HandBook of Structural SteelWork

355 890 0
HandBook of Structural SteelWork

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

P201: Handbook of Structural Steelwork 3rd Edition PUBLICATION P201 HANDBOOK OF STRUCTURAL STEELWORK 3rd Edition Jointly published by: The British Constructional Steelwork Association Ltd Whitehall Court London SW1A 2ES The Steel Construction Institute Silwood Park Ascot SL5 7QN Tel: Fax: Tel: Fax: 020 7839 8566 020 7976 1634 01344 623345 01344 622944 P201: Handbook of Structural Steelwork 3rd Edition  The British Constructional Steelwork Association Ltd and The Steel Construction Institute, 2002  The British Constructional Steelwork Association Ltd, 1990, 1991 Apart from any fair dealing for the purposes of research or private study or criticism or review, as permitted under the Copyright Designs and Patents Act, 1988, this publication may not be reproduced, stored, or transmitted, in any form or by any means, without the prior permission in writing of the publishers, or in the case of reprographic reproduction only in accordance with the terms of the licences issued by the UK Copyright Licensing Agency, or in accordance with the terms of licences issued by the appropriate Reproduction Rights Organisation outside the UK Enquiries concerning reproduction outside the terms stated here should be sent to the publishers, at the addresses given on the title page Although care has been taken to ensure, to the best of our knowledge, that all data and information contained herein are accurate to the extent that they relate to either matters of fact or accepted practice or matters of opinion at the time of publication, The British Constructional Steelwork Association Limited and The Steel Construction Institute assume no responsibility for any errors in or misinterpretations of such data and/or information or any loss or damage arising from or related to their use Publications supplied to the Members of SCI and BCSA at a discount are not for resale by them Publication Number: P201 ISBN 85942 133 (ISBN 85073 023 6, Second Edition, 1991) (ISBN 85073 023 6, First Edition, 1990) British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library ii P201: Handbook of Structural Steelwork 3rd Edition FOREWORD The objective of this publication is to present a practical guide to the design of structural steel elements for buildings The document comprises three principal Sections: general guidance, design data, and design tables The guidance is in accordance with BS 5950-1:2000, Structural use of steelwork in building – Code of practice for design Rolled and welded section Worked examples are presented where appropriate No attempt has been made to consider complete structures, and it is to be noted therefore that certain important design matters are not dealt with – those for instance of overall stability, of interaction between components, and of the overall analysis of a building Section on General Design Data includes bending moment diagrams, shear force diagrams and expressions for deflection calculations A variety of beams and cantilevers with different loading and support conditions are covered Expressions for properties of geometrical figures are also given, together with useful mathematical solutions and metric conversion factors The design tables also include section property, member capacity and ultimate load tables calculated according to BS 5950-1:2000 The tables are preceded by a comprehensive set of explanatory notes Section ranges listed are those that were readily available at the time of printing In addition, both hot finished and cold formed structural hollow sections are included in the ‘Tables of Dimensions and Section Properties’ A list of references is given at the end of the explanatory notes to the design tables iii P201: Handbook of Structural Steelwork 3rd Edition ACKNOWLEDGEMENTS This publication is jointly published by the BCSA and the SCI The preparation of this publication was carried out under the guidance of a steering group consisting of the following members: Mr D Brown The Steel Construction Institute Dr P Kirby University of Sheffield Mr A Way The Steel Construction Institute Mr P Williams The British Constructional Steelwork Association Dr P Kirby wrote Chapters to of the publication The section property and member capacity tables were produced by Mr A Way Valuable comments were also received from: Mr A Malik The Steel Construction Institute Mr A Rathbone CSC (UK) Ltd The publication has been jointly funded by the BCSA and the SCI iv P201: Handbook of Structural Steelwork 3rd Edition Contents Page No FOREWORD iii ACKNOWLEDGEMENTS iv CHAPTER GENERAL DESIGN CONSIDERATIONS 1.1 Design aims 1.2 Methods of design 1.3 Loadings 1.4 Limit state design 1.5 Stability limit state 1.6 Design strengths 1 11 CHAPTER LOCAL RESISTANCE OF CROSS-SECTIONS 2.1 Local buckling 2.2 Classification 2.3 Example – Section classification 2.4 General Guidance 13 13 14 20 22 CHAPTER BEAMS 23 3.1 Design considerations 23 3.2 Moment and shear capacities 25 3.3 Design of beams without full lateral restraint 25 3.4 Equivalent slenderness 27 3.5 Effective length 27 3.6 Equivalent uniform moment factor, mLT 29 3.7 Calculation of bending resistance for beams without full restraint 30 3.8 Calculation of bending resistance – a simpler approach 30 3.9 Example – Beam with full lateral restraint 32 3.10 Example – Unrestrained beams 33 3.11 Web bearing capacity and web buckling resistance 35 3.12 Web stiffeners 39 3.13 Example – Web bearing and buckling 41 3.14 Example – Web stiffeners 43 CHAPTER MEMBERS IN TENSION AND COMPRESSION 4.1 Introduction 4.2 Ties 4.3 Simple tension members 4.4 Tension members also subjected to moments v 46 46 46 47 48 P201: Handbook of Structural Steelwork 3rd Edition 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 Struts Columns in simple construction Compression members with moments Example – Angle section used as a tie Example – Axially loaded strut Example – Axially loaded strut Example – Column in simple construction Example – Column under axial load and moment CHAPTER TRUSSES 5.1 Introduction 5.2 Typical uses 5.3 Design concept 48 60 61 63 64 65 66 68 72 72 72 74 GENERAL DESIGN DATA Error! Bookmark not defined Bending moment and deflection formulae for beams 80 Moving loads 91 Fixed end moments 94 Trigonometrical formulae 95 Solution of Triangles 96 Properties of geometrical figures 98 Metric conversions 106 EXPLANATORY NOTES General Dimensions of sections Section properties Capacity and resistance tables Bending tables Web bearing and buckling tables Tension tables Compression tables Axial and bending tables Bolts and welds 107 108 109 110 121 122 124 128 129 136 139 REFERENCES 143 vi P201: