1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Solution manual fundamentals of electric circuits

1,1K 1,1K 4

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1.118
Dung lượng 19,78 MB

Nội dung

Chapter 2, Solution 32 We first combine resistors in parallel... No current flows through the 1-Ω resistor.. Chapter 2, Solution 37 Let I = current through the 16Ω resistor... By the cur

Trang 2

1600900

e10q(0)

t40sin10e

π06

.0cos1

6

5

tπcos6

5dt

t π65sinidt

q

10 0

Trang 3

Chapter 1, Solution 5

µCmC

)e1(2

1

e2

1-mCdteidt

q

4

2 0

2t - 2t

6t2 25A,

-2t0 A,

Trang 4

Chapter 1, Solution 8

C

15 µ1102

110

=

−+

=

×+

15

152

1510110idt

At t=6, q(6) = 1.5(6)2 = 54

Trang 6

(

1200

dt

t 4cos1200vidt

w

2 0

2

0

2

2 0

2 2

0

t t

10

2et10dte-110idt

q

0.5 -

1 0 0.5t - 1

0

0.5t -

5

1

e2

3dt3eidt

q

2 -

2 0

2t 2

0 2t -

(b)

We90

)(t 4

e6dt

0 4t

4

90dt

e-90pdt

w

Trang 7

Chapter 1, Solution 16

mJ

916.7

)(

(

((

(,

+

=

−+

=

−+

−+

++

2 2

4 3

2 3

2

2 2

3 2

2 1

1 0

3

t4t-t162502

82

9122503

t-t42502

250t

3

250

25t)mJ-

t)(1001040t)dt

2510010t)dt2510(25t)dt10

v(t)i(t)dt

w

4t3 V10t -40

3t1 V10

1t0 V10t v(t)

4t2 mA25t

-100

2t0 mA

Trang 8

C/s100.8C/s1061108

4

electron) /

C1061photon

electron8

1sec

photon10

4

8 - 19

11

19 11

It should be noted that these are only typical answers

(a) Light bulb 60 W, 100 W

60

451.5J6045105

pt w

(c) Cost = 1.125 × 10 = 11.25 cents

Trang 9

Chapter 1, Solution 24

p = vi = 110 x 8 = 880 W

Chapter 1, Solution 25

cents21.6cents/kWh9

30

hr 6

4

kW 1.2

3T33dtidt q

360054

4hT

Let

(a)

T 0

kJ475.2

.)

((

=

×

×+

250360040

33600

250103

dt3600

t50103vidt

pdtW

b)

3600 4 0 2 0

T 0

t t

T

cents1.188

475.2Cost

Ws)(J kWs,475.2W

c)

Trang 10

Chapter 1, Solution 28

A0.25

kWh262.8Wh

2436530ptW

b)

Chapter 1, Solution 29

cents39.6

+++

=

=

3.3cents12

Cost

kWh3.30.92.4

hr60

30kW1.8hr60

45)1540(20kW21

+++

=

=

3.3cents12

Cost

kWh3.30.92.4

hr60

30kW1.8hr60

45)1540(20kW21

pt

w

Trang 11

Chapter 1, Solution 33

C6

(c) Average power = 10,000/24 = 416.67 W

Chapter 1, Solution 35

kWh10.4

)((

=+

=

×+

×

×

×+

×+

×

=

=∫

28007200

24002120012200210006

400W

W/h433.3

h24

kW10.4

b)

Chapter 1, Solution 36

days6,667

,(

A4

h0001600.001A

C18010

602110

5

qv

Trang 12

vi

p

3

Trang 14

-Chapter 2, Solution 8

d c

4A

i 2

i 1

Trang 20

Chapter 2, Solution 22

4 Ω + v 0 -

The current through the controlled source is

Trang 21

Applying current division,

Chapter 2, Solution 24

(a) I0 =

2

1 R R

V I0 (R3 R4) =

4 3

4 3 2 1

0

R R

R R R R

V

+

⋅+

− α

( 1 2)(3 34 4)

