1. Trang chủ
  2. » Tất cả

phuong-trinh-bat-phuong-trinh-mu-logarit

18 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 18
Dung lượng 0,93 MB

Nội dung

40 BÀI TẬP PHƢƠNG TRINH, BẤT PHƢƠNG TRÌNH MŨ VÀ LOGARIT Giải phương trình  x  2.3x  3 log3  x  1  log 27  3   x 1  9x ĐK: x > Với ĐK phương trình cho tương đương 3 2x   2.3x  log3  x  1   2.3x  32 x     3x  3x  log3  x  1  1   x  (l )   x  (tm)  Vậy phương trình cho có nghiệm : x  Giải phương trình: ( log3 x ) 10 + ( - log3 x ) 10 - 2x = ĐK: x > Ta có phương trình tương đương với: √ Đặt t = - √ √ ( log3 x ) 10 + - ( log3 x ) 10 - = log3 x 3 = ; t > ; Phương trình trở thành:  3t2 – 2t -3 = √ [ Với t = √ 1+ 10 ta giải x = 3 phương trình cho có nghiệm x = >> Truy cập trang http://tuyensinh247.com để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! iải phương trình au : log (4 x2  8x  4)  log x  2 x2  x  2  Đi u iện : x  log (4 x  x  4)  log x  2 x  x  (*)  log (4 x   8)   2(1  x) x 4  Ta có:  x    x   16  log (  x  8)  x x x VT (*)   Vậy  VP(*)   Do đó: VT  4 x   x  x  (t / m)  x   VP Vậy phương trình có nghiệm Giải phương trình: 32 x 6 x3  x 3 x1  2 x 6 x3 32 x 6 x3  x 3 x1  2 x 6 x3  32 x 2  3.9x 3 x1  6x 3 x1  2.4x 3 x 1 2 Chia vế phương trình cho 3   2 Đặt t x 3 x 1 x 3 x 1 2 6 x  21  6x 2 3 x 1  22x   3 ta được: 3  2 x 3 x 1 6 x  21 3   2 x 3 x 1 20 t  0 t  1 Ta được: 3t  t     t   l  2 , ta : x  3x    x =  x = Tập nghiệm phương trình S  2 ;1 Với t  Giải phương trình:  log x  log x  log x  Đi u iện ác định: ≥  log x  log x  log x    log x  log x  log x        log x  2 log x  1  log x  log x  2 log x  1  log x  log x    log x  vì:  log x  log x    x = >> Truy cập trang http://tuyensinh247.com để học Tốn – Lý – Hóa – Sinh – Văn – Anh tốt nhất! Vậy nghiệm phương trình cho là: Giải bất phương trình: log3 ( x  x  4)  log (2 x  1)  log 3 ĐK: x  BPT  log3 ( x  x  4)  log3 (2 x  1)  log3  log3 ( x  x  4)  log 2.(2 x  1)  ( x  x  4)  2.(2 x  1) x  Ta BPT 3t  t    (t  1)(3t  2t  2)   t  Đặt t Thay lại ta có tập nghiệm S [0; ] 3 Giải bất phương trình : 6log4 (2 x  3)  2log2 ( x  1)  log (2 x  1)  2 x   x   ĐK:  x     2 x   x   Ta có: 6log (2 x  3)  2log ( x  1)3  log (2 x  1)3  6log 2 x   6log ( x  1)  6log (2 x  1)  x  ( x  1)  x  TH1: (1) x 2 (1)  (2 x  3)( x  1)  x   x  x    Kết hợp với u iện TH2: x  1  33 1  33 x 4 1  33 x  x 2 x  (1)  (2 x  3)( x  1)  x   x  3x     x    Kết hợp với u iện x   x  >> Truy cập trang http://tuyensinh247.com để học Tốn – Lý – Hóa – Sinh – Văn – Anh tốt nhất!  1  33    2;   2   KL: Tập nghiệm bất phương trình cho T   ; Giải phương trình log x   log x   log  Đ x  đ:   x  5 Phương trình  log x   log2 x   log2  log  x  x    log  x  x    x   x  5  2   x    x  5  64    x   x  5  8 x  Với  x   x  5   x  3x  18    thỏa mãn  x  6  3  17 x  Với  x   x    8  x  3x     thỏa mãn  3  17 x   3  17 Vậy phương trình có bốn nghiệm x  , x  6 , x  Giải phương trình log4 ( x  3)  log x 1   3log Đ đ: x  1 1 log ( x  3)  log ( x  1)   log 2 x3  log ( x  3)  log ( x  1)   log  log  log 2 x 1 x3    x   2x   