Handbook of Structural Steelwork 3rd Edition Yellow Pages TABLES OF DIMENSIONS AND GROSS SECTION PROPERTIES Universal beams Universal columns Joists Parallel flange channels ASB (Asymmetric Beams) Equal angles Unequal angles Equal angles back to back Unequal angles back to back Tees cut from universal beams Tees cut from universal columns Hot-finished circular hollow sections Hot-finished square hollow sections Hot-finished rectangular hollow sections Cold-formed circular hollow sections Cold-formed square hollow sections Cold-formed rectangular hollow sections 147 148 154 158 162 166 169 170 172 173 174 178 180 182 184 186 189 191 Pink Pages Green Pages S275 S355 Universal beams subject to bending Universal columns subject to bending Joists subject to bending Parallel flange channels subject to bending 196 199 200 201 280 283 284 285 Universal beams web bearing and buckling Universal columns web bearing and buckling Joists web bearing and buckling Parallel flange channels web bearing and buckling 202 205 206 207 286 289 290 291 Equal angles subject to tension Equal angles back to back subject to tension Unequal angles subject to tension Unequal angels back to back subject to tension 208 211 214 217 292 295 298 301 MEMBER CAPACITIES vii P201: Handbook of Structural Steelwork 3rd Edition MEMBER CAPACITIES (continued) S275 S355 220 224 226 227 228 230 304 308 310 311 312 314 Universal beams subject to axial load and bending 232 Universal columns subject to axial load and bending 258 316 342 Universal beams subject to compression Universal columns subject to compression Equal angles subject to compression Unequal angles subject to compression Equal angles back to back subject to compression Unequal angles subject to compression BOLT CAPACITIES Non-preloaded ordinary bolts Non-preloaded countersunk bolts Non-preloaded HSFG bolts Preloaded HSFG bolts: Non-slip in service Non-slip under factored loads Non-slip in service - countersunk Non-slip under factored loads - countersunk 266 268 270 350 352 354 271 272 273 274 355 356 357 358 275 359 WELDS Fillet welds viii P201: Handbook of Structural Steelwork 3rd Edition CHAPTER 1.1 GENERAL DESIGN CONSIDERATIONS Design aims The aim of any design process is the fulfilment of a purpose, and structural steelwork design is no exception In building design, the purpose is most commonly the provision of space that is protected from the elements Steelwork is also used to provide internal structures, particularly in industrial situations The designer must ensure that the structure is capable of resisting the anticipated loading with an adequate margin of safety and that it does not deform excessively during service Due regard must be paid to economy which will involve consideration of ease of manufacture, including cutting, drilling and welding in the fabrication shop and transport to site The provision and integration of services should be considered at an early stage and not merely added on when the structural design is complete Under CDM requirements the designer has an obligation to consider how the structure will be erected, maintained and demolished Sustainability issues such as recycling and reuse of materials should also be considered Any likely extensions to the structure should be taken into account at this stage in the process 1.2 Methods of design Historically, engineers have been accustomed to assume that joints in structures behave as either pinned or rigid to render design calculations manageable In ‘simple design’ the joints are idealised as perfect pins ‘Continuous design’ assumes that joints are rigid and that no relative rotation of connected members occurs whatever the applied moment The vast majority of designs carried out today make one of these two assumptions, but a more realistic alternative is now possible, which is known as semi-continuous design As stated in BS 5950-1:2000 [1] Clause 2.1.2.1, the details of the joints used should fulfil the assumptions of the chosen design method 1.2.1 Simple design Simple design is the most traditional approach and is still commonly used It is assumed that no moment is transferred from one connected member to another, except for the nominal moments which arise as a result of eccentricity at joints P201: Handbook of Structural Steelwork 3rd Edition The resistance of the structure to lateral loads and sway is usually ensured by the provision of bracing or, in some multi-storey buildings, by concrete cores It is important that the designer recognises the assumptions regarding joint response and ensures that the detailing of the connections is such that no moments develop that can adversely affect the performance of the structure Many years of experience have demonstrated the types of details that satisfy this criterion and the designer should refer to the standard connections given in the BCSA/SCI publication on joints in simple construction[2] 1.2.2 Continuous design In continuous design, it is assumed that joints are rigid and transfer moment between members The stability of the frame against sway is by frame action (i.e by bending of beams and columns) Continuous design is more complex than simple design therefore software is commonly used to analyse the frame Realistic combinations of pattern loading must be considered when designing continuous frames The connections between members must have different characteristics depending on whether the design method for the frame is elastic or plastic In elastic design, the joints must possess sufficient rotational stiffness to ensure that the distribution of forces and moments around the frame are not significantly different to those calculated The joint must be able to carry the moments, forces and shears arising from the frame analysis In plastic design, in determining the ultimate load capacity, the strength (not stiffness) of the joint is of prime importance The strength of the joint will determine whether plastic hinges occur in the joints or in the members, and will have a significant effect on the collapse mechanism If hinges are designed to occur in the joints, the joint must be detailed with sufficient ductility to accommodate the resulting rotations The stiffness of the joints will be important when calculating beam deflections, sway deflections and sway stability 1.2.3 Semi-continuous design True semi-continuous design is more complex than either simple or continuous design as the real joint response is more realistically represented Analytical routines to follow the true connection behaviour closely are highly involved and unsuitable for routine design, as they require the use of sophisticated computer programs However, two simplified procedures exist for both braced and unbraced frames; these