0

R R R R

R R

RR2V

VS

0 = α ⋅ = α = α = 40

Chapter 2, Solution 25

V0 = 5 x 10-3 x 10 x 103 = 50V Using current division,

Trang 22

Chapter 2, Solution 26

V0 = 5 x 10-3 x 10 x 103 = 50V Using current division,

4

8 A

+6(20)4

15 6 Ω

We now apply voltage division,

+6(40)14

14

20 V

v2 = v3 = =

+6(40)14

6

12 V Hence, v1 = 28 V, v2 = 12 V, vs = 12 V

Trang 23

Chapter 2, Solution 30

i

+ v

= (20V)55

5

by ohm's law,

=+

=+

=

64

1064

v

pp = i2R = (1)2(4) = 4 W

Trang 24

Chapter 2, Solution 32

We first combine resistors in parallel

=30

50

30x

=40

50

40x

Using current division principle,

A12)20(20

12iiA8)20(128

8i

+

=+

=

= (8)50

20

=

= (8)50

30

=

= (12)50

10

=

= (12)50

=+

= (9)

11

1

i 6 A, v = 3(1) = 3 V

Trang 25

2 A and v1 = 6i1 = 12 V

We now work backward to get i2 and v2

+ 6V

+

50V

Trang 26

Combining the versions in parallel,

=30

100

30x70

At node a, KCL must be satisfied

i1 = i2 + I0 0.6 = 0.4 + I0 I0 = 0.2 A

Hence v0 = 8 V and I0 = 0.2A

Chapter 2, Solution 36

The 8-Ω resistor is shorted No current flows through the 1-Ω resistor Hence v0

is the voltage across the 6Ω resistor

41632

4

1 A

v0 = I0 ( )36 =2I0 = 2 V

Trang 27

Chapter 2, Solution 37

Let I = current through the 16Ω resistor If 4 V is the voltage drop across the 6R

combination, then 20 - 4 = 16 V in the voltage drop across the 16Ω resistor Hence, I = =

20 =+ 4 = 6R = 6 R

R6+ R = 12 Ω

3

+ R2

3R3

R2

3Rx3

R2R

+

=

R3

2R3

R3

2Rx3R3

2

R116

Trang 28

1R

1o

++

= Ro = 4

)R14(6030)RR10(6030

R74

)R14(6030

+

++

20x401020

6030

120

160

16 Ω

Trang 31

Chapter 2, Solution 46

(a) Rab = 3070+40+6020=

80

206040100

70x

++

=21+40+15= 76 Ω

(b) The 10-Ω, 50-Ω, 70-Ω, and 80-Ω resistors are shorted

=30

50

30x20

25

20x

6 3= = 2Ω

9

3x6

Trang 32

Chapter 2, Solution 48

10

100100100R

RRRRRR

3

1 3 3 2 2

50x2050x3020x30

Ra

,15520

RR

c b a

c a

R1 = R2 = R3 = 4 Ω

++

103060

30x60

R

R

3R 30mA

3R/2

Trang 33

4

3R4

RxR

)R4/(

3)R4/(

)RxR3(

3

RR2

3R3

R2

3Rx3R2

3R3R4

3R4

3R3

=+

Trang 34

100

80000100

100x200200x200200x1001R

R2 = R3 = 80000/(200) = 400

500

400x100400100

000,648008080

800x80

80x80

Trang 35

)3/(

000,943

320x1003

320x100100x100' 1R

33.313100

)3/(

000,94R

3/(

1440

)3/(

500x)3/(

940)3/(

500)30/(

36.511

6.217x75.293)796.108x2(75

100x300100

Trang 36

=+

50x10

100

50x40

We convert the balanced ∆ s to Ts as shown below:

Trang 37

RRRRR

R

3

1 3 3 2 2

15x1212x1010

Trang 38

30||20 = (600/50) = 12 Ω, 37.5||30 = (37.5x30/67.5) = 16.667 Ω 35||45 = (35x45/80) = 19.688 Ω

Req = 19.688||(12 + 16.667) = 11.672Ω

By voltage division,

16672.11

672.11+ = 42.18 V

Chapter 2, Solution 57

4 Ω

e c

6x81212x6

Rac = 216/(8) = 27Ω, Rbc = 36 Ω

8

568

4x8822x

Ref = 56/(4) = 14Ω, Rdf = 56/(2) = 28 Ω

Combining resistors in parallel,

,368.738

28028

43

7x36736Ω

=

= 27x3 2.7

3

27

Trang 39

567.26

7.2x18867.57.218

7.2x18

868.518

7.2x868.5

Rcn

)145964.0()368.7977.3(829.14

Trang 40

There are three possibilities

(a) Use R1 and R2:

