MỞ ĐẦU Phân đoạn ảnh là chia nhỏ một ảnh thành các vùng đồng nhất cấu tạo nên ảnh hoặc các đối tƣợng [17], [52]. Phân đoạn ảnh thƣờng đƣợc sử dụng để xác định vị trí đối tƣợng (chẳng hạn nhƣ các loại cây trồng, khu vực đô thị, rừng của một hình ảnh vệ tinh, v.v.) và các đƣờng biên, ranh giới (đƣờng thẳng, đƣờng cong, v.v.) trong ảnh. Với ảnh nha khoa thì mục đích của phân đoạn ảnh nha khoa là bƣớc xử lý quan trọng trong nha khoa thực hành nhằm hỗ trợ bác sĩ chẩn đoán một cách hiệu quả các bệnh quanh răng. Ảnh X-quang nha khoa gồm 3 phần chính [54]: i) Phần răng: phần có độ xám cao và là phần ta nhìn thấy rõ nhất trên ảnh; ii) Phần cấu trúc răng: là phần có độ xám trung bình gồm lợi răng, xƣơng, phần khác (tủy, xi măng v.v.); iii) Phần nền: là phần có giá trị độ xám nhỏ nhất, là nền tảng của cấu trúc răng. Với cấu trúc của ảnh X-quang nha khoa thì việc phân đoạn ảnh phức tạp hơn phân đoạn ảnh thông thƣờng [70]. Bài toán phân đoạn ảnh nha khoa đã đƣợc sử dụng để hỗ trợ việc chẩn đoán bệnh nha khoa và dự đoán tuổi nha khoa [51]. Đồng thời, phân đoạn ảnh nha khoa mang lại những thông tin có giá trị cho nha sĩ trong quá trình phân tích các thông tin từ một hình ảnh [51]. Liên quan đến độ chính xác của phân đoạn ảnh nha khoa, có các phƣơng pháp học máy khác nhau đƣợc áp dụng [30], [35]. Kết quả phân đoạn ảnh nha khoa còn cung cấp thêm các thông tin cho các nha sỹ trong quá trình chẩn đoán bệnh, giúp các nha sỹ chẩn đoán bệnh chính xác và hiệu quả hơn. Với bài toán phân đoạn ảnh nha khoa, các nghiên cứu trƣớc đây đã đƣa ra các kỹ thuật phân đoạn nhƣ phân đoạn ảnh dựa trên phân ngƣỡng [21], [27], phân đoạn ảnh dựa trên phân cụm [44], [70]. Tuy nhiên các phƣơng pháp này thƣờng gặp vấn đề khi xác định tham số ngƣỡng hay biên chung của các mẫu răng và phƣơng pháp phân cụm mờ đƣợc cho là xử lý tốt hơn [59]. Trong phân cụm rõ, dữ liệu đƣợc chia vào các nhóm, trong đó mỗi điểm dữ liệu thuộc vào chính xác một cụm [10]. Trong phân cụm mờ, mỗi điểm dữ liệu có thể thuộc vào nhiều hơn một cụm với độ thuộc tƣơng ứng [10]. Khi đó, tƣơng ứng với các điểm dữ liệu là ma trận độ thuộc, với giá trị của các phần tử trong ma trận chỉ ra mức độ các điểm dữ liệu thuộc vào các cụm khác nhau [10]. Các phƣơng pháp phân cụm mờ đƣợc sử dụng nhiều trong các bài toán nhận dạng mẫu, phát hiện tri thức từ các cơ sở dữ liệu, đánh giá rủi ro và nó có ứng dụng nhiều trong phân đoạn ảnh. Trong các nghiên cứu gần đây việc sử dụng các thông tin bổ trợ cung cấp bởi ngƣời dùng đƣợc gắn với đầu vào trong phân cụm mờ để hƣớng dẫn, giám sát và điều khiển quá trình phân cụm. Các thuật toán phân cụm mờ kết hợp với các thông tin bổ trợ do ngƣời dùng xác định trƣớc hình thành lên nhóm các thuật toán phân cụm bán giám sát mờ [23]. Một số nghiên cứu gần đây cho thấy các thuật toán phân cụm bán giám sát mờ rất hiệu quả trong nhiều lĩnh vực nhƣ xử lý ảnh [16], [31], [49], nhận dạng mẫu, nhận dạng khuôn mặt [5], [33], đánh giá rủi ro [15], dự báo phá sản [36]. Đặc biệt là trong xử lý ảnh với các ảnh màu và ảnh y học. Cũng đã có một số kết quả đƣợc đƣa ra cho bài toán phân đoạn ảnh nha khoa nhƣ sử dụng các đặc trƣng của ảnh nha khoa nhƣ cấu trúc ảnh, màu sắc, hình dáng trong quá trình phân đoạn gồm phƣơng pháp lấy ngƣỡng [21], [27], phƣơng pháp phân cụm [70]. Tuy nhiên, trong nghiên cứu này, chƣa có kết quả nào của phân cụm bán giám sát mờ đƣợc áp dụng cho các ảnh X-quang nói chung và ảnh X-quang nha khoa nói riêng. Các nghiên cứu trƣớc cũng đã sử dụng phân cụm mờ cùng với các đặc trƣng của ảnh nha khoa nhƣng chƣa khai thác thông tin không gian của ảnh. Nội dung nghiên cứu chính của luận án tập trung vào vi ệc đề xuất, cải tiến các kỹ thuật phân đoạn ảnh bằng thuật toán phân cụm bán giám sát mờ. Trong