are briefly referred to below Braced frames are those where the resistance to lateral loads is provided by a bracing system or a core; P201: Handbook of Structural Steelwork 3rd Edition AXIAL LOAD & BENDING BS 5950-1: 2000 BS 4-1: 1993 UC SECTIONS SUBJECT TO AXIAL COMPRESSION AND BENDING y x x MEMBER BUCKLING CHECK RESISTANCES AND CAPACITIES FOR S355 Section Designation and Capacities (kN, kNm) 356 x 368 x 153 # Pz = Agpy = 6730 pyZx = 926 pyZy = 327 356 x 368 x 129 # Pz = Agpy = 5660 pyZx = 781 pyZy = 274 305 x 305 x 283 Pz = Agpy = 12100 pyZx = 1450 pyZy = 512 305 x 305 x 240 Pz = Agpy = 10600 pyZx = 1260 pyZy = 440 305 x 305 x 198 Pz = Agpy = 8690 pyZx = 1030 pyZy = 358 305 x 305 x 158 Pz = Agpy = 6930 pyZx = 817 pyZy = 279 305 x 305 x 137 Pz = Agpy = 6000 pyZx = 707 pyZy = 239 305 x 305 x 118 Pz = Agpy = 5180 pyZx = 607 pyZy = 203 305 x 305 x 97 Pz = Agpy = 4370 pyZx = 513 pyZy = 170 F/Pz Limit 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 y Compression Resistance Pcx, Pcy (kN) and Buckling Resistance Moment Mb, Mbs (kNm) for Varying effective lengths LE (m) within the limiting value of F/Pz LE (m) 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 Pcx 6730 6640 6470 6300 6100 5880 5630 5340 5010 4660 4290 3920 3570 Pcy 6510 6080 5620 5100 4530 3950 3400 2920 2510 2170 1880 1650 1450 Mb 926 926 918 865 814 764 717 673 632 594 560 529 500 Mbs 926 926 926 926 918 877 834 788 742 694 645 598 552 Pcx 5660 5580 5440 5290 5120 4930 4710 4460 4180 3870 3560 3250 2950 Pcy 5470 5110 4710 4270 3790 3300 2840 2430 2090 1800 1570 1370 1210 Mb 781 781 769 721 673 627 583 542 504 469 439 411 386 Mbs 781 781 781 781 773 738 701 663 623 582 541 501 463 Pcx 12100 11800 11400 11000 10500 10000 9460 8840 8190 7520 6860 6230 5640 Pcy 11300 10300 9200 8030 6880 5820 4900 4150 3530 3030 2630 2290 2020 Mb 1710 1710 1710 1640 1570 1510 1460 1410 1360 1310 1270 1220 1180 Mbs 1710 1710 1710 1710 1640 1540 1450 1350 1250 1150 1050 960 875 Pcx 10600 10300 10100 9750 9400 8990 8510 7970 7370 6740 6110 5510 4960 Pcy 10000 9200 8290 7260 6200 5210 4360 3660 3100 2650 2280 1990 1740 Mb 1470 1470 1440 1370 1310 1250 1200 1150 1100 1060 1010 975 938 Mbs 1470 1470 1470 1460 1390 1310 1220 1140 1050 961 876 797 724 Pcx 8690 8510 8270 8000 7700 7350 6940 6470 5960 5430 4900 4410 3960 Pcy 8210 7540 6780 5920 5040 4220 3520 2960 2500 2130 1840 1600 1400 Mb 1190 1190 1140 1080 1030 974 925 880 838 798 762 728 696 Mbs 1190 1190 1190 1180 1120 1050 984 912 839 767 699 635 576 Pcx 6930 6770 6580 6360 6110 5820 5470 5090 4660 4230 3810 3410 3060 Pcy 6530 5990 5360 4660 3950 3290 2740 2290 1940 1650 1420 1230 1080 Mb 925 925 874 818 767 719 675 634 597 564 533 506 480 Mbs 925 925 925 917 867 814 759 702 644 587 533 484 438 Pcx 6000 5860 5680 5490 5270 5010 4700 4360 3980 3600 3230 2900 2590 Pcy 5650 5170 4620 4010 3380 2820 2340 1960 1650 1410 1210 1050 922 Mb 792 792 740 688 639 594 553 515 482 452 425 401 379 Mbs 792 792 792 784 740 695 647 597 547 499 452 410 371 Pcx 5180 5050 4890 4730 4530 4300 4040 3730 3410 3080 2760 2470 2210 Pcy 4860 4450 3970 3430 2890 2400 2000 1670 1410 1200 1030 895 784 Mb 676 674 624 576 530 488 450 416 386 359 336 315 297 Mbs 676 676 676 667 629 590 549 506 463 422 382 346 313 Pcx 4370 4250 4120 3970 3800 3600 3360 3090 2800 2520 2250 2000 1790 Pcy 4090 3730 3310 2850 2390 1970 1630 1360 1140 971 835 724 634 Mb 513 513 474 436 399 365 334 306 281 260 242 226 212 Mbs 513 513 513 503 474 444 411 378 345 313 283 255 230 # Check availability Under combined axial compression and bending the capacities are only valid up to the given F/Pz limit For higher values F/Pz the section would be overloaded due to F alone even when M is zero, because F would exceed the local buckling resistance of the section Mb is obtained using an equivalent slenderness = u.v.LE/ry.βw0.5 Mbs is obtained using an equivalent slenderness = 0.5 L/ry Effective length LE = L FOR EXPLANATION OF TABLES SEE NOTE 9.1 345 P201: Handbook of Structural Steelwork 3rd Edition AXIAL LOAD & BENDING BS 5950-1: 2000 BS 4-1: 1993 UC SECTIONS SUBJECT TO AXIAL LOAD (COMPRESSION OR TENSION) AND BENDING y x x CROSS-SECTION CAPACITY CHECK CAPACITIES FOR S355 F/Pz Limit Section Designation and Axial load Capacity Semi-Compact Pz (kN) Compact 254 x 254 x 167 n/a Pz = Agpy = 7350 1.00 254 x 254 x 132 Pz = Agpy = 5800 254 x 254 x 107 Pz = Agpy = 4690 254 x 254 x 89 Pz = Agpy = 3900 254 x 254 x 73 Pz = Agpy = 3310 203 x 203 x 86 Pz = Agpy = 3800 203 x 203 x 71 Pz = Agpy = 3120 203 x 203 x 60 Pz = Agpy = 2710 n/a 1.00 n/a 1.00 n/a 1.00 1.00 0.00 n/a 1.00 n/a 1.00 n/a 1.00 F/Pz Mcx Mcy Mrx Mry Mcx Mcy Mrx Mry Mcx Mcy Mrx Mry Mcx Mcy Mrx Mry Mcx Mcy Mrx Mry Mcx Mcy Mrx Mry Mcx Mcy Mrx Mry Mcx Mcy Mrx Mry y Moment Capacity Mcx, Mcy (kNm) and Reduced Moment Capacity Mrx, Mry (kNm) for Ratios of Axial Load to Axial Load Capacity F/Pz 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 836 836 836 836 836 836 836 836 836 836 836 308 308 308 308 308 308 308 308 308 308 308 836 816 755 671 584 494 401 305 207 105 308 308 308 308 308 308 291 237 170 91.3 645 645 645 645 645 645 645 645 645 645 645 238 238 238 238 238 238 238 238 238 238 238 645 629 581 515 447 377 305 232 156 79.1 238 238 238 238 238 238 226 184 132 70.9 512 512 512 512 512 512 512 512 512 512 512 190 190 190 190 190 190 190 190 190 190 190 512 500 462 408 353 297 240 182 123 62.0 190 190 190 190 190 190 181 147 106 56.8 422 422 422 422 422 422 422 422 422 422 422 157 157 157 157 157 157 157 157 157 157 157 422 412 380 334 289 243 196 148 99.8 50.3 157 157 157 157 157 157 149 121 87.2 46.8 350 350 350 350 350 350 350 350 350 350 350 131 131 131 131 131 131 131 131 131 131 131 337 337 337 337 337 337 337 337 337 337 337 124 124 124 124 124 124 124 124 124 124 124 337 329 304 271 235 198 161 122 82.3 41.7 124 124 124 124 124 124 118 96.1 69.2 37.1 276 276 276 276 276 276 276 276 276 276 276 102 102 102 102 102 102 102 102 102 102 102 276 269 247 219 190 160 129 97.9 65.9 33.3 102 102 102 102 102 102 96.1 78.2 56.2 30.1 233 233 233 233 233 233 233 233 233 233 233 85.6 85.6 85.6 85.6 85.6 85.6 85.6 85.6 85.6 85.6 85.6 233 227 211 187 161 136 110 83.0 55.8 28.2 85.6 85.6 85.6 85.6 85.6 85.6 82.4 67.3 48.5 26.1 F = Factored axial load - Not applicable for semi-compact and slender sections The values in this table are conservative for tension as the more onerous compression section classification limits have been used FOR EXPLANATION OF TABLES SEE NOTE 9.1 346 P201: Handbook of Structural Steelwork 3rd Edition AXIAL LOAD & BENDING BS 5950-1: 2000 BS 4-1: 1993 UC SECTIONS SUBJECT TO AXIAL COMPRESSION AND BENDING y x x MEMBER BUCKLING CHECK RESISTANCES AND CAPACITIES FOR S355 Section Designation and Capacities (kN, kNm) 254 x 254 x 167 Pz = Agpy = 7350 pyZx = 716 pyZy = 257 254 x 254 x 132 Pz = Agpy = 5800 pyZx = 563 pyZy = 199 254 x 254 x 107 Pz = Agpy = 4690 pyZx = 453 pyZy = 158 254 x 254 x 89 Pz = Agpy = 3900 pyZx = 378 pyZy = 131 254 x 254 x 73 Pz = Agpy = 3310 pyZx = 319 pyZy = 109 203 x 203 x 86 Pz = Agpy = 3800 pyZx = 293 pyZy = 103 203 x 203 x 71 Pz = Agpy = 3120 pyZx = 244 pyZy = 84.9 203 x 203 x 60 Pz = Agpy = 2710 pyZx = 207 pyZy = 71.4 F/Pz Limit 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 y Compression Resistance Pcx, Pcy (kN) and Buckling Resistance Moment Mb, Mbs (kNm) for Varying effective lengths LE (m) within the limiting value of F/Pz LE (m) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 Pcx 7350 7350 7310 7190 7070 6950 6820 6670 6520 6350 6160 5950 5730 Pcy 7350 7070 6750 6410 6040 5640 5210 4770 4330 3910 3510 3160 2840 Mb 836 836 836 836 836 815 792 771 751 732 714 696 679 Mbs 836 836 836 836 836 836 836 819 793 766 738 710 680 Pcx 5800 5800 5760 5660 5570 5460 5350 5240 5110 4970 4810 4640 4450 Pcy 5800 5560 5300 5030 4730 4410 4060 3710 3350 3020 2710 2430 2180 Mb 645 645 645 645 636 615 595 576 558 540 524 508 493 Mbs 645 645 645 645 645 645 645 629 608 587 565 542 519 Pcx 4690 4690 4650 4570 4490 4410 4310 4210 4100 3980 3850 3700 3550 Pcy 4690 4490 4280 4050 3810 3540 3250 2960 2670 2400 2150 1930 1730 Mb 512 512 512 512 498 479 460 443 426 410 395 380 367 Mbs 512 512 512 512 512 512 512 497 480 463 445 427 408 Pcx 3900 3900 3860 3800 3730 3660 3580 3490 3400 3300 3190 3060 2930 Pcy 3900 3730 3550 3360 3150 2930 2690 2450 2210 1980 1770 1590 1420 Mb 422 422 422 422 406 389 372 356 340 325 311 298 285 Mbs 422 422 422 422 422 422 422 409 395 381 366 351 335 Pcx 3310 3310 3270 3210 3150 3090 3020 2950 2870 2780 2680 2570 2450 Pcy 3300 3150 3000 2830 2650 2460 2250 2040 1830 1630 1460 1300 1170 Mb 319 319 319 319 307 293 280 267 254 242 231 220 210 Mbs 319 319 319 319 319 319 317 307 296 285 273 262 249 Pcx 3800 3780 3710 3630 3540 3450 3340 3230 3090 2950 2790 2610 2440 Pcy 3720 3510 3290 3040 2770 2480 2190 1920 1670 1460 1280 1130 1000 Mb 337 337 337 330 316 304 292 281 270 260 250 241 233 Mbs 337 337 337 337 337 331 317 303 289 274 258 243 227 Pcx 3120 3110 3040 2980 2910 2830 2740 2640 2530 2410 2270 2130 1980 Pcy 3060 2880 2700 2490 2270 2030 1790 1560 1360 1190 1040 917 812 Mb 276 276 276 266 254 242 231 221 211 201 193 185 177 Mbs 276 276 276 276 276 270 259 247 235 223 210 197 185 Pcx 2710 2700 2640 2580 2510 2440 2360 2270 2170 2050 1920 1790 1660 Pcy 2650 2490 2330 2140 1940 1720 1500 1310 1140 987 862 758 669 Mb 233 233 233 221 209 198 187 177 168 159 151 143 136 Mbs 233 233 233 233 233 226 216 206 196 185 174 162 151 Under combined axial compression and bending the capacities are only valid up to the given F/Pz limit For higher values F/Pz the section would be overloaded due to F alone even when M is zero, because F would exceed the local buckling resistance of the section Mb is obtained using an equivalent slenderness = u.v.LE/ry.βw0.5 Mbs is obtained using an equivalent slenderness = 0.5 L/ry Effective length LE = L FOR EXPLANATION OF TABLES SEE NOTE 9.1 347 P201: Handbook of Structural Steelwork 3rd Edition AXIAL LOAD & BENDING BS 5950-1: 2000 BS 4-1: 1993 UC SECTIONS SUBJECT TO AXIAL LOAD (COMPRESSION OR TENSION) AND BENDING y x x CROSS-SECTION CAPACITY CHECK CAPACITIES FOR S355 F/Pz Limit Section Designation and Axial load Capacity Semi-Compact Pz (kN) Compact 203 x 203 x 52 n/a Pz = Agpy = 2350 1.00 203 x 203 x 46 Pz = Agpy = 2080 152 x 152 x 37 Pz = Agpy = 1670 152 x 152 x 30 Pz = Agpy = 1360 152 x 152 x 23 Pz = Agpy = 1040 1.00 0.00 n/a 1.00 n/a 1.00 1.00 0.00 F/Pz Mcx Mcy Mrx Mry Mcx Mcy Mrx Mry Mcx Mcy Mrx Mry Mcx Mcy Mrx Mry Mcx Mcy Mrx Mry y Moment Capacity Mcx, Mcy (kNm) and Reduced Moment Capacity Mrx, Mry (kNm) for Ratios of Axial Load to Axial Load Capacity F/Pz 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 201 201 201 201 201 201 201 201 201 201 201 74.1 74.1 74.1 74.1 74.1 74.1 74.1 74.1 74.1 74.1 74.1 201 196 182 161 139 117 94.0 71.1 47.8 24.1 74.1 74.1 74.1 74.1 74.1 74.1 71.2 58.1 41.8 22.5 174 174 174 174 174 174 174 174 174 174 174 64.8 64.8 64.8 64.8 64.8 64.8 64.8 64.8 64.8 64.8 64.8 110 110 110 110 110 110 110 110 110 110 110 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 110 107 99.9 88.4 76.6 64.4 52.1 39.4 26.5 13.4 39.0 39.0 39.0 39.0 39.0 39.0 37.9 31.0 22.4 12.1 88.0 88.0 88.0 88.0 88.0 88.0 88.0 88.0 88.0 88.0 88.0 31.2 31.2 31.2 31.2 31.2 31.2 31.2 31.2 31.2 31.2 31.2 88.0 86.0 80.0 70.8 61.2 51.4 41.5 31.4 21.1 10.6 31.2 31.2 31.2 31.2 31.2 31.2 30.5 25.0 18.0 9.70 60.5 60.5 60.5 60.5 60.5 60.5 60.5 60.5 60.5 60.5 60.5 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 - F = Factored axial load - Not applicable for semi-compact and slender sections The values in this table are conservative for tension as the more onerous compression section classification limits have been used FOR EXPLANATION OF TABLES SEE NOTE 9.1 348 P201: Handbook of Structural Steelwork 3rd Edition AXIAL LOAD & BENDING BS 5950-1: 2000 BS 4-1: 1993 UC SECTIONS SUBJECT TO AXIAL COMPRESSION AND BENDING y x x MEMBER BUCKLING CHECK RESISTANCES AND CAPACITIES FOR S355 Section Designation and Capacities (kN, kNm) 203 x 203 x 52 Pz = Agpy = 2350 pyZx = 181 pyZy = 61.8 203 x 203 x 46 Pz = Agpy = 2080 pyZx = 160 pyZy = 54 152 x 152 x 37 Pz = Agpy = 1670 pyZx = 96.9 pyZy = 32.5 152 x 152 x 30 Pz = Agpy = 1360 pyZx = 78.8 pyZy = 26 152 x 152 x 23 Pz = Agpy = 1040 pyZx = 58.2 pyZy = 18.7 F/Pz Limit 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 y Compression Resistance Pcx, Pcy (kN) and Buckling Resistance Moment Mb, Mbs (kNm) for Varying effective lengths LE (m) within the limiting value of F/Pz LE (m) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 Pcx 2350 2340 2290 2240 2180 2120 2050 1960 1870 1770 1660 1550 1430 Pcy 2300 2160 2020 1850 1670 1490 1300 1130 980 852 744 653 577 Mb 201 201 200 189 178 168 158 148 140 131 124 117 111 Mbs 201 201 201 201 201 195 187 178 169 159 150 140 130 Pcx 2080 2070 2020 1980 1930 1870 1810 1730 1650 1560 1460 1350 1250 Pcy 2030 1910 1780 1630 1470 1300 1140 988 856 743 648 569 503 Mb 160 160 160 152 143 135 127 119 112 105 98.9 93.3 88.2 Mbs 160 160 160 160 160 154 148 141 133 126 118 110 102 Pcx 1670 1630 1580 1530 1460 1390 1300 1200 1100 989 886 792 708 Pcy 1570 1430 1270 1100 920 761 630 525 442 376 323 281 246 Mb 110 110 102 95.3 88.8 82.7 77.2 72.2 67.6 63.5 59.8 56.5 53.5 Mbs 110 110 110 108 102 95.2 88.4 81.3 74.2 67.4 60.9 55.0 49.7 Pcx 1360 1320 1280 1240 1190 1120 1050 969 880 792 708 632 564 Pcy 1270 1160 1030 884 739 611 504 420 353 300 258 224 196 Mb 88.0 87.3 80.7 74.4 68.4 62.8 57.8 53.4 49.4 46.0 43.0 40.3 37.9 Mbs 88.0 88.0 88.0 86.2 81.3 76.0 70.4 64.7 59.0 53.5 48.3 43.6 39.3 Pcx 1040 1010 974 938 895 844 785 718 648 580 516 458 408 Pcy 965 875 770 654 542 444 365 303 254 216 185 160 140 Mb 58.2 57.9 53.3 48.7 44.4 40.3 36.6 33.4 30.6 28.2 26.1 24.3 22.8 Mbs 58.2 58.2 58.2 56.5 53.0 49.4 45.5 41.6 37.7 34.0 30.6 27.5 24.7 Under combined axial compression and bending the capacities are only valid up to the given F/Pz limit For higher values F/Pz the section would be overloaded due to F alone even when M is zero, because F would exceed the local buckling resistance of the section Mb is obtained using an equivalent slenderness = u.v.LE/ry.