x  thỏa mãn x 1 Vậy phương trình có nghiệm x  Phương trình  10 Giải phương trình: 1 log ( x  3)  log ( x  1)8  3log8 (4 x) iải phương trình: 1 log ( x  3)  log ( x  1)  log (4 x) (1) Điều kiện: >> Truy cập trang http://tuyensinh247.com để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất!  x  3   x    x  x   Khi  log2  x  3  x    log2  x  1   x  3 x  1  x   x  3 x   x      x  3 x  1  x  x2  x     x  6x    x  1 loaïi   x3 x3     x  3   x  3    x  3   loại  Tập nghiệm phƣơng trình   S  3; 3  11 Giải bất phương trình au ( 10  1)log x  ( 10  1)log x  Đi u iện: x  2x Phương trình cho tương đương với: ( 10  1)log3 x  ( 10  1)log3 x  3log3 x 10  log3 x 10  log3 x ( ) ( )  (1) 3 10  log3 x 10  log3 x Đặt t  ( với t  )  ( ) )  3 t Bất phương trình trở thành:  10 Vì t  ) t    3t  2t    t  t 3 Từ ta có: log3 x   x  Vậy tập nghiệm bất phương trình là: S  3; ) 12.Giải bất phương trình log3 ( x  1)2  log ( x  1)3 0 x2  5x  x   Đ :  x  >> Truy cập trang http://tuyensinh247.com để học Tốn – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 3log3 ( x  1) log3 0 ( x  1)( x  6) log3 ( x  1)  log3 ( x  1)  log ( x  1) 0  x2  5x   log3 ( x  1)  2log3  3 0  x  1 x   log3 ( x  1)  log3  3  )  (do x6  x  1 0 x6 Kết hợp đ uy nghiệm bất phương trình là:  x   13 iải phương trình : log5 (x 3) x ĐK : x > PT cho tương đương với : log5( x + 3) = log2x (1) Đặt t log2x, suy x = 2t t t 2 1 pt  log5   3  t           (2) 5 5 t t t 2 1 Xét hàm ố : f(t) =      5 5 t t t t  2 1 f'(t) =   ln    ln  0, t  R 5 5 Suy f t nghịch biến R Lại có : f nên PT có nghiệm t  x =2 Vậy nghiệm PT cho : hay log2x = 1 14.Giải bất phương trình: log3 x  5x   log x   log  x  3 3 Đi u iện: x  Bất phương trình cho tương đương: 1 log3  x  x    log31  x    log31  x  3 2 1  log3  x  x    log3  x     log3  x  3 2  log3  x   x  3  log3  x    log3  x  3 >> Truy cập trang http://tuyensinh247.com để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất!  x2  log3  x   x  3   log   (Do x   x   )  x3 x2   x   x  3  x3  x   10  x   1(    x  10 Kết hợp với u iện, ta nghiệm bất phương trình cho là: x  10 15 Giải phương trình: 3x.2 x  3x  x  x x x Ta có: x   x   (2 x  1)  x  (1) -Nhận ét: -Với x  hông nghiệm phương trình 2x 1 2x 1 (2) Đặt: f ( x)  3x ; g ( x)  thì: (1)  3x  2x 1 2x 1 1  + Xét hoảng  ;  , ta có: 2  1  f '( x)  3x ln   f ( x) hàm đồng biến  ;  2  1 4  g '( x)    g ( x) hàm nghịch biến  ;  2   x  1 1  Suy phương trình có nghiệm  ;  Ta thấy: x  1 nghiệm 2  1  phương trình  ;  2  1  + Xét hoảng  ;   , ta có: 2  1  f '( x)  3x ln   f ( x) hàm đồng biến  ;   2  4 1  1  g '( x)   0, x   ;    g ( x) hàm nghịch biến  ;   2  2   x  1 1  Suy phương trình có nghiệm  ;   Ta thấy: x  nghiệm 2  1  phương trình  ,   2  Vậy phương trình có hai nghiệm x  1 16.Giải phương trình: ( x 1) log7  log7 (3x1  3)  log7 (11.3x  9) >> Truy cập trang http://tuyensinh247.com để học Tốn – Lý – Hóa – Sinh – Văn – Anh tốt nhất! x 1  9 3   Đi u iện:   3x   x  log3 x 11 11  11.3   Khi phương trình tương đương với: log 3x 1  log (3x 1  3)  log (11.3x  