quá trình phân đoạn ảnh nha khoa, các kỹ thuật phân cụm mờ (FCM) [10], phân cụm bán giám sát mờ (eSFCM) [67] và kỹ thuật tách ngƣỡng Otsu [43] là các kỹ thuật cơ bản làm tiền đề cho các phƣơng pháp mới đƣợc đề xuất trong luận án. Trong các phƣơng pháp mới trình bày trong luận án, thông tin bổ trợ đƣợc xác định là ma trận độ thuộc của thuật toán phân cụm mờ FCM kết hợp với các thông tin đặc trƣng của ảnh nha khoa. Đây là một cách tiếp cận mới mà các phƣơng pháp trƣớc đó chƣa đề cập đến. Đồng thời, luận án trình bày một số cách xác định thông tin bổ trợ phù hợp ứng với từng đối tƣợng đầu vào khác nhau. Từ đó thực hiện việc cài đặt và đánh giá các đề xuất trên máy tính. Mục tiêu nghiên cứu: Nghiên cứu các thuật toán phân cụm bán giám sát mờ vào phân đoạn ảnh. Phát triển các nghiên cứu đề xuất cải tiến các phƣơng pháp phân cụm bán giám sát mờ cho phân đoạn ảnh nha khoa. Các thuật toán cải tiến đƣợc đề xuất dựa trên các thông tin không gian đặc trƣng của ảnh nha khoa nhằm mục đích nâng cao chất lƣợng phân cụm của các thuật toán phân cụm bán giám sát mờ áp dụng với bài toán phân đoạn ảnh nha khoa. Với mục tiêu nghiên cứu ở trên luận án đã thu đƣợc một số đóng góp mới nhƣ sau: Luận án đã nghiên cứu phát triển các thuật toán phân cụm bán giám sát mờ trong phân đoạn ảnh nha khoa, cụ thể: - Đề xuất các phƣơng pháp phân đoạn ảnh nha khoa dựa trên phân cụm bán giám sát mờ lai ghép. (Lai ghép giữa phân cụm bán giám sát mờ với phân cụm mờ và phƣơng pháp tách ngƣỡng Otsu). - Đề xuất phân cụm bán giám sát mờ có sử dụng đặc trƣng không gian ảnh nha khoa vào bài toán phân đoạn ảnh; - Vận dụng các phƣơng pháp giải tối ƣu đa mục tiêu để giải bài toán tối ƣu đa mục tiêu của phân cụm bán giám sát mờ, từ đó đƣa ra các mệnh đề, định lý và tính chất nghiệm của bài toán;
B GIO DC V O TO VIN HN LM KHOA HC V CễNG NGH VIT NAM HC VIN KHOA HC V CễNG NGH - TRN MNH TUN NGHIấN CU MT S PHNG PHP PHN CM BN GIM ST M TRONG PHN ON NH NHA KHOA LUN N TIN S TON HC H NI 2016 i VIN HN LM KHOA HC V CễNG NGH VIT NAM HC VIN KHOA HC V CễNG NGH TRN MNH TUN NGHIấN CU MT S PHNG PHP PHN CM BN GIM ST M TRONG PHN ON NH NHA KHOA LUN N TIN S TON HC Chuyờn ngnh: c s toỏn hc cho tin hc Mó s: 62 46 01 10 Ngi hng dn khoa hc: PGS.TS Lấ B DNG TS V NH LN H Ni 2016 ii LI CAM OAN Tụi xin cam oan õy l cụng trỡnh nghiờn cu ca riờng tụi c hon thnh di s hng dn ca th hng dn gm PGS.TS Lờ Bỏ Dng v TS V Nh Lõn Cỏc kt qu c vit chung vi cỏc tỏc gi khỏc ó c s nht trớ ca ng tỏc gi a vo lun ỏn Cỏc kt qu nờu lun ỏn l trung thc v cha tng c cụng b bt k cụng trỡnh no trc thi gian cụng b Tỏc gi lun ỏn Trn Mnh Tun Trn Mnh Tun i LI CM N Trc ht, tỏc gi xin by t lũng bit n chõn thnh v sõu sc ti cỏc thy giỏo hng dn, PGS.TS Lờ Bỏ Dng v TS V Nh Lõn S tn tỡnh giỳp , ch bo, ng vin tn tỡnh v quớ bỏu m cỏc thy ó dnh cho tỏc gi sut quỏ trỡnh thc hin lun ỏn l khụng th no k ht c Xin chõn thnh cm n cỏc thy cỏc cụ, cỏc nh khoa hc thuc Vin Cụng ngh thụng tin - Vin hm lõm v khoa hc Vit Nam ó tn tỡnh giỳp v to mt mụi trng lm vic ht sc thun li giỳp tỏc gi thc hin tt cụng vic nghiờn cu ca mỡnh Xin chõn thnh gi li cm n ti cỏc anh ch em v cỏc bn Trung tõm tớnh toỏn hiu nng cao, Trng i hc Khoa hc T Nhiờn ó giỳp tỏc gi sut quỏ trỡnh hc v nghiờn cu ti trung tõm Xin c bit cm n TS Lờ Hong Sn ngi ó nhit tỡnh hng dn, to iu kin thun li giỳp tỏc gi hon thnh lun ỏn mt cỏch tt nht Xin gi li cm n chõn thnh ti PGS TS Vừ Trng Nh Ngc, Vin o to Rng Hm Mt, i hc Y H Ni ó cung cp s liu, t chuyờn mụn, cung cp cỏc ti liu cn thit quỏ trỡnh nghiờn cu v hon thnh lun ỏn Xin chõn thnh cm n Ban Giỏm Hiu Trng i hc Cụng ngh thụng tin v Truyn thụng i hc Thỏi Nguyờn ó ht sc to iu kin v thi gian v cụng vic tỏc gi cú th trung hon thnh quỏ trỡnh hc tp, nghiờn cu ca mỡnh c