1. Trang chủ
  2. » Giáo Dục - Đào Tạo

100 BAI HINH OXY HE PT BAT PT CHON LOC thay hung DZ

6 420 1

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 174,85 KB

Nội dung

Khóa học CHINH PHỤC HÌNH PHẲNG OXY – Thầy ĐẶNG VIỆT HÙNG Facebook: LyHung95 100 BÀI HÌNH PHẲNG – HỆ PT – BẤT PT CHỌN LỌC (P1) Thầy Đặng Việt Hùng – Moon.vn VIDEO BÀI GIẢNG LỜI GIẢI CHI TIẾT CÁC BÀI TẬP có website MOON.VN Câu 1: [Trích đề thi thử THPT Đông Sơn - Lần – 2015] Trong mặt phẳng tọa độ Oxy cho tam giác ABC nội tiếp đường tròn ( x − 1) + ( y − ) 2 (T ) có phương trình = 25 Các điểm K ( −1;1) , H ( 2;5) chân đường cao hạ từ A, B tam giác ABC Tìm tọa độ đỉnh tam giác ABC biết đỉnh C có hoành độ dương Lời giải Kẻ Cx tiếp tuyến đường tròn Do AHB = AKB = 900 nên tứ giác ABKH tứ giác nội tiếp Ta có ACx = ABC CHK = ABC (do tứ giác ABKH nội tiếp) ⇒ ACx = CHK ⇒ Cx / / HK Mà TC ⊥ Cx ⇒ TC ⊥ HK Đường thẳng HK qua H ( 2;5) , K ( −1;1) nên phương trình đường thẳng HK : x − y + = Đường thẳng TC qua T (1; ) vuông góc với đường thẳng HK nên phương trình TC : x + y − 11 = Do C ∈ TC ⇒ C (1 + 4t ; − 3t ) t = ⇒ C ( 5; −1) Mà TC = ⇒ 16t + 9t = 25 ⇔  t = −1 ⇒ C ( −3;5 ) → l Đường thẳng AC qua C ( 5; −1) , H ( 2;5 ) nên phương trình đường thẳng AC : x + y − = Đường thẳng BH qua H ( 2;5 ) vuông góc với đường thẳng AC nên đường thẳng BH : x − y + = Đường thẳng BC qua C ( 5; −1) , K ( −1;1) nên phương trình đường thẳng BC : x + y − = Ta có B = BC ∩ BH ⇒ B ( −4; ) Đường thẳng AK qua K ( −1;1) vuông góc với đường thẳng BC nên đường thẳng AK : x − y + =  31  Ta có A = AC ∩ AK ⇒ A  ;  5   31  Vậy A  ;  , B ( −4; ) , C ( 5; −1) điểm cần tìm 5  Câu 2: [Trích đề thi thử THPT Nông Cống – Thanh Hóa - Lần – 2015]  x + xy + y + y + xy + x = ( x + y )  Giải hệ phương trình  ( y − ) x − = + y − y + x − + Lời giải: Điều kiện: x ≥ 2; y ≥ ( )( Phương trình hệ tương đương với Đặt t = x > , phương trình trở thành: y ) x x x  x x   + + +   + + =  + 1 y y  y  y y  t +t + + 2t + t + = ( t + 1) ⇔ t = ⇒ x = y ≥ Tham gia khóa Luyện thi môn TOÁN MOON.VN để hướng đến kì thi THPT Quốc gia 2016 Khóa học CHINH PHỤC HÌNH PHẲNG OXY – Thầy ĐẶNG VIỆT HÙNG Facebook: LyHung95 ( Thay vào phương trình thứ hai hệ, ta được: ( x − ) x − = + x − ⇔ 4x −   ( 4x − ) ( )( + 1 = + x −  + x −   ) )( x + x−2 +3 ) x =  + ⇔ 4x − = + x − ⇔    x = 34  ( Vì xét hàm số f ( t ) = t + t hàm số đồng biến ( 0; +∞ ) mà f ) ( ) 4x − = f + x −  34 34  Vậy hệ phương trình cho có hai nghiệm ( x; y ) = ( 2; ) ,  ;   9  Câu 3: [Trích đề thi thử THPT Đa Phúc – Hà Nội - Lần – 2015]  11  Trong mặt phẳng tọa độ Oxy cho hình vuông ABCD Điểm F  ;3  trung điểm cạnh AD Đường 