9)  3x 1 (3x 1  3)  11.3x   32 x  10.3x   3 x  x  thỏa mãn  x  x     Kết luận : Nghiệm phương trình : 0; 17 Giải bất phương trình au log (2  x)  log (4  18  x )  * log (2  x)  log (4  18  x )  2  x  0, 18  x  Đi u iện:   2  x  18 4  18  x  Khi bất phương trình cho tương đương với log 2  x  log (4  18  x )   x   18  x Đặt t  18  x Khi  t  20 bất phương trình trở thành : 20  t   t 4  t  t  t  t        t  4 20  t  (4  t ) t  t  8t   (t  2)(t  2t  5t  2)  t   Suy 18  x   x  Kết hợp với u iện, ta có nghiệm bất phương trình   x   18.Giải phương trình:  Chia hai vế cho  2 3  Đặt t      x2 2 x  x2  x   3 3  ta     x2 2 x  x2  x 2 x2  x 4 3      x2 2 x  24 x2 2 x (t  0) ta t  16t   >> Truy cập trang http://tuyensinh247.com để học Tốn – Lý – Hóa – Sinh – Văn – Anh tốt nhất!  3  t   63       iải  2 3    t   63       x  x   x  1  Suy   x  x  2 (VN) 19 iải phương trình: 2log3  x2    log3  x    log3  x    2  x2     x     x   ; 3   2;   (*) ĐKXĐ:  log  x      x    Biến đổi pt cho ta được: log3 x  4  x  2 2  log3  x      log  x    log  x     Đặt t  log3  x   (3) t  trở thành t  3t     t  4  Loai   x  2  (loai)    x  2     x  2  t  0 pt t   log3  x   2 Vậy nghiệm phương trình x  2  20 iải phương trình: 12  6x  4.3x  3.2x   pt    x x 3    x 3 x    x 4   x   x  Vậy PT có hai nghiệm x  1, x  21 iải bất phương trình : 5.36x  2.81x  3.16x  >> Truy cập trang http://tuyensinh247.com để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! Chia vế bất phương trình cho x x  36   16  5    3    81   81  x x ta bất phương trình tương đương: 2x 4 4  5   3    9 9 x 4 Đặt t    , đ t  9 Bất phương trình trở thành: 3t2-5t+2   t   Kết hợp với đ ta được:  t   0  t   t    x     x 9   Suy   x    x        22 iải bất phương trình : log x  2log x.log x  log x   ĐK: >0 log 32 x  log x.log x  log x    log x  log x(log x  2)  log x    log 22 x(log x  2)  3(log x  2)   (log x  2)(log 22 x  3)     log x   log x  x    Kết hợp với đ ta nghiệm bpt là: 2  x  x    2  x  23.Giải phương trình log8 (3  x)  log27 (1  x) log8 (3  x)  log 27 (1  x) Đi u kiện 3  x  >> Truy cập trang http://tuyensinh247.com để học Tốn – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 10 Đặt t  log8 (3  x)  log 27 (1  x), (*) 3  x  8t   2.8t  27t  t 1  x  27 Xét hàm ố f (t )  2.8t  27t 1 Với f '(t )  2.8t ln8  27t ln 27  0, t  Nên f (t ) hàm ố đồng biến phương trình 1 Mặt hác: f ( )   f (t )  t  3 Thay t  vào ta x  1 thoả mãn u kiện Vậy, x  1 nghiệm phương trình có nghiệm 24.Giải bất phương trình log  3x    1  log   10  x  ĐK :   x  10 Bất phương trình tương đương : log  3x  1  10  x  3x    3x   10  x    3x  110  x   23  x  10  x 369 Với   x  10 bất phương trình tương đương với 49x  418x  369    x  49 369 Kết hợp với u iện nghiệm  x  49 25.Giải bất phương trình: log  x  1   log log  x  1   log Đ :   x  log8  x    x  log8  x   (1) 4  x  x  1 1  log2 x    log   x   log  x     x  1  16  x  x   16  x     x  1  x  16  x    x  6  x  x  12  x      x   x    x  x  20   x    >> Truy cập trang http://tuyensinh247.com để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 