bit xin gi li cm n n cỏc thy cụ, cỏc bn ng nghip Khoa Cụng ngh thụng tin ó ng viờn, giỳp tỏc gi sut quỏ trỡnh nghiờn cu Cui cựng, xin gi li cm n sõu sc nht ti gia ỡnh, bn bố v ngi thõn, nhng ngi ó luụn l ngun ng viờn tỏc gi cú th hc v nghiờn cu, luụn s chia nhng khú khn vt v quỏ trỡnh nghiờn cu v hon thin ti H Ni, ngy thỏng.nm 2016 Tỏc gi lun ỏn Trn Mnh Tun ii Trn Mnh Tun MC LC M U CHNG TNG QUAN V PHN CM BN GIM ST M TRONG PHN ON NH NHA KHOA 1.1 Bi toỏn phõn on nh nha khoa 1.1.1 Khỏi nim 1.1.2 nh X-quang nha khoa 1.1.3 Nhu cu v ng dng y hc 1.2 Tng quan v cỏc nghiờn cu liờn quan 1.3 Mt s kin thc c s 14 1.3.1 Tp m 14 1.3.2 Phõn cm 17 1.3.3 Phng phỏp gii bi toỏn ti u a mc tiờu 27 1.4 Kt lun 31 CHNG MT S THUT TON PHN CM BN GIM ST M CHO PHN ON NH NHA KHOA 32 2.1 Thut toỏn phõn cm bỏn giỏm sỏt m lai ghộp 32 2.1.1 Lc tng quan lai ghộp 32 2.1.2 Thut toỏn tỏch ngng Otsu 34 2.1.3 Thut toỏn phõn cm bỏn giỏm m lai ghộp 37 2.1.4 Phõn tớch v ỏnh giỏ thut toỏn phõn cm bỏn giỏm sỏt m lai ghộp 38 2.2 Thut toỏn phõn cm bỏn giỏm sỏt m cú c trng khụng gian 38 2.2.1 Lc tng quỏt 39 2.2.2 Xõy dng c trng nh nha khoa 39 iii 2.2.3 Xỏc nh thụng tin b tr 44 2.2.4 Thut toỏn phõn cm bỏn giỏm sỏt m SSFC-SC 46 2.2.5 Phõn tớch v ỏnh giỏ thut toỏn SSFC-SC 51 2.3 Thut toỏn phõn cm bỏn giỏm sỏt m gii nghim bng tha dng m 52 2.3.1 Thut toỏn phõn cm bỏn giỏm sỏt m (SSFC-FS) 52 2.3.2 Cỏc tớnh cht v h qu t phõn tớch nghim ca thut toỏn 57 2.3.3 Phõn tớch v ỏnh giỏ thut toỏn SSFC-FS 69 2.4 Xỏc nh thụng tin b tr phự hp cho thut toỏn SSFC-FS 70 2.4.1 Lc tng quỏt 71 2.4.2 Xõy dng cỏc hm thụng tin b tr 71 2.4.3 Xỏc nh hm thụng tin b tr phự hp cho nh nha khoa 74 2.5 Kt lun 78 CHNG NH GI THC NGHIM 79 3.1 Mụ t d liu nh X-quang nha khoa 79 3.1.1 c t d liu 79 3.1.2 Xỏc nh cỏc c trng ca nh nha khoa 82 3.2 o v tiờu ỏnh giỏ kt qu 85 3.3 Cỏc kt qu so sỏnh phõn on nh 88 3.3.1 Kt qu trờn c s d liu nh nha khoa 88 3.3.2 Kt qu vi cỏc tham s thay i 91 3.4 ng dng phõn on nh h tr chn oỏn bnh nha khoa 98 3.4.1 Mụ hỡnh húa bi toỏn 99 3.4.2 Chn phõn on cú kh nng mc bnh 102 3.4.3 Chn oỏn tng phõn on 103 3.4.4 Xõy dng bng tng hp ca cỏc on 106 iv 3.4.5 Phõn tớch v ỏnh giỏ mụ hỡnh DDS 107 3.4.6 Kt qu thc nghim 108 3.5 Kt lun 112 KT LUN 113 NHNG ểNG GểP MI CA LUN N 115 DANH MC CC CễNG TRèNH CễNG B .116 TI LIU THAM KHO 117 PH LC 125 PH LC 128 v DANH MC THUT NG V T VIT TT T y T vit tt APC Affinity propagation clustering APC+ Affinity propagation clustering ci tin BH Ball and Hall BR Banfeld-Raftery CH Calinski-Harabasz DB Davies-Bouldin DDS Dental Diagnosis System DL Difference-Like EEI Entropy, Edge and Intensity eSFCM Semi-supervised Entropy regularized Fuzzy Clustering FCM Fuzzy C-Mean FIS Fuzzy Inference System FKNN Fuzzy k-Nearest Neighbor LA Lagrange LBP Local Binary Patterns MAE Mean Absolute Error MF Membership Function MSE Mean Squared Error PBM Pakhira, Bandyopadhyay and Maulik RGB Red-Green-Blue vi SSFCM Semi-Supervised Fuzzy C-Mean SSFC-FS Semi-Supervised Fuzzy Clustering algorithm with Spatial Constraints using Fuzzy Satisficing method Semi-Supervised Fuzzy Clustering algorithm with Spatial Constraints using Fuzzy Satisficing method on the Additional Function SSFC-FSAI SSFC-SC Semi-Supervised Fuzzy Clustering algorithm with Spatial Constraints SSSFC Semi-Supervised Standard Fuzzy Clustering SVM Support Vector Machine SSWC Simplified Silhouete Width Criterion CSDL C s d liu CT Cụng trỡnh LT Lý thuyt TN Thc nghim vii DANH MC BNG BIU Bng 1.1 Thut toỏn phõn cm m 21 Bng 1.2 Thut toỏn phõn cm bỏn giỏm sỏt m chun 23 Bng 1.3 Thut toỏn phõn cm bỏn giỏm sỏt m theo quy tc entropy 25 Bng 1.4 Thut toỏn phõn cm bỏn giỏm sỏt m 26 Bng 2.1 Thut toỏn tỏch ngng Otsu 35 Bng 2.2 Thut toỏn phõn cm bỏn giỏm sỏt m lai ghộp 