βw0.5 Mbs is obtained using an equivalent slenderness = 0.5 L/ry Effective length LE = L FOR EXPLANATION OF TABLES SEE NOTE 9.1 349 P201: Handbook of Structural Steelwork 3rd Edition BS 5950-1: 2000 BOLT CAPACITIES BS 4190: 2001 NON-PRELOADED ORDINARY BOLTS GRADE 4.6 BOLTS IN S355 Diameter Tensile Tension of Stress Capacity Bolt Area Nominal Exact 0.8Atpt Atpt At Pnom Pt mm kN kN mm 12 84.3 16.2 20.2 16 157 30.1 37.7 20 245 47.0 58.8 22 303 58.2 72.7 24 353 67.8 84.7 27 459 88.1 110 30 561 108 135 Shear Capacity Single Double Shear Shear Ps 2Ps kN kN 13.5 27.0 27.6 25.1 50.2 36.8 39.2 78.4 46.0 48.5 97.0 50.6 56.5 113 55.2 73.4 147 62.1 89.8 180 69.0 Bearing Capacity in kN (Minimum of Pbb and Pbs) End distance equal to x bolt diameter Thickness in mm of ply passed through 33.1 44.2 55.2 60.7 66.2 74.5 82.8 38.6 51.5 64.4 70.8 77.3 86.9 96.6 44.2 58.9 73.6 81.0 88.3 99.4 110 49.7 66.2 82.8 91.1 99.4 112 124 10 55.2 73.6 92.0 101 110 124 138 12 66.2 88.3 110 121 132 149 166 15 82.8 110 138 152 166 186 207 20 110 147 184 202 221 248 276 25 138 184 230 253 276 311 345 30 166 221 276 304 331 373 414 25 165 220 275 303 330 371 413 30 198 264 330 363 396 446 495 Values in bold are less than the single shear capacity of the bolt Values in italic are greater than the double shear capacity of the bolt Bearing values assume standard clearance holes If oversize or short slotted holes are used, bearing values should be multiplied by 0.7 If long slotted or kidney shaped holes are used, bearing values should be multiplied by 0.5 If appropriate, shear capacity must be reduced for large packings, large grip lengths and long joints FOR EXPLANATION OF TABLES SEE NOTE 10.1 GRADE 8.8 BOLTS IN S355 Diameter Tensile Tension of Stress Capacity Bolt Area Nominal Exact 0.8Atpt Atpt At Pnom Pt mm mm kN kN 12 84.3 37.8 47.2 16 157 70.3 87.9 20 245 110 137 22 303 136 170 24 353 158 198 27 459 206 257 30 561 251 314 Shear Capacity Single Double Shear Shear Ps 2Ps kN kN 31.6 63.2 58.9 118 91.9 184 114 227 132 265 172 344 210 421 Bearing Capacity in kN (Minimum of Pbb and Pbs) End distance equal to x bolt diameter Thickness in mm of ply passed through 33.0 44.0 55.0 60.5 66.0 74.3 82.5 39.6 52.8 66.0 72.6 79.2 89.1 99.0 46.2 61.6 77.0 84.7 92.4 104 116 52.8 70.4 88.0 96.8 106 119 132 59.4 79.2 99.0 109 119 134 149 10 66.0 88.0 110 121 132 149 165 Values in bold are less than the single shear capacity of the bolt Values in italic are greater than the double shear capacity of the bolt Bearing values assume standard clearance holes If oversize or short slotted holes are used, bearing values should be multiplied by 0.7 If long slotted or kidney shaped holes are used, bearing values should be multiplied by 0.5 If appropriate, shear capacity must be reduced for large packings, large grip lengths and long joints FOR EXPLANATION OF TABLES SEE NOTE 10.1 350 12 79.2 106 132 145 158 178 198 15 99.0 132 165 182 198 223 248 20 132 176 220 242 264 297 330 P201: Handbook of Structural Steelwork 3rd Edition BS 5950-1: 2000 BOLT CAPACITIES BS 4190: 2001 NON-PRELOADED ORDINARY BOLTS GRADE 10.9 BOLTS IN S355 Tension Diameter Tensile Capacity of Stress Bolt Area Nominal Exact 0.8Atpt Atpt At Pnom Pt mm kN kN mm 12 84.3 47.2 59.0 16 157 87.9 110 20 245 137 172 22 303 170 212 24 353 198 247 27 459 257 321 30 561 314 393 Shear Capacity Single Double Shear Shear Ps 2Ps kN kN 33.7 67.4 62.8 126 98.0 196 121 242 141 282 184 367 224 449 Bearing Capacity in kN (Minimum of Pbb and Pbs) End distance equal to x bolt diameter Thickness in mm of ply passed through 33.0 44.0 55.0 60.5 66.0 74.3 82.5 39.6 52.8 66.0 72.6 79.2 89.1 99.0 46.2 61.6 77.0 84.7 92.4 104 116 52.8 70.4 88.0 96.8 106 119 132 59.4 79.2 99.0 109 119 134 149 10 66.0 88.0 110 121 132 149 165 Values in bold are less than the single shear capacity of the bolt Values in italic are greater than the double shear capacity of the bolt Bearing values assume standard clearance holes If oversize or short slotted holes are used, bearing values should be multiplied by 0.7 If long slotted or kidney shaped holes are used, bearing values should be multiplied by 0.5 If appropriate, shear capacity must be reduced for large packings, large grip lengths and long joints FOR EXPLANATION OF TABLES SEE NOTE 10.1 351 12 79.2 106 132 145 158 178 198 15 99.0 132 165 182 198 223 248 20 132 176 220 242 264 297 330 25 165 220 275 303 330 371 413 30 198 264 330 363 396 446 495 P201: Handbook of Structural Steelwork 3rd Edition BS 5950-1: 2000 BOLT CAPACITIES BS 4190: 2001 BS 4933: 1973 NON-PRELOADED COUNTERSUNK BOLTS GRADE 4.6 COUNTERSUNK BOLTS IN S355 Diameter Tensile Tension of Stress Capacity Bolt Area Nominal Exact 0.8Atpt Atpt At Pnom Pt mm kN kN mm 12 84.3 16.2 20.2 16 157 30.1 37.7 20 245 47.0 58.8 22 303 58.2 72.7 24 353 67.8 84.7 27 459 88.1 110 30 561 108 135 Shear Capacity Single Double Shear Shear Ps 2Ps kN kN 13.5 27.0 25.1 50.2 39.2 78.4 48.5 97.0 56.5 113 73.4 147 89.8 180 Bearing Capacity in kN (Minimum of Pbb and Pbs) End distance equal to x bolt diameter Thickness in mm of ply passed through 11.0 7.36 0 0 16.6 14.7 9.20 5.06 0 22.1 22.1 18.4 15.2 11.0 3.11 27.6 29.4 27.6 25.3 22.1 15.5 6.90 33.1 36.8 36.8 35.4 33.1 27.9 20.7 10 38.6 44.2 46.0 45.5 44.2 40.4 34.5 12 49.7 58.9 64.4 65.8 66.2 65.2 62.1 15 66.2 81.0 92.0 96.1 99.4 102 104 20 93.8 118 138 147 155 165 173 25 121 155 184 197 210 227 242 30 149 191 230 248 265 289 311 25 145 185 220 236 251 271 289 30 178 229 275 296 317 345 371 Values in bold are less than the single shear capacity of the bolt Values in italic are greater than the double shear capacity of the bolt Bearing values assume standard clearance holes If oversize or short slotted holes are used, bearing values should be multiplied by 0.7 If long slotted or kidney shaped holes are used, bearing values should be multiplied by 0.5 Depth of countersink is taken as half the bolt diameter FOR EXPLANATION OF TABLES SEE NOTE 10.1 GRADE 8.8 COUNTERSUNK BOLTS IN S 355 Diameter Tensile Tension of Stress Capacity Bolt Area Nominal Exact 0.8Atpt Atpt At Pnom Pt mm mm kN kN 12 84.3 37.8 47.2 16 157 70.3 87.9 20 245 110 137 22 303 136 170 24 353 158 