11 Kết hợp với u iện uy nghiệm 2  x    4  x   26 iải phương trình: log2 ( x2  3x  2)  log (x  x  6)   log  x2  x  3x   Đi u iện:    x  3 x  x     log ( x2  3x  2)  log (x  x  6)   log  log ( x2  3x  2)( x  5x  6)   log 12  ( x  3x  2)(x  x  6)  12  (x  2)(x  1)(x  2)(x  3)  12  (x  x  6)( x  x  2)  12 Đặt t  x2  x  phương trình trở thành (t  2)(t  2)  12 t4  t   12  t  16   t  4  1  33 (t / m) x  2 Với t  x  x    x  x      1  33 (t / m) x    x  0(t / m)  x  1(t / m) Với t  4 x  x   4  x  x    Kêt luận : Vậy phương trình cho có nghiệm x  0, x  1, x  1  33 1  33 ,x  2 27 Tìm giá trị m để bất phương trình au có nghiệm với x  81 x  2m.9 x x  (2m  3).9 x 0 Đi u iện: x  Chia vế cho 32 x ta được: 32(2 24 x x Đặt t  4 x x)  2m.32 x x  2m   ĐK:  t  Bài toán tương đương tìm m để: m  t  với t,  t  2(t  1) >> Truy cập trang http://tuyensinh247.com để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 12 t  2t  4t  , y'=0  t=1, t=-3 với  t  , y '  2(t  1) 4(t  1)2 Từ bảng biến thiên ta m   Xét hàm ố: y  28.Giải phương trình log x  log2 x  log 2x  0  x  x    Đi u iện: 0  x    x  ()   0  x   x   Với u iện () phương trình tương đương với log 2 log log      log x log 2 x log 2 x log x  log x 1  log x      log x  4log x     log x  log x  log x log x  log x 1  x   x  thỏa mãn Vậy phương trình có nghiệm x   3log x   log x  29.Giải phương trình:         3.2 x 1 x2 3   x2  5 3  x2 x2 x2  3.2 x 1 x2  3   3         6;                  x2  3  Đặt t     0.Pt  t   t   t  t  6t     t  x      1 x        x0  x  log 3 5    x        >> Truy cập trang http://tuyensinh247.com để học Tốn – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 13 30.Giải bất phương trình: log 22 x  log x   (log x  3) x  ĐK:  2 log x  log x   log 22 x  log x   (log x  3) Bất phương trình cho tương đương với (1) Đặt t = log2x, BPT (1)  t  2t   (t  3)  (t  3)(t  1)  (t  3)   t  1 t  3  t  1  t         t   (t  1)(t  3)  5(t  3)  t     (t  1)(t  3)  5(t  3)  log x  1 t  1   3  t  3  log x   0 x  1   Vậy BPT cho có tập nghiệm là:  0;    8;16    2 8  x  16 31.Giải bất phương trình au x  6.15log x ĐK x  Ta có: x  6.15log3  3log3 x   x  5log3 (3 x )   3log3 x  6.15  log3 x Chia hai vế (1) cho log3 x log3 x  5.5log3 x   5.5log3 x  (1) log3 x  3 Đặt t     5  5log3 (3 x )  3 ta BPT au:    5 log3 x  3     5 log3 x   (2) t  , t  Khi (2)  t  6t     t   3 Với t      5 log3 x  3 Với t      5   log x   x  log3 x   log3 x  log  Vậy nghiệm BPT x   0;9  5 x9 log 5 log 5    [1; )  >> Truy cập trang http://tuyensinh247.com để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 14 32.Giải bất phương trình au log2  log4 x   log4  log2 x   x0  + Đi u iện log x   x  log x   + Ta có log  log x   log  log x  1   log  log x   log  log x  2   log  log x    log  log x   log2  log2 x    log2 x  x  16 + Vậy tập nghiệm bất phương trình S  16;   33.Giải bất phương trình: log2  x2  x  2  log0,5  x  1   x   x2  x    Đi u iện:     x  1  x  x 1  x   log  x  x    log0,5 ( x  1)   log  x  x     log ( x  1)   log  x    x   x  1    x  x    