37 Bng 2.3 Ma trn thuc cui cựng ca FCM .45 Bng 2.4 Xỏc nh u1 45 Bng 2.5 Trng s cỏc c trng nha khoa .46 Bng 2.6 Xỏc nh u2 46 Bng 2.7 Xỏc nh ma trn b tr 46 Bng 2.8 Thut toỏn SSFC-SC .51 Bng 2.9 Bng ỏnh giỏ hm mc tiờu (pay-off) ca phng phỏp tha dng m .55 Bng 2.10 Cỏc giỏ tr ca IFV chn hm b tr thớch hp nht 76 Bng 3.1 Thụng tin v cỏc nhúm bnh nhõn 80 Bng 3.2 c trng ca d liu .82 Bng 3.3 Thng kờ cỏc nh ton b d liu nh X-quang .85 Bng 3.4 Cỏc giỏ tr k vng v phng sai ca cỏc thut toỏn .89 Bng 3.5 So sỏnh hiu nng ca cỏc thut toỏn trờn b d liu thc .89 Bng 3.6 Giỏ tr o thc hin thut toỏn SSFC-SC vi C = v giỏ tr .91 Bng 3.7 Giỏ tr o thc hin thut toỏn SSFC-SC vi C = v giỏ tr .92 Bng 3.8 Kt qu thut toỏn SSFC-FS vi cỏc b tham s (b1, b2, b3) 95 Bng 3.9 Giỏ tr trung bỡnh ca thut toỏn SSFC-FS vi cỏc b tham s 96 viii TI LIU THAM KHO Ting Vit [1] Bựi Cụng Cng (2001), H m, mng nron v ng dng, Nh xut bn khoa hc v k thut, H ni [2] Hong T Hựng, Hunh Kim Khang, Ngụ Th Qunh Lan, Ngụ Lờ Thu Tho, Hong o Bo Trõm (2008), Gii phu rng, Nh xut bn Y hc, H Ni [3] Doón Tam Hũe (2005), Lý thuyt ti u v th, nh xut bn giỏo dc [4] Nguyn Hi Thanh (2005), Toỏn ng dng (Giỏo trỡnh sau i hc), NXB s phm, H Ni Ting Anh [5] Agarwal, M., Agrawal, H., Jain, N., & Kumar, M (2010), Face recognition using principle component analysis, eigenface and neural network, IEEE International Conference on, In Signal Acquisition and Processing IEEE, 2010 (ICSAP10), 310-314 [6] Alok, A K., Saha, S., & Ekbal, A (2015), A new semi-supervised clustering technique using multi-objective optimization, Applied Intelligence, 43(3), 633-661 [7] Anbarasi, M., Anupriya, E., & Iyengar, N C S N (2010), Enhanced prediction of heart disease with feature subset selection using genetic algorithm, International Journal of Engineering Science and Technology, 2(10), 5370-5376 [8] Ahonen, T., Hadid, A., & Pietikainen, M.(2006), Face description with local binary patterns: Application to face recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12), 2037-2041 117 [9] Babu, N V., & Patel, P.(2015), Comparative Evaluation of Extraoral and Intraoral Periapical Radiographic Technique in Children, International Journal of Scientific Study, 2(10), 7-12 [10] Bezdek, J C (1981), Pattern recognition with fuzzy objective function algorithms, Kluwer Academic Publishers [11] Bhatla, N., & Jyoti, K (2012), An analysis of heart disease prediction using different data mining techniques, International Journal of Engineering Research and Technology, 1(8), 1-4 [12] Bouchachia, A., & Pedrycz, W (2006), Data clustering with partial supervision, Data Mining and Knowledge Discovery, 12(1), 47-78 [13] Caponetti, L., Castellano, G., Basile, M T., & Corsini, V (2014), Fuzzy mathematical morphology for biological image segmentation, Applied intelligence, 41(1), 117-127 [14] CARIES, D (2005), Oral and dental diseases: Causes, prevention and treatment strategies Burden of Disease in India, 275-278 [15] Chen, J., Zhao, S., & Wang, H (2011), Risk analysis of flood disaster based on fuzzy clustering method, Energy Procedia, 5, 1915-1919 [16] Chuang, K S., Tzeng, H L., Chen, S., Wu, J., & Chen, T J (2006) Fuzzy c-means clustering with spatial information for image segmentation, computerized medical imaging and graphics, 30(1), 9-15 [17] Dutta, A., Kar, A., & Chatterji, B N (2011), Adaptive Corner Detection Algorithm and its Extension using Window-based Approach for Gray-scale Images, IETE Journal of Research, 57(3), 286-293 [18] Ghazali, K H., Mustafa, M M., Hussain, A., Bandar, M E C., & Kuantan, G (2007), Feature Extraction technique using SIFT keypoints descriptors, The International Conference on Electrical and Engineering and Informatics Institut