y  x3  x  m2  2m Tìm tất giá trị tham số m để giá trị cực đại hàm số  m  1 m  m  A  B  C  D Không tồn m m   m  3 m   cos x Câu 16: Cho hàm số: y  GTNN hàm số bằng: sin x  cos x  2 A B -1 C D 11 3 x Câu 17: Cho hàm số: y  Tiệm cận ngang đồ thị hàm số là: x3 A y  1 B x  1 C x  3 D y=1 Câu 18: Một công ty bất động sản có 50 hộ cho thuê Biết cho thuê hộ với giá 2.000.000 đồng tháng hộ có người thuê tăng thêm giá cho thuê hộ 100.000 đồng tháng có hộ bị bỏ trống Hỏi muốn có thu nhập cao công ty phải cho thuê hộ với giá tháng A 2.225.000 B 2.100.000 C 2.200.000 D 2.250.000 Câu 19: Cho hàm số y  x3  x  Điểm cực đại đồ thị hàm số cho là: A 1;  B  4;1 C  5;  D  0;5  Câu 20: Bảng biến thiên sau hàm số nào: 2 x  2x 2x 1 2x 1 B y  C y  D y  x 1 x 1 x 1 x 1 Câu 21: Cho hình chóp S ABCD có đáy hình chữ nhật với AB  4a; AD  2a Tam giác SAB tam giác cân S nằm mặt phẳng vuông góc với mặt đáy Góc mặt phẳng  SBC   ABCD  A y  450 Khi thể tích khối chóp S ABCD là: Trang 2/6 - Mã đề thi 132 A 4a 3 B 16a 3 C 8a 3 D 16a 3x  mà tiếp tuyến có hệ số góc là: x2 B 1; 1 ;  3; 7  C  1; 1 ;  3;  D  1;1 ;  3; 7  Câu 22: Những điểm đồ thị hàm số y  A 1;1 ;  3;  Câu 23: Số tiếp tuyến qua điểm A  0;  đồ thị hàm số y    x  là: A B C D Câu 24: Cho hàm số y  x  x  mx  Tìm tất giá trị m để hàm số đồng biến khoảng  ;   A m  B m  C m  12 D m  12 Câu 25: Đây đồ thị hàm số nào: A y   x  x  B y  x  x  C y  x  x  Câu 26: Cho hàm số Y  f  X  có bảng biến thiên hình vẽ: D y   x  x  Khẳng định sau đúng: A Hàm số cho có hai điểm cực tiểu điểm cực đại B Hàm số cho có hai điểm cực đại điểm cực tiểu C Hàm số cho có hai điểm cực tiểu điểm cực đại D Hàm số cho có hai điểm cực đại điểm cực tiểu Câu 27: Tìm tất giá trị m để bất phương trình: x   0; 4 x   x  x  x  m có nghiệm A m  B m  C m  D m  x2 Câu 28: Cho hàm số: y  Xác định m để đường thẳng y  mx  m  cắt đồ thị hàm số 2x 1 hai điểm phân biệt thuộc nhánh đồ thị Trang 3/6 - Mã đề thi 132 m  3 A  m  B m  C m  m  3 D  m  Câu 29: Cho hàm số y  mx   2m  1 x  Tìm tất giá trị m để hàm số có điểm cực tiểu 1 A m  B Không tồn m C   m  D m   2  m  1 x  Tìm tất giá trị tham số m để hàm số nghịch biến Câu 30: Cho hàm số y  xm khoảng xác định m  m  A 2  m  B  C 2  m  D   m  2  m  2 Câu 31: Cho hàm số y  x3  x  Phương trình tiếp tuyến đồ thị hàm số điểm M  0;  A y   x  B y  x  C y   x  D y   x  Câu 32: Số đường tiệm cận đồ thị hàm số y  A là: 3x  C B D Câu 33: Đồ thị hàm số y  x3  x  có tiếp tuyến song song với trục hoành: A B C D Câu 34: Khối 12 mặt thuộc loại A 3;5 B 4;5 C 5;3 D 4;3 Câu 35: Cho hàm số Y  f  X  có tập xác định  3;3 đồ thị hình vẽ: Khẳng định sau đúng: A Đồ thị hàm số cắt trục hoành điểm phân biệt B Hàm số nghịch biến khoảng  3;1 1;   2;1 D Hàm số nghịch biến khoảng  3; 1 C Hàm số đồng biến khoảng 1;3 Câu 36: Cho hình chóp S ABCD có đáy hình vuông cạnh a Các mặt bên  SAB  ,  SAD  vuông góc với mặt đáy  ABCD  ; Góc SC mặt  ABCD  450 Tính thể tích khối chóp S ABCD A 3a 3 B 2a C 3a D 2a 3 Trang 4/6 - Mã đề thi 132 Câu 37: Cho hình chóp S ABCD có đáy ABCD hình vuông cạnh a ; Hai mặt phẳng  SAB   SAD  vuông góc với đáy, SA  a Khi khoảng cách từ A đến mặt (SBC) là: a a a a B C D 2 Câu 38: Mỗi đỉnh hình bát diện đỉnh chung cạnh A Năm cạnh B Bốn cạnh C Ba cạnh D Sáu cạnh Câu 39: Một kim tự tháp Ai Cập xây dựng vào khoảng 2500 trước công nguyên Kim tự tháp khối chóp tứ giác có chiều cao 154m; Độ dài cạnh đáy 270m Khi thể tích khối kim tự tháp là: A 3.742.200 B 3.640.000 C 3.500.000 D 3.545.000 A Câu 40: Cho khối chóp S ABC Trên cạnh SA, SB; SC lấy điểm A' , B ' , C ' cho 1 SA'  SA; SB '  SB; SC '  SC Gọi V V ' thể tích khối chóp S ABC 2 ' V S A' B 'C ' Khi tỷ số là: V 1 1 A B C D 12 16 Câu 41: Cho hàm số y  x3  3x  mx  m  Tìm tất giá trị tham số m để đồ thị hàm số có hai điểm cực trị nằm hai phía trục tung A m  B m  C m  D m  Câu 42: Người ta gọt khối lập phương gỗ để lấy khối tám mặt nội tiếp ( tức khối cố đỉnh tâm mặt khối lập phương) Biết cạnh khối lập phương a Hãy tính thể tích khối tám mặt đó: a3 a3 a3 a3 A B C D 12 Câu 43: Đồ thị hàm số y  x  x cắt trục hoành điểm: A B C D Câu 44: Cho lăng trụ tam giác ABC A B C có góc hai mặt phẳng ( A' BC ) ( ABC ) 600 ; AB  a Khi thể tích khối ABCC ' B ' bằng: 3a a3 3 3 A a 3 B C D a 4 Câu 45: Trong hình sau hình tâm đối xứng: A Hình lập phương B Hình hộp C Tứ diện D Hình hộp chữ nhật ' ' ' Câu 46: Trong mệnh đề sau mệnh đề sai: A Hình chóp hình chóp có tất cạnh B Hình chóp hình chóp có chân đường cao trùng với tâm đáy C Hình chóp hình chóp có đáy đa giác D Hình chóp hình chóp có cạnh bên tạo với mặt đáy góc Câu 47: Cho khối lăng trụ ABC A' B 'C ' M trung điểm cạnh AB Mặt phẳng ( B 'C ' M ) chia khối lăng trụ thành hai phần Tính tỷ số thể tích hai phần đó: A B C D 5 x  Câu 48: Số đường tiệm cận đồ thị hàm số y  là: x 3 A B C D Trang 5/6 - Mã đề thi 132 Câu 49: Cho hàm số y  sin x  m sin x Tìm tất giá trị m để hàm số đạt cực tiểu điểm  x A m  B m=0 C Không tồn m D m=2 Câu 50: Cho hàm số: y  x3  x  mx   d  : y  x  Tìm tất giá trị tham số m để đồ thị hàm số cắt (d) ba điểm phân biệt có hoành độ x1 , x2 , x3 thoả mãn: x12  x22  x32  13  m  A  m  B m  C  m  D  m  10 - - HẾT Trang 6/6 - Mã đề thi 132

Ngày đăng: 22/11/2016, 16:23

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w