Chapter 2, Solution 32 We first combine resistors in parallel... No current flows through the 1-Ω resistor.. Chapter 2, Solution 37 Let I = current through the 16Ω resistor... By the cur
Trang 21600900
e10q(0)
t40sin10e
π06
.0cos1
6
5
tπcos6
5dt
t π65sinidt
q
10 0
Trang 3Chapter 1, Solution 5
µCmC
)e1(2
1
e2
1-mCdteidt
q
4
2 0
2t - 2t
6t2 25A,
-2t0 A,
Trang 4Chapter 1, Solution 8
C
15 µ1102
110
=
−+
=
×+
15
152
1510110idt
At t=6, q(6) = 1.5(6)2 = 54
Trang 6(
1200
dt
t 4cos1200vidt
w
2 0
2
0
2
2 0
2 2
0
t t
10
2et10dte-110idt
q
0.5 -
1 0 0.5t - 1
0
0.5t -
5
1
e2
3dt3eidt
q
2 -
2 0
2t 2
0 2t -
(b)
We90
)(t 4
e6dt
0 4t
4
90dt
e-90pdt
w
Trang 7Chapter 1, Solution 16
mJ
916.7
)(
(
((
(,
+
=
−+
=
−+
−+
++
2 2
4 3
2 3
2
2 2
3 2
2 1
1 0
3
t4t-t162502
82
9122503
t-t42502
250t
3
250
25t)mJ-
t)(1001040t)dt
2510010t)dt2510(25t)dt10
v(t)i(t)dt
w
4t3 V10t -40
3t1 V10
1t0 V10t v(t)
4t2 mA25t
-100
2t0 mA
Trang 8C/s100.8C/s1061108
4
electron) /
C1061photon
electron8
1sec
photon10
4
8 - 19
11
19 11
It should be noted that these are only typical answers
(a) Light bulb 60 W, 100 W
60
451.5J6045105
pt w
(c) Cost = 1.125 × 10 = 11.25 cents
Trang 9Chapter 1, Solution 24
p = vi = 110 x 8 = 880 W
Chapter 1, Solution 25
cents21.6cents/kWh9
30
hr 6
4
kW 1.2
3T33dtidt q
360054
4hT
Let
(a)
T 0
kJ475.2
.)
((
=
×
×+
250360040
33600
250103
dt3600
t50103vidt
pdtW
b)
3600 4 0 2 0
T 0
t t
T
cents1.188
475.2Cost
Ws)(J kWs,475.2W
c)
Trang 10Chapter 1, Solution 28
A0.25
kWh262.8Wh
2436530ptW
b)
Chapter 1, Solution 29
cents39.6
+++
=
=
3.3cents12
Cost
kWh3.30.92.4
hr60
30kW1.8hr60
45)1540(20kW21
+++
=
=
3.3cents12
Cost
kWh3.30.92.4
hr60
30kW1.8hr60
45)1540(20kW21
pt
w
Trang 11Chapter 1, Solution 33
C6
(c) Average power = 10,000/24 = 416.67 W
Chapter 1, Solution 35
kWh10.4
)((
=+
=
×+
×
×
×+
×+
×
=
=∫
28007200
24002120012200210006
400W
W/h433.3
h24
kW10.4
b)
Chapter 1, Solution 36
days6,667
,(
A4
h0001600.001A
C18010
602110
5
qv
Trang 12vi
p
3
Trang 14-Chapter 2, Solution 8
d c
4A
i 2
i 1
Trang 20Chapter 2, Solution 22
4 Ω + v 0 -
The current through the controlled source is
Trang 21Applying current division,
Chapter 2, Solution 24
(a) I0 =
2
1 R R
V I0 (R3 R4) =
4 3
4 3 2 1
0
R R
R R R R
V
+
⋅+
− α
( 1 2)(3 34 4)
0
R R R R
R R
RR2V
VS
0 = α ⋅ = α = α = 40
Chapter 2, Solution 25
V0 = 5 x 10-3 x 10 x 103 = 50V Using current division,
Trang 22Chapter 2, Solution 26
V0 = 5 x 10-3 x 10 x 103 = 50V Using current division,
4
8 A
+6(20)4
15 6 Ω
We now apply voltage division,
+6(40)14
14
20 V
v2 = v3 = =
+6(40)14
6
12 V Hence, v1 = 28 V, v2 = 12 V, vs = 12 V
Trang 23Chapter 2, Solution 30
i
+ v
= (20V)55
5
by ohm's law,
=+
=+
=
64
1064
v
pp = i2R = (1)2(4) = 4 W
Trang 24Chapter 2, Solution 32
We first combine resistors in parallel
=30
50
30x
=40
50
40x
Using current division principle,
A12)20(20
12iiA8)20(128
8i
+
=+
=
= (8)50
20
=
= (8)50
30
=
= (12)50
10
=
= (12)50
=+
= (9)
11
1
i 6 A, v = 3(1) = 3 V
Trang 252 A and v1 = 6i1 = 12 V
We now work backward to get i2 and v2