technology, 17-19 118 [19] Gould, S., Gao, T., & Koller, D (2009), Region-based segmentation and object detection, Advances in neural information processing systems, 655-663 [20] Guillaume, S (2001), Designing fuzzy inference systems from data: an interpretability-oriented review, IEEE Transactions on Fuzzy Systems, 9(3), 426-443 [21] Houhou, N., Bresson, X., Szlam, A., Chan, T F., & Thiran, J P (2009), Semi-supervised segmentation based on non-local continuous min-cut, In Scale Space and Variational Methods in Computer Vision, Springer Berlin Heidelberg , 112-123 [22] Hyndman, R J., & Koehler, A B (2006), Another look at measures of forecast accuracy, International journal of forecasting, 22(4), 679-688 [23] Jain, A K., & Chen, H (2004), Matching of dental X-ray images for human identification, Pattern recognition, 37(7), 1519-1532 [24] Kang, J., & Ji, Z (2010), Dental plaque quantification using mean-shiftbased image segmentation, 2010 IEEE International Symposium on Computer Communication Control and Automation, 470-473 [25] Kekre, H B., & Sarode, T K (2009), Vector quantized codebook optimization using K-means, International Journal on Computer Science and Engineering (IJCSE), 283-290 [26] Kondo, T., Ong, S H., & Foong, K W (2004), Tooth segmentation of dental study models using range images, IEEE Transactions on Medical Imaging, 23(3), 350-362 [27] Lai, Y H., & Lin, P L (2008), Effective segmentation for dental X-ray images using texture-based fuzzy inference system, Advanced Concepts for Intelligent Vision Systems, Springer Berlin Heidelberg, 936-947 [28] Lee, C C (1990), Fuzzy logic in control systems: fuzzy logic controller II, IEEE Transactions on Systems, Man and Cybernetics, 20(2), 419-435 119 [29] Lehmann, E L., & Casella, G (1998), Theory of point estimation, Springer Science & Business Media [30] Leung, T., & Malik, J (1998), Contour continuity in region based image segmentation, In Computer VisionECCV 98, Springer Berlin Heidelberg, 544-559 [31] Li, J., Bioucas-Dias, J M., & Plaza, A (2010), Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning, IEEE Transactions on, Geoscience and Remote Sensing, 48(11), 4085-4098 [32] Lim, Y W., & Lee, S U (1990), On the color image segmentation algorithm based on the thresholding and the fuzzy c-means techniques, Pattern recognition, 23(9), 935-952 [33] Lu, J., Yuan, X., & Yahagi, T (2007), A method of face recognition based on fuzzy c-means clustering and associated sub-NNs, IEEE Transactions on, Neural Networks, 18(1), 150-160 [34] Mai Shouman, Tim Turner, and Rob Stocker (2012), Applying k-Nearest Neighbour in Diagnosing Heart Disease Patients, International Journal of Information and Education Technology, 2(3), 32-37 [35] Mahoor, M H., & Abdel-Mottaleb, M (2005), Classification and numbering of teeth in dental bitewing images, Pattern Recognition, 38(4), 577586 [36] Martin, A., Gayathri, V., Saranya, G., Gayathri, P., & Venkatesan, P (2011),A hybrid model for bankruptcy prediction using genetic algorithm, fuzzy c-means and MARS, International Journal on Soft Computing ( IJSC ), 2(1), 12-24 [37] Narkhede, H P (2013), Review of image segmentation techniques, Int J Sci Mod Eng, 1(8), 54-61 120 [38] Nayak, J., Naik, B., & Behera, H S (2015), Fuzzy C-Means (FCM) Clustering Algorithm: A Decade Review from 2000 to 2014, In Computational Intelligence in Data Mining, 2, 133-149, Springer India [39] Ngo, L T., Mai, D S., & Pedrycz, W (2015), Semi-supervising Interval Type-2 Fuzzy C-Means clustering with spatial information for multi-spectral satellite image classification and change detection, Computers & Geosciences, 83, 1-16 [40] Nomir, O., & Abdel-Mottaleb, M (2005), A system for human identification