2  thẳng EK có phương trình 19 x − y − 18 = với điểm E trung điểm cạnh AB , điểm K thuộc cạnh DC KD = 3KC Tìm tọa độ điểm C hình vuông ABCD biết điểm E có hoành độ nhỏ Lời giải Đặt cạnh hhhh vuông AB = 4a Xét hình vuông ABCD hệ trục toạ độ với B gốc BC trùng với Ox BA trùng với trục Oy Ta có: F ( 2a; 4a ) ; E ( 0; 2a ) ; K ( 4a; a ) Khi đó: EK : x + y − 8a = ⇒ d ( F ; EK ) = Khi EF = 2a = 10a 17 = 25 ⇒a= 17 Do toạ độ điểm E nghiệm hệ:   11  25  EF =  x −  + ( y − 3) =  5 2 ⇒ x = 2; y = ⇒ E  2;     2 19 x − y − 18 =  Lại có: AC trung trực EF nên AC : x + y − 29 =  15 11   10 17  Khi M = AC ∩ EF ⇒ M  ;  ; I = EK ∩ AC ⇒ I  ;   4  3 Lại có: MC = MI ⇒ C ( 3;8 ) Câu 4: [Trích đề thi thử tỉnh Vĩnh Phúc – 2015]  xy + = y x + Giải hệ phương trình  2  y + ( x + 1) x + x + = x − x Lời giải: ĐK: x, y ∈ ℝ (*) Khi (1) ⇔ y x + − xy = ⇔ y Ta có ( ) x2 + − x = (3) x + > x = x ≥ − x ⇒ x + + x > Do (3) ⇔ y ( x + − x ) = ( ( Thế vào (2) ta x + x + ) x + + x ⇔ y = x + x + ) + ( x + 1) x2 + x + = x2 − x ⇔ x + + x x + + ( x + 1) ⇔ x + + x x + + ( x + 1) ( x + 1) ( x + 1) 2 + = x2 − x +2 =0 Tham gia khóa Luyện thi môn TOÁN MOON.VN để hướng đến kì thi THPT Quốc gia 2016 Khóa học CHINH PHỤC HÌNH PHẲNG OXY – Thầy ĐẶNG VIỆT HÙNG ⇔ x + + x x + + ( x + 1) ⇔ ( x + 1) + ( x + 1) ⇔ ( x + 1) f ( x + 1) = f ( − x ) ( x + 1) Facebook: LyHung95 +2 =0 + = ( −x) + ( −x) ( −x) +2 (4) Xét hàm số f ( t ) = t + t t + với t ∈ ℝ có f '(t ) = 1+ t + + t2 > 0, ∀t ∈ ℝ t2 + 1 ⇒ f ( t ) đồng biến ℝ nên (4) ⇔ x + = − x ⇔ x = − ⇒ y = − + + = thỏa mãn (*) 2   Đ/s: ( x; y ) =  − ;1   Câu 5: [Trích đề thi thử trường THPT Hậu Lộc 2, Thanh Hóa – 2015] Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC nội tiếp đường tròn tâm I ( 3;5 ) ngoại tiếp đường tròn tâm K (1; ) Đường tròn tiếp xúc với cạnh BC cạnh AB, AC kéo dài có tâm F (11;14 ) Viết phương trình đường thẳng BC đường cao qua đỉnh A tam giác ABC Lời giải Đường tròn tâm F tiếp xúc với cạnh BC cạnh AB, AC nên đường tròn tâm F đường tròn bàng tiếp tam giác  FB ⊥ BK Ta có  ⇒ FBKC tứ giác nội tiếp  FC ⊥ CK Gọi D giao điểm AK với đường tròn ngoại tiếp tam giác ABC 1 Ta có DKC = BAC + ACB = DCK 2 ⇒ ∆DKC cân D ⇒ DC = DK Do DC = DK = DB nên D tâm đường tròn ngoại tiếp ∆BKC hay D tâm đường tròn ngoại tiếp tứ giác BKCF Do D trung điểm FK ⇒ D ( 6;9 ) Đường tròn ngoại tiếp ∆ABC tâm I ( 3;5 ) bán kính ID = có phương trình ( C1 ) : ( x − 3) + ( y − ) = 25 2 Đường tròn ngoại tiếp tứ giác CBKC tâm D ( 6;9 ) bán kính DK = 50 có phương trình ( C2 ) : ( x − ) + ( y − ) = 50 2 Phương trình đường thằng BC x + y − 29 = Đường thẳng AK qua K (1; ) , F (11;14 ) nên phương trình