198 27 459 206 257 30 561 251 314 Shear Capacity Single Double Shear Shear Ps 2Ps kN kN 31.6 63.2 58.9 118 91.9 184 114 227 132 265 172 344 210 421 Bearing Capacity in kN (Minimum of Pbb and Pbs) End distance equal to x bolt diameter Thickness in mm of ply passed through 13.2 8.80 0 0 19.8 17.6 11.0 6.05 0 26.4 26.4 22.0 18.2 13.2 3.71 33.0 35.2 33.0 30.3 26.4 18.6 8.25 39.6 44.0 44.0 42.4 39.6 33.4 24.8 Values in bold are less than the single shear capacity of the bolt Values in italic are greater than the double shear capacity of the bolt Bearing values assume standard clearance holes If oversize or short slotted holes are used, bearing values should be multiplied by 0.7 If long slotted or kidney shaped holes are used, bearing values should be multiplied by 0.5 Depth of countersink is taken as half the bolt diameter FOR EXPLANATION OF TABLES SEE NOTE 10.1 352 10 46.2 52.8 55.0 54.5 52.8 48.3 41.3 12 59.4 70.4 77.0 78.7 79.2 78.0 74.3 15 79.2 96.8 110 115 119 123 124 20 112 141 165 175 185 197 206 P201: Handbook of Structural Steelwork 3rd Edition BS 5950-1: 2000 BOLT CAPACITIES BS 4190: 2001 BS 4933: 1973 NON-PRELOADED COUNTERSUNK BOLTS GRADE 10.9 COUNTERSUNK BOLTS IN S355 Tension Diameter Tensile Capacity of Stress Bolt Area Nominal Exact 0.8Atpt Atpt At Pnom Pt mm kN kN mm 12 84.3 47.2 59.0 16 157 87.9 110 20 245 137 172 22 303 170 212 24 353 198 247 27 459 257 321 30 561 314 393 Shear Capacity Single Double Shear Shear Ps 2Ps kN kN 33.7 67.4 62.8 126 98.0 196 121 242 141 282 184 367 224 449 Bearing Capacity in kN (Minimum of Pbb and Pbs) End distance equal to x bolt diameter Thickness in mm of ply passed through 13.2 8.80 0 0 19.8 17.6 11.0 6.05 0 26.4 26.4 22.0 18.2 13.2 3.71 33.0 35.2 33.0 30.3 26.4 18.6 8.25 39.6 44.0 44.0 42.4 39.6 33.4 24.8 Values in bold are less than the single shear capacity of the bolt Values in italic are greater than the double shear capacity of the bolt Bearing values assume standard clearance holes If oversize or short slotted holes are used, bearing values should be multiplied by 0.7 If long slotted or kidney shaped holes are used, bearing values should be multiplied by 0.5 Depth of countersink is taken as half the bolt diameter FOR EXPLANATION OF TABLES SEE NOTE 10.1 353 10 46.2 52.8 55.0 54.5 52.8 48.3 41.3 12 59.4 70.4 77.0 78.7 79.2 78.0 74.3 15 79.2 96.8 110 115 119 123 124 20 112 141 165 175 185 197 206 25 145 185 220 236 251 271 289 30 178 229 275 296 317 345 371 P201: Handbook of Structural Steelwork 3rd Edition BS 5950-1: 2000 BOLT CAPACITIES BS 4395: 1969 NON-PRELOADED HSFG BOLTS GENERAL GRADE HSFG BOLTS IN S355 Diameter Tensile Tension of Stress Capacity Bolt Area Nominal Exact 0.8Atpt Atpt At Pnom Pt mm kN kN mm 12 84.3 39.8 49.7 16 157 74.1 92.6 20 245 116 145 22 303 143 179 24 353 167 208 27 459 189 236 30 561 231 289 Shear Capacity Single Double Shear Shear Ps 2Ps kN kN 33.7 67.4 62.8 126 98.0 196 121 242 141 282 161 321 196 393 Bearing Capacity in kN (Minimum of Pbb and Pbs) End distance equal to x bolt diameter Thickness in mm of ply passed through 33.0 44.0 55.0 60.5 66.0 74.3 82.5 39.6 52.8 66.0 72.6 79.2 89.1 99.0 46.2 61.6 77.0 84.7 92.4 104 116 52.8 70.4 88.0 96.8 106 119 132 59.4 79.2 99.0 109 119 134 149 10 66.0 88.0 110 121 132 149 165 12 79.2 106 132 145 158 178 198 15 99.0 132 165 182 198 223 248 20 132 176 220 242 264 297 330 25 165 220 275 303 330 371 413 30 198 264 330 363 396 446 495 25 220 275 303 330 371 413 30 264 330 363 396 446 495 Values in bold are less than the single shear capacity of the bolt Values in italic are greater than the double shear capacity of the bolt Bearing values assume standard clearance holes If oversize or short slotted holes are used, bearing values should be multiplied by 0.7 If long slotted or kidney shaped holes are used, bearing values should be multiplied by 0.5 If appropriate, shear capacity must be reduced for large packings, large grip lengths and long joints FOR EXPLANATION OF TABLES SEE NOTE 10.1 HIGHER GRADE HSFG BOLTS IN S 355 Diameter Tensile Tension of Stress Capacity Bolt Area Nominal Exact 0.8Atpt Atpt At Pnom Pt mm mm kN kN 16 157 87.9 110 20 245 137 172 22 303 170 212 24 353 198 247 27 459 257 321 30 561 314 393 Shear Capacity Single Double Shear Shear Ps 2Ps kN kN 62.8 126 98.0 196 121 242 141 282 184 367 224 449 Bearing Capacity in kN (Minimum of Pbb and Pbs) End distance equal to x bolt diameter Thickness in mm of ply passed through 44.0 55.0 60.5 66.0 74.3 82.5 52.8 66.0 72.6 79.2 89.1 99.0 61.6 77.0 84.7 92.4 104 116 70.4 88.0 96.8 106 119 132 79.2 99.0 109 119 134 149 10 88.0 110 121 132 149 165 Values in bold are less than the single shear capacity of the bolt Values in italic are greater than the double shear capacity of the bolt Bearing values assume standard clearance holes If oversize or short slotted holes are used, bearing values should be multiplied by 0.7 If long slotted or kidney shaped holes are used, bearing values should be multiplied by 0.5 If appropriate, shear capacity must be reduced for large packings, large grip lengths and long joints FOR EXPLANATION OF TABLES SEE NOTE 10.1 354 12 106 132 145 158 178 198 15 132 165 182 198 223 248 20 176 220 242 264 297 330 P201: Handbook of Structural Steelwork 3rd Edition BS 5950-1: 2000 BOLT CAPACITIES BS 4395: 1969 BS 4604: 1970 PRELOADED HSFG BOLTS: NON-SLIP IN SERVICE GENERAL GRADE HSFG BOLTS IN S355 Diameter Min of Shank Bolt Tension mm 12 16 20 22 24 27 30 Po kN 49.4 92.1 144 177 207 234 286 Tension 1.1Po kN 54.3 101 158 195 228 257 315 Atpt kN 49.7 92.6 145 179 208 236 289 Bearing Capacity, Pbg in kN End distance equal to x bolt diameter Shear Slip Resistance Capacity for µ = 0.5 Single Double Single Double Shear Shear Shear Shear kN 33.7 62.8 98.0 121 141 161 196 kN 67.4 126 196 242 282 321 393 kN 27.2 50.7 79.2 97.4 114 129 157 kN 54.3 101 158 195 228 257 315 Thickness in mm of ply passed through 10 49.5 59.4 69.3 79.2 89.1 99.0 66.0 79.2 92.4 106 119 132 82.5 99.0 116 132 149 165 90.8 109 127 145 163 182 99.0 119 139 158 178 198 111 134 156 178 200 223 124 149 173 198 223 248 12 119 158 198 218 238 267 297 15 149 198 248 272 297 334 371 20 198 264 330 363 396 446 495 25 248 330 413 454 495 557 619 30 297 396 495 545 594 668 743 25 330 413 454 495 557 619 30 396 495 545 594 668 743 Values in bold are less than the single shear capacity of the bolt Values in italic are greater than the double shear capacity of the bolt Shading indicates that the ply thickness is not suitable for an outer ply FOR EXPLANATION OF TABLES SEE NOTE 10.1 HIGHER GRADE HSFG BOLTS IN S355 Diameter Min of Shank Bolt Tension mm 16 20 22 24 27 30 Po kN 104 162 200 233 303 370 Tension 1.1Po kN 114 178 220 257 333 407 Atpt kN 110 172 212 247 321 393 Bearing Capacity, Pbg in kN End distance