from X-ray dental radiographs, Pattern Recognition, 38(8), 12951305 [41] Oad, K K., DeZhi, X., & Butt, P K (2014), A Fuzzy Rule Based Approach to Predict Risk Level of Heart Disease, Global Journal of Computer Science and Technology, 14(3), 16-22 [42] Oliveira, J., & Proenỗa, H (2011), Caries detection in panoramic dental Xray images, Computational Vision and Medical Image Processing, Springer Netherlands, 175-190 [43] Otsu, N (1979), A threshold selection method from gray-level histograms Automatica , 1(9), 62-66 [44] Paiva, A R., & Tasdizen, T (2010), Fast semi-supervised image segmentation by novelty selection, 2010 IEEE International, Conference on In Acoustics Speech and Signal Processing (ICASSP), 1054-1057 [45] Rad, A E, Rahim, M S M, & Norouzi, A (2014), Level Set and morphological Operation Techniques in Application of Dental Image Segmentation, International Scholarly and Scientific Research & Innovation, 8(4), 177-180 121 [46] Rad A E., Mohd Rahim M S., Rehman A., Altameem A and Saba T (2013), Evaluation of current dental radiographs segmentation approaches in computer-aided applications, IETE Technical Review, 30(3), 210-222 [47] Rajkumar, A., & Reena, G S (2010), Diagnosis of heart disease using datamining algorithm, Global journal of computer science and technology, 10(10), 38-43 [48] Ramớrez, E., Castillo, O., & Soria, J (2010), Hybrid System for Cardiac Arrhythmia Classification with Fuzzy K-Nearest Neighbors and Neural Networks Combined by a Fuzzy Inference System, In Soft Computing for Recognition Based on Biometrics, Springer Berlin Heidelberg, 37-55 [49] Rezaee, M R., Van der Zwet, P M., Lelieveldt, B P., Van Der Geest, R J., & Reiber, J H (2000), A multiresolution image segmentation technique based on pyramidal segmentation and fuzzy clustering, IEEE Transactions on, Image Processing, 9(7), 1238-1248 [50] Said, E., Fahmy, G F., Nassar, D., & Ammar, H.(2004), Dental x-ray image segmentation, International Society for Optics and Photonics and In Defense and Security , 409-417 [51] E.H Said, D Eldin M Nassar, G Fahmy, and H.H Ammar (2006), Teeth Segmentation in Digitized Dental X-Ray Films Using Mathematical Morphology, IEEE transactions on information forensics and security, 1(2), 178-89 [52] Salem Saleh Al-amri, N.V Kalyankar and Khamitkar S.D (2010), Image Segmentation by Using Thershod Techniques, Journal of computing, 2(5), 8386 [53] Sato-Ilic, M., & Jain, L C (2006), Introduction to fuzzy clustering, In Innovations in Fuzzy Clustering, Springer Berlin Heidelberg, 1-8 122 [54] Scott, J H (1977), Introduction to dental anatomy, Edinburgh, Churchill Livingstone [55] Smith, R A., Cokkinides, V., von Eschenbach, A C., Levin, B., Cohen, C., Runowicz, C D., & Eyre, H J (2002), American Cancer Society guidelines for the early detection of cancer, CA: a cancer journal for clinicians, 52(1), 822 [56] Son, L H (2015), A novel kernel fuzzy clustering algorithm for geodemographic analysis, Information Sciences: an International Journal, 317(C), 202-223 [57] Son, L.H., Van Hai , P.(2016), A Novel Multiple Fuzzy Clustering Method Based on Internal Clustering Validation Measures with Gradient Descent, International Journal of Fuzzy Systems, 1-10 [58] Son, L.H., Thong, N.T (2015), Intuitionistic Fuzzy Recommender Systems: An Effective Tool for Medical Diagnosis, Knowledge-Based Systems, 74, 133150 [59] Sujji, G E., Lakshmi, Y V S., & Jiji, G W (2013), MRI Brain Image Segmentation based on Thresholding, International Journal of Advanced Computer Research, 3(1), 97-101 [60] Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth Silverman, and Angela Y Wu(2002), An Efficient k-Means Clustering Algorithm:Analysis and Implementation, IEEE transaction on pattern analysis and machine intelligence, 24(7), 881-892 [61] Tee, C S.