1. Trang chủ
  2. » Tất cả

ch3

28 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 28
Dung lượng 327,22 KB

Nội dung

Chapter 3: Laplace Transform Chapter 3.1: Definition : ∞ L{f(t)} = F(s) = ∫ f (t)e dt −st ƒ f(t) : original function ƒ F(s) : Laplace transform Chapter [2] ™Example1: Find Laplace Transform ? Unit Step Function u(t) or 1(t) : 1 ↔ for : t > u (t ) =  0 ↔ for : t < ∞ −st ∞ e L{u(t)} = ∫ e dt = = −s s Chapter −st [3] ™Example2: Find Laplace Transform ? Impulse or Delta or Dirac Function δ(t) : ∞ ↔ for : t = δ (t ) =  0 ↔ for : t ≠ ∞ δ(t) L{δ (t)} = ∫δ (t)e dt = e =1 −st 0 Chapter [4] 3.2: Properties of Laplace Transform : 1) Multiplication by a constant : If: L{f(t)} = F(s) Then: Chapter L{k.f(t)} = k.F(s) [5] 2) Addition / Subtraction: If: L{f1 (t)} = F1 (s) and L{f (t)} = F2 (s) Then: Chapter L{f1 (t) ± f (t) } = F1 (s) ± F2 (s) [6] 3) Translation in Time-domain: If: L{f(t)} = F(s) Then: Chapter L{f(t − t ).u(t − t ) } = F(s).e − st [7] 4) Translation in frequency-domain: If: L{f(t)} = F(s) Then: Chapter L{f(t).e − at } = F(s + a) [8] 5) Scale Changing: If: L{f(t)} = F(s) Then: Chapter s L{f(at) } = F   a a [9] 6) Differentiation: If: L{f(t)} = F(s) Then:  df (t)  L  = sF ( s ) − f (0)  dt   d f (t)  ' L = s F ( s ) − s.f (0) − f (0)   dt  L {f Chapter (n ) (t)} = s F ( s ) − s f (0) − − f n n −1 (n −1) (0) [10] 10) Periodic signal : f(t) = f1 (t) + f (t) + f (t) + = f1 (t) + f1 (t − T)u(t − T) + f1 (t − 2T)u(t − 2T) + F(s) = F1 (s) + F1 (s).e − sT + F1 (s).e − s2T + Then: F1 (s) F(s) = − sT 1− e F1(s) = Laplace Transform over first period only Chapter f(t) t T 2T 3T A periodic function f1(t) t T f2(t) t T 2T f3(t) t 2T 3T Decomposition of f(t) [14] 11) Initial Value Theorem : If: L{f(t)} = F(s) Then: Chapter f (0 ) = lim+ f (t) = lim ( s.F(s) ) + t →0 s →∞ [15] 12) Final Value Theorem : If: L{f(t)} = F(s) Then: f (∞) = lim f (t) = lim ( s.F(s) ) t →∞ s →0 Attention: all poles of F(s) must be located in the left half of the s-plane, except s = Chapter [16] 3.3: Laplace Transform of Fundamental functions : 1) Unit Step Function u(t) or 1(t) : 1 ↔ for : t > u (t ) =  0 ↔ for : t < Chapter £{u(t)} = s [17] 2) Translated unit step u(t – t0) : 1↔ for :t >t0 u(t −t0) =  0 ↔ for :t

Ngày đăng: 05/10/2016, 14:17

w