equal to x bolt diameter Shear Slip Resistance Capacity for µ = 0.5 Single Double Single Double Shear Shear Shear Shear kN 62.8 98.0 121 141 184 224 kN 126 196 242 282 367 449 kN 57.1 89.0 110 128 167 204 kN 114 178 220 257 333 407 Thickness in mm of ply passed through 66.0 79.2 92.4 82.5 99.0 116 90.8 109 127 99.0 119 139 111 134 156 124 149 173 Values in bold are less than the single shear capacity of the bolt Values in italic are greater than the double shear capacity of the bolt Shading indicates that the ply thickness is not suitable for an outer ply FOR EXPLANATION OF TABLES SEE NOTE 10.1 355 106 132 145 158 178 198 119 149 163 178 200 223 10 132 165 182 198 223 248 12 158 198 218 238 267 297 15 198 248 272 297 334 371 20 264 330 363 396 446 495 P201: Handbook of Structural Steelwork 3rd Edition BS 5950-1: 2000 BOLT CAPACITIES BS 4395: 1969 BS 4604: 1970 PRELOADED HSFG BOLTS: NON-SLIP UNDER FACTORED LOADS GENERAL GRADE HSFG BOLTS IN S355 Diameter of Bolt Min Shank Tension Bolt Tension Capacity mm 12 16 20 22 24 27 30 Po kN 49.4 92.1 144 177 207 234 286 0.9Po kN 44.5 82.9 130 159 186 211 257 µ = 0.2 Single Double Shear Shear kN 8.89 16.6 25.9 31.9 37.3 42.1 51.5 kN 17.8 33.2 51.8 63.7 74.5 84.2 103 Slip Resistance PsL µ = 0.3 µ = 0.4 Single Double Single Double Shear Shear Shear Shear kN 13.3 24.9 38.9 47.8 55.9 63.2 77.2 kN 26.7 49.7 77.8 95.6 112 126 154 kN 17.8 33.2 51.8 63.7 74.5 84.2 103 kN 35.6 66.3 104 127 149 168 206 Single Shear kN 22.2 41.4 64.8 79.7 93.2 105 129 µ = 0.5 Double Shear kN 44.5 82.9 130 159 186 211 257 FOR EXPLANATION OF TABLES SEE NOTE 10.1 HIGHER GRADE HSFG BOLTS IN S 355 Diameter of Bolt Min Shank Tension Bolt Tension Capacity mm 16 20 22 24 27 30 Po kN 104 162 200 233 303 370 0.9Po kN 93.5 146 180 210 273 333 µ = 0.2 Single Double Shear Shear kN 18.7 29.1 36.0 42.0 54.5 66.6 kN 37.4 58.2 72.1 84.0 109 133 Slip Resistance PsL µ = 0.3 µ = 0.4 Single Double Single Double Shear Shear Shear Shear kN 28.1 43.7 54.1 63.0 81.8 100 FOR EXPLANATION OF TABLES SEE NOTE 10.1 356 kN 56.1 87.4 108 126 164 200 kN 37.4 58.2 72.1 84.0 109 133 kN 74.8 116 144 168 218 266 Single Shear kN 46.8 72.8 90.1 105 136 167 µ = 0.5 Double Shear kN 93.5 146 180 210 273 333 P201: Handbook of Structural Steelwork 3rd Edition BS 5950-1: 2000 BOLT CAPACITIES BS 4395: 1969 BS 4604: 1970 BS 4933: 1973 PRELOADED HSFG BOLTS: NON-SLIP IN SERVICE GENERAL GRADE COUNTERSUNK HSFG BOLTS IN S355 Diameter Min of Shank Bolt Tension mm 12 16 20 22 24 27 30 Po kN 49.4 92.1 144 177 207 234 286 Tension 1.1Po kN 54.3 101 158 195 228 257 315 Atpt kN 49.7 92.6 145 179 208 236 289 Bearing Capacity, Pbg in kN End distance equal to x bolt diameter Shear Slip Resistance Capacity for µ = 0.5 Single Double Single Double Shear Shear Shear Shear kN 33.7 62.8 98.0 121 141 161 196 kN 67.4 126 196 242 282 321 393 kN 27.2 50.7 79.2 97.4 114 129 157 kN 54.3 101 158 195 228 257 315 Thickness in mm of ply passed through 19.8 13.2 0 0 29.7 26.4 16.5 9.08 0 39.6 39.6 33.0 27.2 19.8 5.57 49.5 52.8 49.5 45.4 39.6 27.8 12.4 59.4 66.0 66.0 63.5 59.4 50.1 37.1 10 12 69.3 89.1 79.2 106 82.5 116 81.7 118 79.2 119 72.4 117 61.9 111 15 119 145 165 172 178 184 186 20 168 211 248 263 277 295 309 25 218 277 330 354 376 407 433 30 267 343 413 445 475 518 557 25 277 330 354 376 407 433 30 343 413 445 475 518 557 Values in bold are less than the single shear capacity of the bolt Values in italic are greater than the double shear capacity of the bolt Shading indicates that the ply thickness is not suitable for an outer ply FOR EXPLANATION OF TABLES SEE NOTE 10.1 HIGHER GRADE COUNTERSUNK HSFG BOLTS IN S355 Diameter Min of Shank Bolt Tension mm 16 20 22 24 27 30 Po kN 104 162 200 233 303 370 Tension 1.1Po kN 114 178 220 257 333 407 Atpt kN 110 172 212 247 321 393 Bearing Capacity, Pbg in kN End distance equal to x bolt diameter Shear Slip Resistance Capacity for µ = 0.5 Single Double Single Double Shear Shear Shear Shear kN 62.8 98.0 121 141 184 224 kN 126 196 242 282 367 449 kN 57.1 89.0 110 128 167 204 kN 114 178 220 257 333 407 Thickness in mm of ply passed through 10 13.2 26.4 39.6 52.8 66.0 79.2 16.5 33.0 49.5 66.0 82.5 9.08 27.2 45.4 63.5 81.7 0 19.8 39.6 59.4 79.2 0 5.57 27.8 50.1 72.4 0 12.4 37.1 61.9 Values in bold are less than the single shear capacity of the bolt Values in italic are greater than the double shear capacity of the bolt Shading indicates that the ply thickness is not suitable for an outer ply FOR EXPLANATION OF TABLES SEE NOTE 10.1 357 12 106 116 118 119 117 111 15 145 165 172 178 184 186 20 211 248 263 277 295 309 P201: Handbook of Structural Steelwork 3rd Edition BS 5950-1: 2000 BOLT CAPACITIES BS 4395: 1969 BS 4604: 1970 BS 4933: 1973 PRELOADED HSFG BOLTS: NON-SLIP UNDER FACTORED LOADS GENERAL GRADE COUNTERSUNK HSFG BOLTS IN S355 Diameter of Bolt Min Shank Tension Bolt Tension Capacity mm 12 16 20 22 24 27 30 Po kN 49.4 92.1 144 177 207 234 286 0.9Po kN 44.5 82.9 130 159 186 211 257 µ = 0.2 Single Double Shear Shear kN 8.89 16.6 25.9 31.9 37.3 42.1 51.5 kN 17.8 33.2 51.8 63.7 74.5 84.2 103 Slip Resistance PsL µ = 0.3 µ = 0.4 Single Double Single Double Shear Shear Shear Shear kN 13.3 24.9 38.9 47.8 55.9 63.2 77.2 kN 26.7 49.7 77.8 95.6 112 126 154 kN 17.8 33.2 51.8 63.7 74.5 84.2 103 kN 35.6 66.3 104 127 149 168 206 Single Shear kN 22.2 41.4 64.8 79.7 93.2 105 129 µ = 0.5 Double Shear kN 44.5 82.9 130 159 186 211 257 FOR EXPLANATION OF TABLES SEE NOTE 10.1 HIGHER GRADE COUNTERSUNK HSFG BOLTS IN S 355 Diameter of Bolt Min Shank Tension Bolt Tension Capacity mm 16 20 22 24 27 30 Po kN 104 162 200 233 303 370 0.9Po kN 93.5 146 180 210 273 333 µ = 0.2 Single Double Shear Shear kN 18.7 29.1 36.0 42.0 54.5 66.6 kN 37.4 58.2 72.1 84.0 109 133 Slip Resistance PsL µ = 0.3 µ = 0.4 Single Double Single Double Shear Shear Shear Shear kN 28.1 43.7 54.1 63.0 81.8 100 FOR EXPLANATION OF TABLES SEE NOTE 10.1 358 kN 56.1 87.4 108 126 164 200 kN 37.4 58.2 72.1 84.0 109 133 kN 74.8 116 144 168 218 266 Single Shear kN 46.8 72.8 90.1 105 136 167 µ = 0.5 Double Shear kN 93.5 146 180 210 273 333 P201: Handbook of Structural Steelwork 3rd Edition FILLET WELDS BS 5950-1 :2000 BS EN 440 BS EN 499 BS EN 756 BS EN 758 BS EN 1668 WELD CAPACITIES WITH E42 ELECTRODE WITH S355 Leg Length Throat Thickness Longitudinal Capacity Transverse Capacity s mm a mm PL kN/mm PT kN/mm 3.0 2.1 0.525 0.656 4.0 2.8 0.700 0.875 5.0 3.5 0.875 1.094 6.0 4.2 1.050 1.312 8.0 5.6 1.400 1.750 10.0 7.0 1.750 2.188 12.0 8.4 2.100 2.625 15.0 10.5 2.625 3.281 18.0 12.6 3.150 3.938 20.0 14.0 3.500 4.375 22.0 15.4 3.850 4.813 25.0 17.5 4.375 5.469 Welds are between two elements at 90o to each other PL = p w a PT = K p w a pw = 250 N/mm K = 1.25 for elements at 90o to each other FOR EXPLANATION OF TABLES SEE NOTE 10.2 359