( 2008), Feature selection for content-based image retrieval using statistical discriminant analysis, Doctoral dissertation, Universiti Teknologi Malaysia, Faculty of Computer Science and Information System 123 [62] Thong, N T., Son, L.H (2015), HIFCF: An effective hybrid model between picture fuzzy clustering and intuitionistic fuzzy recommender systems for medical diagnosis, Expert Systems With Applications, 42(7), 3682-3701 [63] Thong, P H., Son, L.H (2015), Picture fuzzy clustering: a new computational intelligence method, Soft Computing, In press, DOI: 10.1007/s00500-015-1712-7 [64] Vendramin, L., Campello, RJ, & Hruschka, ER.(2010), Relative clustering validity criteria: A comparative overview, Statistical Analysis and Data Mining: The ASA Data Science Journal, 3(4), 209-235 [65] Wang, J S., & Lee, C G (2002), Self-adaptive neuro-fuzzy inference systems for classification applications, IEEE Transactions on Fuzzy Systems, 10(6), 790-802 [66] Yasunori, E., Yukihiro, H., Makito, Y., & Sadaaki, M (2009), On semisupervised fuzzy c-means clustering, Proceeding of FUZZ-IEEE 2009, 11191124 [67] Yin, X., Shu, T., & Huang, Q (2012), Semi-supervised fuzzy clustering with metric learning and entropy regularization, Knowledge-Based Systems, 35, 304-311 [68] Zafar, M S., & Javed, E (2013), Extraoral radiography: An alternative to intraoral radiography for endodontic (root canal system) length determination, European Scientific Journal, 9(15), 51-61 [69] Zhang, H., & Lu, J (2009), Semi-supervised fuzzy clustering: A kernelbased approach, Knowledge-Based Systems, 22(6), 477-481 [70] Zhou, J., & Abdel-Mottaleb, M (2005), A content-based system for human identification based on bitewing dental X-ray images, Pattern Recognition, 38(11), 2132-2142 124 PH LC Hỡnh 66 nh nha khoa s dng thc nghim 125 126 127 PH LC Mt s kt qu v chớnh xỏc ca cỏc thut toỏn (Cỏc giỏ tr in m ch giỏ tr tt nht mi hng) Thut toỏn nh PBM DB IFV SSWC CH BH BR DL nh PBM DB IFV SSWC CH BH BR DL FCM OTSU eSFCM eSFCMOTSU SSFC-SC SSFC-FS SSFCFSAI 35392 0.672 31968 0.716 32763 0.743 53891 0.763 52761 0.873 23743 0.874 19.99 0.573 6.00E+06 1562.7 -3.00E+07 7.00E+09 49482 0.641 Inf 0.531 5.00E+06 992.97 -8.00E+06 4.00E+09 254.27 0.565 8.00E+06 1594 -2.00E+07 6.00E+09 254.37 0.537 52.87 102.39 0.643 3.00E+06 738.39 30446 0.685 19.77 0.637 9.00E+06 1457.8 -2.00E+07 7.00E+09 43436 0.677 Inf 0.613 6.00E+06 898.76 -1.00E+07 1.00E+09 321232 27974 47166 52837 0.723 0.731 0.827 0.932 323.27 302.12 47.44 51.67 0.632 0.627 0.788 0.963 8.00E+06 8.00E+06 9.00E+06 1.00E+07 1387.5 1342.8 1663.4 2102.8 -3.00E+07 -3.00E+07 -4.00E+07 -2.00E+07 6.00E+09 6.00E+09 7.00E+09 9.00E+09 45375 0.689 Inf 0.549 4.00E+06 839.95 -3.00E+06 5.00E+08 18818 0.792 126.47 0.556 7.00E+06 2345.7 -3.00E+06 1.00E+09 52729 0.667 36424 0.689 nh 11 PBM 24644 DB 0.677 IFV 18.28 SSWC 0.562 CH 5.00E+06 BH 2174.7 BR -3.00E+06 DL 1.00E+09 nh 12 PBM 39879 DB 0.651 47.91 0.672 7.67E+06 1.00E+07 1672 1793 -2.00E+07 -3.00E+07 6.00E+09 7.00E+09 19273 50335 0.735 1.053 98.82 37.38 0.623 0.604 7.00E+06 7.00E+06 2343.4 2569.3 -3.00E+06 -3.00E+06 1.00E+09 1.00E+09 32432 0.632 57903 0.864 0.763 1.00E+07 2092.6 -3.00E+07 -3.00E+07 1.00E+10 6.00E+09 21736 0.847 68.38 0.764 5.00E+06 798.49 -3.00E+07 7.00E+09 14873 46868 0.986 0.893 43.64 41.49 0.645 0.726 1.00E+07 1.00E+07 849.49 4576.8 -3.00E+06 -3.00E+06 2.00E+09 1.00E+09 51724 0.983 28433 0.784 128 IFV SSWC CH BH BR DL nh 24 PBM DB IFV SSWC CH BH BR DL nh 25 PBM DB IFV SSWC CH BH BR DL 20.43 0.614 1.00E+07 1626.3 -3.00E+07 6.00E+09 Inf 0.612 2.00E+06 1112.6 -1.00E+07 5.00E+09 66354 0.687 26.96 0.664 