1. Trang chủ
  2. » Khoa Học Tự Nhiên

New structures for physics

1,1K 214 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1.051
Dung lượng 7,34 MB

Nội dung

Ngày đăng: 31/05/2016, 21:56

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
3. Aharonov, D., Jones, V., Landau, Z.: A polynomial quantum algorithm for approximating the jones polynomial. In: STOC ’06: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 427–436. ACM, New York (2006) 1023 Khác
7. Balachandran, A.P., McGlinn, W.D., O’Raifeartaigh, L., Sen, S., Sorkin, R.D., Srivastava, A.M.: Topological spin-statistics theorem for strings. Mod. Phys. Lett. A7, 1427–1442 (1992) 989 Khác
8. Berry, M.V., Robbins, J.M.: Indistinguishability for quantum particles: spin, statistics and the geometric phase. Proc. Roy. Soc. A 453(1963), 1771–1790 (August 1997) 989 Khác
9. Bonesteel, N.E., Hormozi, L., Zikos, G.: Braid topologies for quantum computation. Phys.Rev. Lett. 95, 140503 (2005) 994, 1014, 1015, 1021 Khác
10. Bremner, M.J., Dawson, C.M., Dodd, J.L., Gilchrist, A., Harrow, A.W., Mortimer, D., Nielsen, M.A., Osborne, T.J.: Practical scheme for quantum computation with any two-qubit entangling gate. Phys. Rev. Lett. 89, 247902 (2002) 1022 Khác
11. Burgoyne, N.: On the connection between spin and statistics. Nuovo Cimento VIII(4), 607–609 (1958) 988 Khác
16. Dowker, H.F., Sorkin, R.D.: A spin-statistics theorem for certain topological geons. Class.Quantum Grav. 15(5), 1153–1167 (1998) 989 Khác
17. Duck, I., Sudarshan, E.C.G.: Towards an understanding of the spin-statistics theorem. Am. J.Phys. 66(4), 284–303 (1998) 984, 989 Khác
18. Duck, I., Sudarshan, E.C.G., Arthur Wightman, S.: Pauli and the spin-statistics theorem. Am Khác
20. Finkelstein, D., Rubinstein, J.: Connection between spin statistics and kinks. J. Math. Phys.9(11), 1762–1779 (1968) 984, 988 Khác
21. Freedman, M.H., Kitaev, A., Wang, Z.: Simulation of topological field theories by quantum computers. Comm. Math. Phys. 227, 587–603 (2002) 1023 Khác
22. Freedman, M.H., Larsen, M., Wang, Z.: A modular functor which is universal for quantum computation. Comm. Math. Phys. 227, 605–622 (2002) 994, 1014, 1023 Khác
24. Hormozi, L., Zikos, G., Bonesteel, N.E.: Topological quantum compiling. Phys. Rev. B 75, 165310 (2007) 994, 1014 Khác
25. Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102, 20–78 (1993) 997 Khác
26. Kauffman, L.H., Lomonaco, S.J. Jr.: Braiding operators are universal quantum gates. New J.Phys. 6(134), (2004) 1023 Khác
27. Khono, T.: Topological invariants for 3-manifolds using representations of the mapping class groups i. Topology 31, 203–230 (1992) 985 Khác
28. Kitaev, A.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303(1), 3–20 (2003) 983 29. Kitaev, A.: Anyons in an exactly solved model and beyond (2006) 1023 Khác
30. Klitzing, K.V., Dorda, G., Pepper, M.: New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett. 45(6), 494–497 (Aug 1980) 986 Khác
31. Mac Lane, S.: Categories for the working mathematician. Springer graduate text in mathe- mathics, vol. 5. Springer, New-York (1998) 985, 997, 1004 Khác
32. Laughlin, R.B.: Quantized hall conductivity in two dimensions. Phys. Rev. B 23(10), 5632–5633 (May 1981) 986 Khác

TỪ KHÓA LIÊN QUAN

w