Ngày đăng: 09/10/2016, 12:58

Từ khóa liên quan

Mục lục

  • P201: Handbook of Structural Steelwork 3rd Edition

    • FOREWORD

    • ACKNOWLEDGEMENTS

    • CONTENTS

    • Chapter 1 General design considerations

      • 1.1 Design aims

      • 1.2 Methods of design

        • 1.2.1 Simple design

        • 1.2.2 Continuous design

        • 1.2.3 Semi-continuous design

        • 1.3 Loadings

        • 1.4 Limit state design

          • 1.4.1 Background

          • 1.4.2 General

          • 1.4.3 Ultimate limit states

            • Table 1.1 Partial load factors g f for buildings without cranes

            • 1.4.4 Serviceability limit state

              • Table 1.2 Suggested limits for calculated deflection

              • 1.5 Stability limit state

                • 1.5.1 Resistance to horizontal forces

                • 1.5.2 Sway stiffness

                • 1.5.3 Non-sway frames

                • 1.5.4 Sway-sensitive frames

                • 1.6 Design strengths

                  • Table 1.3 Design strength p y for steel grades S275 and S355

                  • Chapter 2 Local resistance of cross-sections

                    • 2.1 Local buckling

                    • 2.2 Classification

                      • 2.2.1 Classes of cross-sections

                        • Figure 2.1 Moment rotation behaviour of cross-sections of different classes

                        • 2.2.2 Classification process

                          • Figure 2.2 Dimensions of compression elements

Tài liệu cùng người dùng

Tài liệu liên quan