2.00E+06 1295.9 -3.00E+06 9.00E+08 87072 0.694 Inf 0.647 701570 601.65 -3.00E+06 3.00E+08 34160 0.676 19.93 0.613 9.00E+06 1652.7 -4.00E+07 7.00E+09 nh 34 PBM 39714 DB 0.66 IFV 20.74 SSWC 0.597 CH 7.00E+06 BH 1627.6 BR -3.00E+07 DL 7.00E+09 nh 35 PBM 45714 98.27 48.84 269.35 0.637 0.681 0.782 9.00E+06 9.00E+06 1.00E+07 1676.7 1982.3 1789.6 -2.00E+07 -2.00E+07 -3.00E+07 7.00E+09 6.00E+09 8.00E+09 58902 0.746 52.37 53.29 0.743 0.893 1.00E+07 9.00E+06 847.93 2013.3 -2.00E+06 -2.00E+06 1.00E+10 6.00E+09 72532 85614 85346 0.693 0.725 0.745 213.23 65.5 68.12 0.624 0.788 0.986 27384 402216 602763 1382.3 1393.1 2039.9 -3.00E+06 -4.00E+06 -3.00E+06 9.00E+08 9.00E+08 1.00E+09 74735 0.702 78.94 0.849 323754 784.94 -3.00E+06 9.00E+08 87073 0.698 Inf 0.572 3.00E+06 1123 -1.00E+07 6.00E+09 58902 67323 95844 89377 0.767 0.801 0.804 0.753 102.32 48.92 59.87 215.55 0.627 0.637 0.674 0.765 9.00E+06 9.00E+06 1.00E+07 1.00E+07 1672.7 1536.2 1746.2 2123.9 -3.00E+07 -3.00E+07 -4.00E+07 -3.00E+07 7.00E+09 7.00E+09 7.00E+09 9.00E+09 43748 0.784 67.98 0.677 9.00E+06 874.38 -2.00E+07 8.00E+09 50655 0.653 Inf 0.568 1.00E+06 982.27 -1.00E+07 1.00E+09 36489 0.692 259.63 0.583 6.00E+06 1567.6 -3.00E+07 6.00E+09 32744 0.723 34.39 0.674 8.00E+06 946.94 -2.00E+07 7.00E+09 67630 4788.9 426.53 0.666 219097 1382.3 -4.00E+06 9.00E+08 41283 49673 50984 0.673 0.984 0.787 121.28 30.67 32.84 0.628 0.615 0.725 6.00E+06 7.00E+06 9.00E+06 1635.3 1782.7 2350 -3.00E+07 -3.00E+07 -2.00E+07 6.00E+09 8.00E+09 1.00E+10 52223 72736 70376 52784 129 DB IFV SSWC CH BH BR DL 0.678 28.78 0.598 6.00E+06 1427.3 -3.00E+07 7.00E+09 0.646 Inf 0.767 998263 1122.3 -2.00E+07 6.00E+09 0.762 0.724 0.987 0.893 273.3 35.53 39.87 899.34 0.618 0.625 0.827 0.857 6.00E+06 6.00E+06 6.00E+06 7.00E+06 1627.4 1723.3 1982.6 2876.9 -3.00E+07 -3.00E+07 -3.00E+07 -3.00E+07 5.00E+09 5.00E+09 7.00E+09 1.00E+10 35393 0.672 19.998 0.583 1.00E+07 1562.6 -3.00E+07 7.00E+09 49482 0.641 Inf 0.618 1.00E+07 893.37 -2.00E+07 6.00E+09 31811 0.718 237.19 0.604 1.00E+07 1638.2 -3.00E+07 7.00E+09 105923 0.634 26.43 0.636 3.00E+06 1381.9 -4.00E+06 9.00E+08 96292 0.605 Inf 0.766 1.00E+07 836.42 -2.00E+06 3.00E+08 97067 92834 98113 93257 0.681 0.656 0.631 0.712 176.38 69.736 71.893 859.76 0.633 0.643 0.867 0.985 3.00E+07 3.00E+07 3.00E+06 3.00E+06 1364.3 1462.3 1369.1 2037.7 -4.00E+06 -4.00E+06 -5.00E+06 -4.00E+06 9.00E+08 9.00E+08 9.00E+08 1.00E+10 87435 0.689 78.985 0.823 2.00E+06 783.93 -3.00E+06 1.00E+10 nh 65 PBM 35393 DB 0.685 IFV 19.77 SSWC 0.637 CH 1.00E+07 BH 1562.6 BR -3.00E+07 DL 7.00E+09 nh 66 49482 0.677 Inf 0.613 1.00E+07 893.37 -2.00E+07 6.00E+09 31811 0.731 302.12 0.627 1.00E+07 1638.2 -3.00E+07 5.00E+09 23734 0.847 68.38 0.764 1.00E+07 748.94 -2.00E+07 9.00E+09 nh 55 PBM DB IFV SSWC CH BH BR DL nh 56 PBM DB IFV SSWC CH BH BR DL 32416 35437 32644 0.692 0.687 0.721 121.45 53.68 67.78 0.612 0.782 0.893 1.00E+07 1.00E+07 1.00E+07 1626.4 1644.6 2012.8 -3.00E+07 -3.00E+07 -2.00E+07 7.00E+09 7.00E+09 8.00E+09 33418 0.723 323.27 0.632 35357 32464 0.827 0.932 47.44 51.67 0.788 0.963 1.00E+07 1.00E+07 1.00E+07 1626.4 1644.6 2012.8 -3.00E+07 -3.00E+07 -3.00E+07 5.00E+09 7.00E+09 1.00E+10 0.856 43.94 0.684 7.00E+06 756.98 -2.00E+07 9.00E+09 27334 0.72 70.94 0.743 1.00E+07 748.94 -2.00E+07 8.00E+09 130 PBM DB IFV SSWC CH BH BR DL 39714 0.66 20.74 0.597 7.00E+06 1627.6 -3.00E+07 7.00E+09 50655 0.653 Inf 0.568 1.00E+06 982.27 -1.00E+07 1.00E+09 36489 0.692 259.63 0.583 6.00E+06 1567.6 -3.00E+07 6.00E+09 41283 49673 50984 0.673 0.984 0.787 121.28 30.67 32.84 0.628 0.615 0.725 6.00E+06 7.00E+06 9.00E+06 1635.3 1782.7 2350 -3.00E+07 -3.00E+07 -2.00E+07 6.00E+09 8.00E+09 1.00E+10 32744 0.723 34.39 0.674 8.00E+06 946.94 -2.00E+07 7.00E+09 131