Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 11 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
11
Dung lượng
307,96 KB
Nội dung
ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN TRẦN THỊ BÍCH NGỌC PHƯƠNG PHÁP MCMC VÀ MỘT SỐ ỨNG DỤNG LUẬN VĂN THẠC SỸ KHOA HỌC Chuyên ngành : LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN HỌC Mã số : 60 46 01 06 NGƯỜI HƯỚNG DẪN KHOA HỌC: TS NGUYỄN THỊNH HÀ NỘI, 2014 Mục lục LỜI MỞ ĐẦU BẢNG KÝ HIỆU TỔNG QUAN 1.1 Suy luận Bayes 1.1.1 Đặc điểm mô hình Bayes 1.1.2 Các tiên nghiệm Jeffreys 1.2 Tích phân Monte Carlo 1.2.1 Bài toán 1.2.2 Xấp xỉ Monte Carlo 1.2.3 Monte Carlo thông qua lấy mẫu theo trọng 1.3 Phương pháp sinh biến ngẫu nhiên 1.3.1 Phương pháp biến đổi 1.3.2 Phương pháp chấp nhận - bác bỏ 1.3.3 Phương pháp tỷ số 1.4 Xích Markov 1.4.1 Các định nghĩa kí hiệu 1.4.2 Sự hội tụ phân phối 1.4.3 Giới hạn giá trị trung bình số 8 9 10 10 11 12 13 13 14 15 16 18 19 19 MẪU GIBBS 21 2.1 Mẫu Gibbs 21 2.2 Thuật toán mở rộng liệu 24 THUẬT TOÁN METROPOLIS-HASTINGS 27 3.1 Thuật toán Metropolis – Hastings 27 3.1.1 Khái niệm 27 3.2 3.3 3.4 3.1.2 Mẫu độc lập 3.1.3 Xích bước ngẫu nhiên Thuật toán Metropolis- Hasting cho phân phối nhiều chiều 3.2.1 Cập nhật khối 3.2.2 Cập nhật thành phần Các dạng khác thuật toán Metropolis - Hastings 3.3.1 Thuật toán chạm chạy 3.3.2 Thuật toán Langevin 3.3.3 Thuật toán đa phép thử MH Thuật toán bước nhảy ngược MCMC cho toán lựa chọn mô hình Bayes 3.4.1 Thuật toán bước nhảy ngược MCMC 3.4.2 Xác định điểm thay đổi Phương pháp biến phụ trợ MCMC 4.1 Mô nhiệt luyện 4.2 Mô điều hoà nhiệt 4.3 Thuật toán Moller 4.4 Thuật toán trao đổi Tài liệu tham khảo 29 30 30 30 34 36 36 37 38 39 39 43 46 48 49 51 53 56 LỜI CẢM ƠN Luận văn hoàn thành với hướng dẫn tận tình nghiêm khắc TS Nguyễn Thịnh Thầy dành nhiều thời gian quý báu để hướng dẫn giải đáp thắc mắc suốt trình làm luận văn Tôi muốn tỏ lòng biết ơn chân thành sâu sắc tới người thầy Tôi muốn gửi tới toàn thể thầy cô Khoa Toán - Cơ - Tin học trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội, thầy cô đảm nhận giảng dạy khóa Cao học 2011 - 2013, đặc biệt thầy cô tham gia giảng dạy nhóm Xác suất thống kê 2011 - 2013 lời cám ơn chân thành công lao dạy dỗ suốt thời gian khóa học Tôi xin cám ơn gia đình, bạn bè, đồng nghiệp anh chị em nhóm Xác suất thống kê 2011 - 2013 quan tâm, giúp đỡ, tạo điều kiện động viên tinh thần để hoàn thành khóa học LỜI MỞ ĐẦU Luận văn với mục đích trình bày phương pháp MCMC số ứng dụng nó.Luận văn xây dựng dựa lý thuyết suy luận Bayes,tích phân Monte Carlo xích Markov Luận văn gồm có chương: Chương Tổng quan Suy luận Bayes: giới thiệu suy luận Bayes, đặc điểm mô hình Bayes, tiên nghiệm Jeffreys Tích phần Monte Carlo: Bài toán tích phân Monte Carlo, xấp xỉ Monte Carlo, Monte Carlo thông qua lấy mẫu theo trọng số Phương