1. Trang chủ
  2. » Thể loại khác

AAE352Lecture_14_Aeroelastic_tailoring in Aircarft

12 332 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 553,93 KB

Nội dung

AAE 556 Aeroelasticity Lecture 14 Aeroelastic tailoring Aeroelastic tailoring benefits Apparatus-stiffness tailoring model δ2 d sinγ δ1 f cosγ Mθ θ K2 K1 V view A-A (looking inboard toward root) f sinγ d cosγ K2 Mφ wing φ K1 view B-B (looking upstream,chordwise) view B-B (looking upstream, chordwise) Stiffness tailoring model γ K1 V f γ d K2 Λ φ x B B 2 φ   K φ cos γ + K θ sin γ [ K ij ]  =  θ   ( K φ − K θ ) sin γ cos γ V cosΛ A b A θ c y ( K φ − K θ ) sin γ cos γ  φ   M φ  =  2   K φ sin γ + K θ cos γ  θ  M θ  Flexural axis Definition - a line (locus of points) along which the wing structure stream-wise angle of attack is zero when a discrete load is applied there – with the “wind” off Λ M φ   Pyo   =  M θ  − Pxo  −1  − xo  β = tan   yo β     yo xo Structural angular displacements due to upward load P at –xo,yo [( ) P φ= Kθ cos γ + Kφ sin γ ( yo ) + ( Kφ − Kθ )( xo ) sin γ cos γ K φ Kθ [ ] −P θ = ( Kφ − Kθ )( yo ) sin γ cos γ + ( xo ) ( Kφ cos γ + Kθ sin γ ) K φ Kθ Solve for the flexural axis coordinates by setting the chordwise elastic angle of attack to zero θ E = θ − φ tan Λ = ] Flexural axis with cross-coupling stiffnesses θ E = θ − φ tan Λ = P θE = = − K12 yo − K11 xo − ( K 22 yo + K12 xo ) tan Λ ) ( Kθ Kφ − xo K12 + K 22 tan Λ = yo K11 + K12 tan Λ Plug expressions for stiffness terms to get the flexural axis position 2 − xo ( K φ − Kθ ) sin γ cos γ + ( Kθ cos γ + K φ sin γ ) tan Λ = yo K φ cos γ + Kθ sin γ + ( K φ − Kθ ) sin γ cos γ tan Λ  xo  tan β =  − ÷  yo  Kθ R= Kφ − xo (1 − R) sin γ cos γ + [1 − (1 − R) cos γ ] tan Λ tan β = = yo − (1 − R) sin γ + (1 − R) sin γ cos γ tan Λ example 90 f lexural axis sweep (degrees) forward β 75 60 45 30 15 f lexural axis angle vs st ruct ural principal axis angle 15 deg sweepback zero sweep 30 deg sweepback Wash-out laminate Increase divergence Wash-in laminate Increase lift -15 -30 -45 -60 aft/back -90 -75 30 deg sweepforward -90 -75 -60 -45 -30 -15 15 deg sweepforward 15 30 45 60 75 90 st ruct ural sweep angle (degrees) aft/back γ forward When wing is sweptforward increase divergence speed by moving the β axis forward (plus) Divergence R= Kθ Kφ γ K1 V f Kθ Seao qD = b Rb b (1− R)     cos Λ  tanΛ −  sin2 γ + − tan Λ + (R − 1) + tan Λ sin γ        2e 2e 2e   γ d K2 V cosΛ Λ φ A x B b θ B Get rid of divergence (1 − R)  b Rb   + (R − 1) 1+ b tan Λ  sin2 γ = tan Λ − sin γ + 1− tan Λ CR CR CR    2e  2e  2e Λ CR   b (R − 1) sin 2γ + (R − 1)sin2 γ   1+ −1  = tan  b 2e(R −21) b R + sin2 γ − (R − 1)sin γ    2e 2e  A c y Example (page 171) Wash-in laminate Increase lift 30 Wash-out laminate Increase divergence e/c=0.3 20 (degrees) Wash-out laminate Increase divergence critical wing sweep angle,ΛCR 40 10 divergence impossible b/c=6 5.71deg -10 e/c=0.1 -20 Wash-in laminate Increase lift -30 -90 -60 -30 30 60 90 structural orientation angle, γ (degrees) b =6 c Kθ R= = Kφ γ Critical wing sweep angle vs structural angle γ Wings with sweep angles above the curves shown will not diverge Kθ R= Kφ b =6 c e = 0.1 c

Ngày đăng: 05/08/2016, 01:00

w