AK : x − y + = Ta có A giao điểm AK với ( C1 ) nên tọa độ A ( −1; ) Đường cao AH qua A ( −1; ) vuông góc với BC nên phương trình AH : x − y + 10 = Vậy phương trình đường thẳng BC : x + y − 29 = , đường cao AH : x − y + 10 = Câu 6: [Trích đề thi thử tỉnh Vĩnh Phúc – 2015, tương tự]  xy + = y x +  Giải hệ phương trình  y − x2 = 2x −1  1 + x − x + Lời giải Tham gia khóa Luyện thi môn TOÁN MOON.VN để hướng đến kì thi THPT Quốc gia 2016 Khóa học CHINH PHỤC HÌNH PHẲNG OXY – Thầy ĐẶNG VIỆT HÙNG ĐK: x, y ∈ ℝ (*) Khi (1) ⇔ y x + − xy = ⇔ y Ta có ) ( x2 + − x = Facebook: LyHung95 (3) x + > x = x ≥ − x ⇒ x + + x > Do (3) ⇔ y ( x + − x ) = x + + x ⇔ y = x + x + Thế vào (2) ta ( ) x + x2 + − x2 + 4x2 − 4x + = 2x −1 x2 + + x x2 + − x2 ⇔ + x2 − x + = 2x −1 ⇔ + x x + = x − + ( x − 1) x − x + ⇔ x x + = x − + ( x − 1) ⇔ x x + = x − + ( x − 1) ( x − 1) ( x − 1) ⇔ x + x x + = ( x − 1) + ( x − 1) ⇔ f ( x ) = f ( x − 1) 2 +1 +1 ( x − 1) +1 (4) Xét hàm số f ( t ) = t + t t + với t ∈ ℝ có t2 f '(t ) = + t +1 + > 0, ∀t ∈ ℝ t2 +1 ⇒ f ( t ) đồng biến ℝ nên (4) ⇔ x = x − ⇔ x = ⇒ y = + thỏa mãn (*) ( Đ/s: ( x; y ) = 1;1 + ) Câu 7: [Trích đề thi thử tỉnh Vĩnh Phúc – 2015, tương tự]  y + xy + = y x + y +  Giải hệ phương trình  3 2  x + y = ( x + y + 1) x + xy + y Lời giải ĐK: x + xy + y ≥ (*) Khi (1) ⇔ y x + y + − xy = y + ⇔ y Ta có ( ) x2 + y + − x = y + x + y + > x = x ≥ − x ⇒ x + y + + x > Do (3) ⇔ y ( x + y + − x ) = ( y + ) ( x2 + y2 + + x (3) ) ⇔ y = x2 + y + + x ⇔ y − x = x2 + y + ⇒ ( y − x ) = x + y + ⇔ x − xy + y = x + y + ⇔ xy = −1 Kết hợp với (2) ta x3 + y = ( x + y + 1) x − + y ⇔ ( x + y ) − xy ( x + y ) = ( x + y − ) x + y − + x + y − ⇔ ( x + y ) + 3( x + y ) = ⇔ f ( x + y) = f ( ( x2 + y − x2 + y − ) ) +3 x2 + y − (4) Xét hàm số f ( t ) = t + t với t ∈ ℝ có f ' ( t ) = 3t + > 0, ∀t ∈ ℝ Tham gia khóa Luyện thi môn TOÁN MOON.VN để hướng đến kì thi THPT Quốc gia 2016 Khóa học CHINH PHỤC HÌNH PHẲNG OXY – Thầy ĐẶNG VIỆT HÙNG Facebook: LyHung95 ⇒ f ( t ) đồng biến ℝ nên (4) ⇔ x + y = x + y − ⇒ ( x + y ) = x + y − ⇔ x + xy + y = x + y − 2  y = ⇒ xy = ≠ −1 ⇒ Loai ⇔ −2 + y = y − ⇔ y = y ⇔   y = ⇒ x = −1 Thử lại ta thấy ( x; y ) = ( −1;1) thỏa mãn hệ cho Đ/s: ( x; y ) = ( −1;1) 9 3 Câu 8: Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC với M  ; −  trung điểm đoạn BC 2 2 đường cao xuất phát từ đỉnh A có phương trình x + y − = Gọi E, F chân đường cao kẻ từ đỉnh B, C tam giác ABC Tìm tọa độ đỉnh A, biết đường thẳng qua hai điểm E, F có phương trình x − y + = Lời giải: Gọi I trung điểm AH ta có: IE = IF = AH Mặt khác ME = MF = BC nên IM đường trung trực EF  11  Khi đó: IM : x + y − = ⇒ I  − ;   2 Lại có: IEH = IHE; MEH = MBH ( IE = IH ; ME = MB ) Mặt khác IHE + MBH = 900 ⇒ IEH + HEM = 900 ⇒ IE ⊥ ME t =  7  11    Gọi E ( t ; 2t + ) ta có: EM EI = ⇔  t +  t −  +  2t −   2t +  = ⇔      2  t = −3 Với t = ⇔ E ( 2;6 ) Gọi A ( − 3u; u ) ta có: IA2 = IE = 2 125  125  21   ⇔  − 3u  +  u −  = 2    u =  A ( 2;1) ⇔ ⇒ u =  A ( −13; ) 2  125  21   Với t = ⇔ E ( −3; −4 ) ⇒  − 3u  +  u −  = (tương tự TH trên) 2    Kết luận: A ( 2;1) hay A ( −13;6 ) Câu 9: [Trích đề thi thử trường chuyên Lê Hồng Phong – Tp HCM - Lần – 2015] Trong mặt phẳng tọa độ Oxy cho hình thang ABCD có đáy lớn CD = AB, C ( −3; −3) Trung điểm AD M ( 3;1) Tìm tọa độ đỉnh B biết S BCD = 18, AB = 10 đỉnh D có hoành độ nguyên dương Lời giải Đường thẳng CD qua C ( −3; −3) nên phương trình đường thẳng CD : a ( x + 3) + b ( y + 3) = Do CD = AB ⇒ CD = 10 Gọi H hình chiếu B xuống CD 10 Ta có S BCD = BH CD ⇒ BH = 10 ⇒ d ( M , CD ) = Tham gia khóa Luyện thi môn TOÁN MOON.VN để hướng đến kì thi THPT Quốc gia 2016 Khóa học CHINH PHỤC HÌNH PHẲNG OXY – Thầy ĐẶNG VIỆT HÙNG ⇒ 6a + 4b = Facebook: LyHung95 3a + b = 10 ⇔ 6a + 4b = 10 a + b2 ⇔ 810a + 1200ab + 310b = ⇔   27a + 31b = a2 + b2 Với 3a + b = chọn a = 1; b = −3 ⇒ CD : x − y − = Do D ∈ CD ⇒ D ( 3t + 6; t ) t = ⇒ D ( 6; ) 2 Mà CD = 10 ⇒ ( 3t + ) + ( t + 3) = 90 ⇔ ( t + 3) = ⇔  t = −6 ⇒ D ( −12; −6 ) → l Do M trung điểm AD ⇒ A ( 0; ) , mặt khác AB = DC ⇒ B ( −3;1) Với 27 a + 31b = chọn a = 31; b = −27 ⇒ CD : 31x − 27 y + 12 = Do D ∈ CD ⇒ D ( −3 + 27t ; −3 + 31t ) Mà CD = 10 ⇒ 729t + 961t = 90 ⇔ t = Vậy B ( −3;1) điểm cần tìm →l 169 Câu 10: [Trích đề thi thử trường chuyên ĐHSP - Lần – 2015] Trong mặt phẳng tọa độ Oxy cho hình chữ nhật ABCD Qua B kẻ đường thẳng vuông góc với AC H  17 29   17  Gọi E  ;  , F  ;  , G (1;5 ) trung điểm đoạn thẳng CH , BH AD Tìm tọa độ A  5   5 tâm đường tròn ngoại tiếp tam giác ABE Lời giải Do EF đường trung bình ∆HBC nên ta có EF / / BC , mà AG / / BC AG = EF = BC nên AGEF hình bình hành  BH ⊥ AC Ta có  ⇒ F trực tâm ∆ABE  EF ⊥ AB ⇒ AF ⊥ BE ⇒ GE ⊥ BE  17 29  Đường thẳng GE qua E  ;  G (1;5 ) nên  5  phương trình GE : x − y + 14 =  17 29  Đường thẳng BE qua E  ;  vuông góc với GE nên đường thẳng BE : x + y − 16 =  5  Ta có AG = FE ⇒ A (1;1) Đường thẳng AB qua A (1;1) vuông góc với EF nên đường thẳng AB : y = Do B = BE ∩ AB ⇒ B ( 5;1)  17 29  Tam giác ABE có A (1;1) , B ( 5;1) , E  ;  nên có tâm đường tròn ngoại tiếp I ( 3;3)  5  Vậy A (1;1) tâm đường tròn ngoại tiếp tam giác ABE I ( 3;3) Tham gia khóa Luyện thi môn TOÁN MOON.VN để hướng đến kì thi THPT Quốc gia 2016

Ngày đăng: 04/06/2016, 11:23

TỪ KHÓA LIÊN QUAN

w