pháp sinh biến ngẫu nhiên: Phương pháp biến đổi, phương pháp chấp nhận - bác bỏ, phương pháp tỷ số Xích Markov: Các định nghĩa kí hiệu, Sự hội tụ phân phối, giới hạn giá trị trung bình Chương Mẫu Gibbs Giới thiệu phương pháp lấy mẫu Gibbs ví dụ cho trường hợp biến ngẫu nhiên nhiều chiều Thuật toán mở rộng liệu:mô tả thuật toán số ví dụ tương ứng Chương Thuật toán Metropolis- Hastings Thuật toán Metropolis- Hasting: Khái niệm, mẫu độc lập, xích bước ngẫu nhiên Thuật toán Metropolis - Hasting phân phối nhiều chiều: giới thiệu ứng dụng thuật toán Metropolis - Hasting biến ngẫu nhiên nhiều chiều cập nhật khối, cập nhật thành phần Các dạng khác thuật toán Metropolis - Hasting: Thuật toán chạm chạy, thuật toán Langevin, thuật toán đa phép thử MH Chương Phương pháp biến phụ trợ MCMC Giới thiệu mặt lý thuyết vài thuật toán phương pháp MCMC có sử dụng biến phụ trợ: Phương pháp mô nhiệt luyện, mô điều chỉnh nhiệt,Moller, thuật toán trao đổi, phương pháp lấy mẫu MH kép Do thời gian gấp rút kiến thức hạn chế nên luận văn tránh khỏi thiếu sót, vậy, mong nhận ý kiến đóng góp thầy cô bạn bè đồng nghiệp, xin trân trọng cám ơn Hà Nội, tháng 11 năm 2014 BẢNG KÝ HIỆU MCMC: Xích Markov Monte Carlo AD: Thuật toán mở rộng liệu AR: Thuật toán chấp nhận - bác bỏ h.c.c: hầu chắn MTH: thuật toán đa phép thử Metropolis - Hastings MTM: thuật toán đa phép thử Metropolis RJMCMC: Thuật toán bước nhảy ngược MCMC Chương TỔNG QUAN 1.1 Suy luận Bayes Suy luận Bayes công thức suy luận xác suất Với ưu điểm tính toán đơn giản với phát triển gần phương pháp xích Markov Monte Carlo(MCMC) cho việc tính xấp xỉ tích phân có số chiều cao mà suy luận Bayes ngày sử dụng rộng rãi Suy luận Bayes bắt nguồn từ Thomas Bayes (1764), người rút xác suất nghịch đảo xác suất thành công θ dãy phép thử độc lập Bernoulli, θ lấy từ phân phối khoảng (0,1) Ví dụ 1.1 (Mô hình Bernoulli với tiên nghiệm biết) Giả sử θ ∼ U nif (0, 1) phân phối khoảng (0,1),và x1 , x2 , , xn mẫu lấy từ Bernoulli (θ) với không gian mẫu X = {0, 1} hàm khối xác suất Pr (X = |θ ) = θ; Pr (X = |θ ) = − θ (1.1) X biến ngẫu nhiên Bernoulli với X = thành công, X = thất bại n Ta viết N = i=1 xi số quan sát thành công n phép thử Bernoulli Khi N |θ ∼ B (n, θ) phân phối nhị thức với cỡ n xác suất thành công θ Xác suất nghịch đảo θ cho x1 , x2 , , xn hiểu phân phối hậu nghiệm,được xem phân phối Beta, Beta(1+N,1+n-N) với hàm mật độ xác suất θ(1+N )−1 (1 − θ)(1+n−N )−1 (0 ≤ θ ≤ 1) (1.2) B(1 + N, + n − N ) B (◦ ,◦ ) kí hiệu hàm Beta 1.1.1 Đặc điểm mô hình Bayes Theo nghiên cứu toán học biết để xác định mô hình Bayes ta cần : (i) Chỉ rõ mô hình lấy mẫu từ liệu quan sát X, có điều kiện đại lượng chưa biết θ (X ∈ X , θ ∈ Θ) X ∼ f (X |θ ) (1.3) f (X |θ ) hàm mật độ xác suất, (ii) Chỉ rõ phân phối biên,được gọi phân phối tiên nghiệm hay đơn giản tiên nghiệm π (θ) θ: θ ∼ π (θ) (θ ∈ Θ) (1.4) Phân tích liệu dựa kết suy luận nhằm mục đích rút gọn tính toán tích phân phân phối hậu nghiệm, hay nói gọn hậu nghiệm, π (θ |X ) = π (θ) L (θ |X ) π (θ) L (θ |X ) dθ (θ ∈ Θ) (1.5) L (θ |X ) ∝ f (X |θ ) δ gọi thống kê hợp lý δ với X cho 1.1.2 Các tiên nghiệm Jeffreys Một cách tự nhiên ta thấy việc rõ mô hình Bayes chẳng khác việc tổng hợp thông tin thực tế theo quan điểm xác suất xác Đồng thời, việc rõ mô hình xác suất liệu quan sát X việc làm tất yếu Thêm vào xét mô hình lấy mẫu liệu quan sát X đại lượng chưa biết θ suy luận Bayes yêu cầu tiên nghiệm cho θ phải xác định rõ ràng Trong trường hợp thông tin tiên nghiệm θ sẵn có biết cách xác phân phối xác suất điều hiển nhiên Tuy nhiên, trường hợp thông tin không sẵn có không dễ xác định phân phối xác suất xác, đặc biệt toán với số chiều cao, phương pháp thường sử dụng phương pháp Jeffreys, với việc giả thiết tiên nghiệm có dạng: (θ ∈ Θ) πJ (θ) ∝ |I (θ)| (1.6) Trong I (θ) lượng thông tin Fisher Ví dụ 1.2 Giả sử ta xét mẫu lấy từ phân phối N (µ, 1) Thông tin Fisher thu sau: +∞ φ (x − µ) dx = I (µ) = −∞ Trong 1 φ (x − µ) = (2π) exp − (x − µ)2 hàm mật độ N (µ, 1) Điều dẫn đến tiền nghiệm Jeffreys θ πJ (θ) ∝ (−∞ < µ < +∞) (1.7) Ta thu phân phối hậu nghiệm tương ứng θ cho X sau: πJ (µ |X ) = N (X, 1) 1.2 1.2.1 (1.8) Tích phân Monte Carlo Bài toán Cho ν độ đo xác suất σ - trường Borel X với không gian mẫu X ⊆ Rd , Rd không gian Euclide d-chiều Một khó khăn thường gặp toán ước tính tích phân dạng: Eν [h (X)] = h (x) ν (dx) X 10 (1.9) Tài liệu tham khảo [1] Đào Hữu Hồ (1998), Xác suất thống kê, NXB Đại học Quốc gia Hà nội [2] Nguyễn Duy Tiến, Vũ Viết Yên (2006), Lý thuyết xác suất, NXB Giáo dục [3] Nguyễn Duy Tiến, Đặng Hùng Thắng (2001), Các mô hình xác suất ứng dụng, Phần II: Quá trình dừng ứng dụng, NXB Đại học Quốc gia Hà Nội [4] Nguyễn Duy Tiến (2000), Các mô hình xác suất ứng dụng, Phần I: Xích Markov ứng dụng, NXB Đại học Quốc gia Hà nội [5] Đặng Hùng Thắng (2012), Xác suất nâng cao, NXB Đại học Quốc gia Hà nội [6] Faming Liang, Chuanhai Liu, Raymond J.Carroll(2010), Advanced Markov chain Monte Carlo methods [7] Dani Gamerman, Hedibert F Lopez (2009), Markov chain Monte Carlo stochastic simulation for Bayesian inference(2nd edition) [8] Mark Steyvers,2011, Computational statistics with Matlab [9] Jean-Michel Marin,Christian P.Robert,2007A practical approach to computational Bayesian statistics 56 [...]... Vũ Viết Yên (2006), Lý thuyết xác suất, NXB Giáo dục [3] Nguyễn Duy Tiến, Đặng Hùng Thắng (2001), Các mô hình xác suất và ứng dụng, Phần II: Quá trình dừng và ứng dụng, NXB Đại học Quốc gia Hà Nội [4] Nguyễn Duy Tiến (2000), Các mô hình xác suất và ứng dụng, Phần I: Xích Markov và ứng dụng, NXB Đại học Quốc gia Hà nội [5] Đặng Hùng Thắng (2012), Xác suất nâng cao, NXB Đại học Quốc gia Hà nội [6] Faming