R = R1 R2 =8090=42.35Ω

p = i2R

i = 1.2A + 5% = 1.2 ± 0.06 = 1.26, 1.14A

p = 67.23W or 55.04W, cost = $1.50 (b) Use R1 and R3:

R = R1 R3 =80100=44.44Ω

p = I2R = 70.52W or 57.76W, cost = $1.35 (c) Use R2 and R3:

Trang 41

I

3 m

m mI

When Rx is maximum, ix = 1A + = =110 Ω

1

110

RxR i.e., Rx = 110 - R = 99 Ω

Thus, R = 11 Ω, Rx = 99 Ω

Chapter 2, Solution 65

=Ω

50R

i.e., Ifs = k /V 50 A

201 Ω = µThe intended resistance Rm = =10(20kΩ/V)=200kΩ

I

Vfs fs

V50R

Trang 42

i'

++

=

=Ω

28.57%

(d) k30 kΩ=3.6 kΩ By current division,

mA042.1)mA2(56.31

5

i'

++

=

V75.3)mA042.1)(

k6.3(

%100xv

vv0

4

0.1 A

++

=

24116

4

(c) % error = − x100%=

1.0

09756.01.0

2.44%

Trang 43

Chapter 2, Solution 69

With the voltmeter in place,

S m 2 S 1

m 2

RRRR

RR++

=V where Rm = 100 kΩ without the voltmeter,

S S 2 1

2

RRR

R++

=V

(a) When R2 = 1 kΩ, = kΩ

101

100R

Rm 2

+

)40(30101

R2 m

+30(40)091

.9

091.9

9.30 V (with)

+30(40)10

10

10 V (without)

(c) When R2 = 100 kΩ, R2 Rm =50kΩ

=+

3050

50

+30(40)100

Trang 45

By the current division principle, the current through the ammeter will be

one-half its previous value when

Trang 46

t+ R2 = m

fs

2RI

E − = −100=19 kΩ

10x.0

23(b) For half-scale deflection, Im = 0.05mA

E++ Rx = − + = − −20kΩ=

10x05.0

2)

RR(I

E

3 m

)120(R

)120

= (R

72 kW (high) Chapter 2, Solution 77

(a) 5 Ω = 1010=20202020

i.e., four 20 Ω resistors in parallel

(b) 311.8 = 300 + 10 + 1.8 = 300 + 2020+1.8 i.e., one 300Ω resistor in series with 1.8Ω resistor and

a parallel combination of two 20Ω resistors

Trang 47

V0 = VS (1 )R0VS

R)1(R

R)

α

−+

α

−(

R)1(V

VS

2R

Rp

p = = = (12)=

4

10pR

R1 2

1 2

Case 2

Trang 48

Chapter 2, Solution 81

Let R1 and R2 be in kΩ

5R

R1 2

eq = +

1 2

2 S

0

RR5

R5V

2

2 2

R5

R5R5

+

= or R2 = 3.33 kΩ From (1), 40 = R1 + 2 R1 = 38 kΩ

Trang 49

The voltage across the tube is 2 x 60 mV = 0.06 V, which is negligible

compared with 24 V Ignoring this voltage amp, we can calculate the current through the devices

V9

V15

V

9R

IR 2

mA35

V92

Trang 50

v1 = 9.143V, v2 = -10.286 V

P8Ω = = ( ) =

8

143.98

v10

v2 = + + 1− 2

36 = - 2v1 + 3v2 (2) Solving (1) and (2),

Trang 51

v10

+++

i1 = =100v

v20k

Trang 52

Chapter 3, Solution 6

2

10v6

v4

12

=

−++

a a

V

361010

b b

V

72240

5

920

3v5

=

−+

−+But 0 v1

Trang 53

v3

v1 1 1−

+

=

−12

Trang 54

At node 0,

0

0 2I2

4

2422

Trang 55

At node 1,

40

0v20

vv10

v

v1 2 2

=

−+

At node number 2, [(v2 + 2) – 0]/10 + v2/4 = 3 or v2 = 8 volts

But, I = [(v2 + 2) – 0]/10 = (8 + 2)/10 = 1 amp and v1 = 8x1 = 8volts

v

=+

v52

v

+

=+

4v1 - 7v0 = -20 (2) Solving (1) and (2), v0 = 20 V

Trang 56

2 2

1

2 1v

v

2 2

P35 = (v −v )2G=(2)23=

3

Trang 58

At node 1,

2

vv8

v4

v

60 2 1 2

=

−+

vv10

v604

v60

=

−+

−+

v2

vv2

v

v2 − 1 + 2 − 3 = 1 + 3 40 = 2v1 + v3 (2)