x  1   x( x  x  1)   x2  x   Vì theo u iện x  ) x  1  Kết hợp u iện ta x    x   Vậy tập nghiệm bất phương trình S  1  2;    x2  x   34.Giải phương trình: log4    2x  x  2x  4x    x2  x   0,x  R 2x  4x  PT  log4 ( x  x  )  log4 ( 2x  4x  )  2( 2x  4x  )  2( x  x  ) Có :  log ( x  x  )  2( x  x  )  log ( 2x  4x  )  2( 2x  4x  ) 2 2 >> Truy cập trang http://tuyensinh247.com để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 15 Xét hàm f ( t )  log t  2t ( 0;  ) ; f '( t )   f ( t ) đồng biến ( 0;  )   0,t  t ln f ( 2x  4x  )  f ( x  x  ) 2x  4x   0; x  x   PT trở thành 2 2  2x  4x   x  x   x  1; x  2 Vậy phương trình có hai nghiệm : x  1; x  2 2 35.Giải phương trình: log2  2x   x    log4  5x  10  2 x    Đi u iện:  x    x   5 x  10   (1)  log     x   x   log  x  10  2x 1  x 1   5x  10  x  3x   x  x    x  4   2 2 x  3x   x  x  16  x  x  15   x  4    x   85 (tm)  85   Vậy phương trình có nghiệm x      x   85 (loai )   36.Giải phương trình :  5x  24  5x    5x  24 iải phương trình :  5x  24   5x    5x  24   5  x  5x   25 5   5x   25 x 25x  49 25x  49   Đi u iện: x  log5 PT      5x  24 5 5x  24   5x  24   52.5   5x  24   5 x  5x  5x  5x   5x     5x   5x    x   x  (*) Xét hàm ố f (t )   t  0;  t2  f '(t )  2t.5t ln   với t   0;   uy hàm ố f (t )   t đồng biến  0;  t2 >> Truy cập trang http://tuyensinh247.com để học Tốn – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 16 Phương trình (*)  2.5  48  2.5  x x 2x  49  52 x  49  24  25x  625  x  Vậy phương trình có nghiệm nhất: x  2 log (4  x) 37.Giải phương trình log 3 x  log (3  x) 1 log (4  x) log 3 x  1 log (3  x)   x  Đi u iện:   x  2 Phương trình  log 3 x log (3  x)  log (4  x)  log (3  x)  log  log (4  x)  log (3  x)  log  log (4  x)(3  x)   (4  x)(3  x)  x  x    x  2(l ) phương trình có nghiệm   x  3(tm ) 38 Giải phương trình: x  x  12  x  x  2 x x x 1 x 2 x  x  12  x  x2 x  x1  (2 x  6)( x  x  2)  2 x   x  x    x  log   x  1   x  Vậy phương trình cho có tập nghiệm: T  log 6; 1;2 39.Giải phương trình :  5x  24  5x    5x  24 iải phương trình :  5x  24   5x    5x  24   5   5x   25 5   5x   25 x 25x  49 x 25x  49   Đi u iện: x  log5 >> Truy cập trang http://tuyensinh247.com để học Tốn – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 17 PT      5x  24   52.5      24  5x  24 5 5x  24 x  5 x  5x  5x  5x   5x     5x   5x    x   x  (*) Xét hàm ố f (t )   t  0;  t2  f '(t )  2t.5t ln   với t   0;   uy hàm ố f (t )   t đồng biến  0;  t2 Phương trình (*)  2.5  48  2.5  x x 2x  49  52 x  49  24  25x  625  x  Vậy phương trình có nghiệm nhất: x  2 log (4  x) 40.Giải phương trình log 3 x  log (3  x) 1 log (4  x) log 3 x  1 log (3  x)   x  Điều kiện:   x  2 Phƣơng trình  log 3 x log (3  x)  log (4  x)  log (3  x)  log  log (4  x)  log (3  x)  log  log (4  x)(3  x)   (4  x)(3  x)  x  x    x  2(l ) phương trình có nghiệm   x  3(tm ) >> Truy cập trang http://tuyensinh247.com để học Tốn – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 18

Ngày đăng: 08/08/2016, 19:56

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w