From Fig (b), - v1 - 10 + v3 = 0 v3 = v1+ 10 (3) Solving (1) to (3), we obtain v1 = 10 V, v2 = 20 V = v3

Trang 59

Chapter 3, Solution 19

At node 1,

3 2 1 1

2 1 3

48

23

5= +VV +VV +V → = VVV (1)

At node 2,

3 2 1 3

2 2 2

42

V V V V

V

−+

2 3 1 3

724360

42

8

12

3+ −V +VV +VV = → − = V + VV (3) From (1) to (3),

B AV V

24

271

417

3 2 1

Using MATLAB,

V267.12

V,933.4 V,10267

.12

933.4

10

3 2

04

Trang 60

Between nodes 1 and 3,

120

5.4

Let v3 be the voltage between the 2kΩ resistor and the voltage-controlled voltage source

At node 1,

2000

vv4000

vv10

vv4

v

v1 2 1 3 2

=

−+

3v1 - 5v2 - 2v3 = 0 (2) Note that v0 = v2 We now apply KVL in Fig (b)

- v3 - 3v2 + v2 = 0 v3 = - 2v2 (3)

From (1) to (3),

Trang 61

Chapter 3, Solution 22

At node 1,

8

vv34

v2

++

Trang 62

1 1

24

6

1

30

V V V

V V

2 2

25

v102

v401

v

=

−+

−+

v0 = 20V

i = 20− v0

= 0 A

Trang 63

Chapter 3, Solution 26

At node 1,

3 2 1 2

1 3 1

510

3

20

15

V V V V

V V V

−+

4

5

3 2 2 2

=

−+

2 3 3

55

1010

3+VV +− −V +VV = → − =V + VV (4) Putting (1), (3), and (4) in matrix form produces

B AV V

Using MATLAB leads to

982.4

835.9

1B A

V

Thus,

V95.1

V,982.4

V,835

Trang 64

161

4117

3 2 1

,1767

134

161

4117

160

4112

101

427

061

2117

b c

c

V

2115

05

4

At node b,

c b a b

b c b

V

2445

84

a a d

V

427300

8

4516

d d d

V

72515010

204

30

−+

=

→

−+

=

(4)

Trang 65

B AV V

V V V

d c b

72

0

5

40

2

7

02

4

1

211

736.1

847.7

14.10

V,736.1

V,847.7 V,14

1 1 4

At node 2,

3 2 1 3

2 2

3 3

4 1 4

In matrix form, (1) to (4) become

B AV V

V V

5101

1540

0471

1014

4 3 2 1

309.2

209.1

7708.0

V

Trang 66

v120v

v76

97

o 1

554497

6

97

=+

720

9280

2807

=

Trang 67

3 1

Solving (2) to (4) leads to,

v1 = 4 V, v2 = 4 V, v3 = 0 V

Trang 68

We have a supernode as shown in figure (a) It is evident that v2 = 12 V, Applying KVL

to loops 1and 2 in figure (b), we obtain,

-v1 – 10 + 12 = 0 or v1 = 2 and -12 + 20 + v3 = 0 or v3 = -8 V

Thus, v1 = 2 V, v2 = 12 V, v3 = -8V

Chapter 3, Solution 33

(a) This is a non-planar circuit because there is no way of redrawing the circuit

with no crossing branches

(b) This is a planar circuit It can be redrawn as shown below

Trang 69

v0 = 4i2 = 20 volts

Trang 70

355

6

,1143

35

36

65

Trang 71

Applying mesh analysis to loops 1 and 2, we get,

6i1 – 1i2 + 3 = 0 which leads to i2 = 6i1 + 3 (1) -1i1 + 6i2 – 3 + 4v 0= 0 (2)

Using (1), (2), and (3) we get i1 = -5/9

Therefore, we get v 0 = -2i1 = -2(-5/9) = 1.111 volts

+ v 0 –

i 2

i 1

We apply mesh analysis

12 = 3 i1 + 8(i1 – i2) which leads to 12 = 11 i1 – 8 i2 (1) -2 v0 = 6 i2 + 8(i2 – i1) and v0 = 3 i1 or i1 = 7 i2 (2) From (1) and (2), i1 = 84/69 and v0 = 3 i1 = 3x89/69

v 0 = 3.652 volts Chapter 3, Solution 39

For mesh 1,

06102

10− I x + I1− I2 =

−But I x =I1−I2 Hence,

2 1 2

1 2

A,8

I

Trang 72

Assume all currents are in mA and apply mesh analysis for mesh 1

30 = 12i1 – 6i2 – 4i3 15 = 6i1 – 3i2 – 2i3 (1) for mesh 2,

0 = - 6i1 + 14i2 – 2i3 0 = -3i1 + 7i2 – i3 (2) for mesh 2,

0 = -4i1 – 2i2 + 10i3 0 = -2i1 – i2 + 5i3 (3) Solving (1), (2), and (3), we obtain,

Trang 73

For loop 1,

6 = 12i1 – 2i2 3 = 6i1 – i2 (1) For loop 2,

ii610

172

016

3 2 1

,2346

10

172

016

182

036

382

10

872

316

Trang 74

Chapter 3, Solution 42

For mesh 1,

(1) 2

1 2

2 1

3 1

2 2

40

0

40100

30

030

50

3 2 1

40.0

48.0

1B A

Trang 75

Solving (1) to (3), i1 = -3.067, i3 = -1.3333; io = i1 – i3 = -1.7333 A

Trang 76

For the supermesh, 6i3 + 14i4 – 2i1 – 6i2= 0 (3) But i4 – i3 = 4 which leads to i4 = i3 + 4 (4)

Solving (1) to (4) by elimination gives i = i1 = 8.561 A

Chapter 3, Solution 46

For loop 1,

128110

811

12+ 1− 2 = → 1− 2 =

For loop 2,

0214

81 + 2 + =

But v o =3i1,

2 1 1

8

77i2 − i2 = → i2= A and i1 = i72 =1.217 A

Trang 77

4

27

1

41

7

3 2 1

Using MATLAB,

8667.1,0333.0 ,5.28667

.1

0333.0

2

3 2

V

Trang 78

Chapter 3, Solution 48

We apply mesh analysis and let the mesh currents be in mA

3kΩ

I4 4kΩ 2k Ω 5k Ω

3 1

4 1− 2 − 3 + 4 =

Putting (1) to (4) in matrix form gives

B AI I

I I

1452

4

51510

0

21013

1

401

5

4 3 2 1

087.8

217.7

Trang 79

i0 = -i1 = 10.667 A, from fig (b), v0 = i3-3i1 = (16/9) + 32 = 33.78 V

Trang 81

For loop 1, i1 = 5A (1)

For loop 2, -40 + 7i2 – 2i1 – 4i3 = 0 which leads to 50 = 7i2 – 4i3 (2) For loop 3, -20 + 12i3 – 4i2 = 0 which leads to 5 = - i2 + 3 i3 (3) Solving with (2) and (3), i2 = 10 A, i3 = 5 A

i1 = 3.5 A, i2 = -0.5 A, i3 = 2.5 A

Trang 82

i1 = 3.5 A, i2 = -0.5 A, i3 = 2.5 A

Trang 83

Chapter 3, Solution 54

Let the mesh currents be in mA For mesh 1,

2 1 2

210

12+ + II = → = II

For mesh 2,

(2) 3

2 1 3

3 2 2

10

131

012

3 2 1

Using MATLAB,

mA25.10,

mA5.8 ,mA25.525

.10

5.8

25.5

3 2

Trang 84

It is evident that I1 = 4 (1)

For mesh 4, 12(I4 – I1) + 4(I4 – I3) – 8 = 0 (2)

For the supermesh 6(I2 – I1) + 10 + 2I3 + 4(I3 – I4) = 0

Trang 85

In matrix form (1), (2), and (3) become,

131

112

3 2 1

311

131

112

131

162

031

612

V V

mA x k

V2 =4 Ω 18 =72 , 1 =100− 2 =100−72=28Current through R is

R R R

i V i

R

3

3283

Trang 86

For loop 1, 120 + 40i1 – 10i2 = 0, which leads to -12 = 4i1 – i2 (1) For loop 2, 50i2 – 10i1 – 10i3 = 0, which leads to -i1 + 5i2 – i3 = 0 (2) For loop 3, -120 – 10i2 + 40i3 = 0, which leads to 12 = -i2 + 4i3 (3) Solving (1), (2), and (3), we get, i1 = -3A, i2 = 0, and i3 = 3A

123

1

3223

ii

3 2 1

13

0

123

1

322

126

1

32103

631

1023

Trang 87

At node 1, (v1/1) + (0.5v1/1) = (10 – v1)/4, which leads to v1 = 10/7

At node 2, (0.5v1/1) + ((10 – v2)/8) = v2/2 which leads to v2 = 22/7

At node 1, is = (v1/30) + ((v1 – v2)/20) which leads to 60is = 5v1 – 3v2 (1)

But v2 = -5v0 and v0 = v1 which leads to v2 = -5v1

Hence, 60is = 5v1 + 15v1 = 20v1 which leads to v1 = 3is, v2 = -15is

i0 = v2/50 = -15is/50 which leads to i0/is = -15/50 = -0.3

Trang 88

We have a supermesh Let all R be in kΩ, i in mA, and v in volts

For the supermesh, -100 +4i1 + 8i2 + 2i3 + 40 = 0 or 30 = 2i1 + 4i2 + i3 (1)

Trang 90

Casting (1) to (5) in matrix form gives

B AI I

I I I I

82110

25011

101580

118166

010612

5 4 3 2 1

Using MATLAB leads to

864.2

733.1

824.1

673.1

1B A

I

Thus,

A 411.2A,864.1A,733.1A,824.1A,673

We use mesh analysis Let the mesh currents be in mA

For mesh 1, 20=4I1 −I2 −I3 (1)

For mesh 2, −10=−I1+4I2 −I4 (2)

For mesh 3, 12=−I1+4I3 −I4 (3)

For mesh 4, −12=−I2 −I3 +4I4 (4)

Trang 91

In matrix form, (1) to (4) become

B AI I

I I

41

1

0

14

0

1

10

4

1

01

1

4

4 3 2 1

75.3

75.1

5.5

v5.11

125.1

2 1

15.115

.11

125

)1429.1(1)7143.1(31

34286.11429.1

1429.17143.1v

v2 1

Clearly v1 = 4 volts and v2 = 2 volts

Trang 92

231

518

3 2 1

85721

232

514,

347

25

231

518

231

418,

1097

15

221

548

Trang 93

25.01

25.0

125

.075.1

3 2 1

−+

−+

+

1 2 1

3 2 1

5 3 1 3

3 2

1 2

2 4

2 1

IIIv

vvGGGG

0

GG

GG

0G

GGG

Trang 94

Chapter 3, Solution 71

R11 = 4 + 2 = 6, R22 = 2 + 8 + 2 = 12, R33 = 2 + 5 = 7,

R12 = -2, R13 = 0, R21 = -2, R23 = -2, R31 = 0, R32 = -2

v1 = 12, v2 = -8, and v3 = -20 Now we can write the matrix relationships for the mesh-current equations

ii720

2122

026

3 2 1

Now we can solve for i2 using Cramer’s Rule

4087

200

282

0126,

4527

20

2122

026

iiii

5100

1540

0462

0027

4 3 2 1

Trang 95

2100

1604

0083

0439

4 3 2 1

Chapter 3, Solution 74

R11 = R1 + R4 + R6, R22 = R2 + R4 + R5, R33 = R6 + R7 + R8,

R44 = R3 + R5 + R8, R12 = -R4, R13 = -R6, R14 = 0, R23 = 0,

R24 = -R5, R34 = -R8, again, we note that Rij = Rji for all i not equal to j

The input voltage vector is =

VVVV

−+

+

−+

+

−+

+

4 3 2 1

4 3 2 1

8 5 3 8

5

8 8

7 6 6

5 5

4 2 4

6 4

6 4

1

VVVV

iiii

RRRR

R0

RR

RR0

R

R0

RRRR

0R

RR

R

R

Trang 97

Clearly, v1 = 625 mVolts, v2 = 375 mVolts, and v3 = 1.625 volts, which agrees with

the solution obtained in Problem 3.27

Ngày đăng: 05/03/2016, 14:12

TỪ KHÓA LIÊN QUAN

w