+ 6V
+
50V
Trang 26Combining the versions in parallel,
=30
100
30x70
At node a, KCL must be satisfied
i1 = i2 + I0 0.6 = 0.4 + I0 I0 = 0.2 A
Hence v0 = 8 V and I0 = 0.2A
Chapter 2, Solution 36
The 8-Ω resistor is shorted No current flows through the 1-Ω resistor Hence v0
is the voltage across the 6Ω resistor
41632
4
1 A
v0 = I0 ( )36 =2I0 = 2 V
Trang 27Chapter 2, Solution 37
Let I = current through the 16Ω resistor If 4 V is the voltage drop across the 6R
combination, then 20 - 4 = 16 V in the voltage drop across the 16Ω resistor Hence, I = =
20 =+ 4 = 6R = 6 R
R6+ R = 12 Ω
3
+ R2
3R3
R2
3Rx3
R2R
+
=
R3
2R3
R3
2Rx3R3
2
R116
Trang 281R
1o
++
= Ro = 4
)R14(6030)RR10(6030
R74
)R14(6030
+
++
20x401020
6030
120
160
16 Ω
Trang 31Chapter 2, Solution 46
(a) Rab = 3070+40+6020=
80
206040100
70x
++
=21+40+15= 76 Ω
(b) The 10-Ω, 50-Ω, 70-Ω, and 80-Ω resistors are shorted
=30
50
30x20
25
20x
6 3= = 2Ω
9
3x6
Trang 32Chapter 2, Solution 48
10
100100100R
RRRRRR
3
1 3 3 2 2
50x2050x3020x30
Ra
,15520
RR
c b a
c a
R1 = R2 = R3 = 4 Ω
++
103060
30x60
R
R
3R 30mA
3R/2
Trang 334
3R4
RxR
)R4/(
3)R4/(
)RxR3(
3
RR2
3R3
R2
3Rx3R2
3R3R4
3R4
3R3
=+
Trang 34100
80000100
100x200200x200200x1001R
R2 = R3 = 80000/(200) = 400
500
400x100400100
000,648008080
800x80
80x80
Trang 35)3/(
000,943
320x1003
320x100100x100' 1R
33.313100
)3/(
000,94R
3/(
1440
)3/(
500x)3/(
940)3/(
500)30/(
36.511
6.217x75.293)796.108x2(75
100x300100
Trang 36Ω
=+
50x10
100
50x40
We convert the balanced ∆ s to Ts as shown below:
Trang 37RRRRR
R
3
1 3 3 2 2
15x1212x1010
Trang 3830||20 = (600/50) = 12 Ω, 37.5||30 = (37.5x30/67.5) = 16.667 Ω 35||45 = (35x45/80) = 19.688 Ω
Req = 19.688||(12 + 16.667) = 11.672Ω
By voltage division,
16672.11
672.11+ = 42.18 V
Chapter 2, Solution 57
4 Ω
e c
6x81212x6
Rac = 216/(8) = 27Ω, Rbc = 36 Ω
8
568
4x8822x
Ref = 56/(4) = 14Ω, Rdf = 56/(2) = 28 Ω
Combining resistors in parallel,
,368.738
28028
43
7x36736Ω
=
= 27x3 2.7
3
27
Trang 39567.26
7.2x18867.57.218
7.2x18
868.518
7.2x868.5
Rcn
)145964.0()368.7977.3(829.14
Trang 40There are three possibilities
(a) Use R1 and R2:
R = R1 R2 =8090=42.35Ω
p = i2R
i = 1.2A + 5% = 1.2 ± 0.06 = 1.26, 1.14A
p = 67.23W or 55.04W, cost = $1.50 (b) Use R1 and R3:
R = R1 R3 =80100=44.44Ω
p = I2R = 70.52W or 57.76W, cost = $1.35 (c) Use R2 and R3:
Trang 41I
3 m
m mI
When Rx is maximum, ix = 1A + = =110 Ω
1
110
RxR i.e., Rx = 110 - R = 99 Ω
Thus, R = 11 Ω, Rx = 99 Ω
Chapter 2, Solution 65
=Ω
50R
i.e., Ifs = k /V 50 A
201 Ω = µThe intended resistance Rm = =10(20kΩ/V)=200kΩ
I
Vfs fs
V50R
Trang 42i'
++
=
=Ω
28.57%
(d) k30 kΩ=3.6 kΩ By current division,
mA042.1)mA2(56.31
5
i'
++
=
V75.3)mA042.1)(
k6.3(
%100xv
vv0
4
0.1 A
++
=
24116
4
(c) % error = − x100%=
1.0
09756.01.0
2.44%
Trang 43Chapter 2, Solution 69
With the voltmeter in place,
S m 2 S 1
m 2
RRRR
RR++
=V where Rm = 100 kΩ without the voltmeter,
S S 2 1
2
RRR
R++
=V
(a) When R2 = 1 kΩ, = kΩ
101
100R
Rm 2
+
)40(30101
R2 m
+30(40)091
.9
091.9
9.30 V (with)
+30(40)10
10
10 V (without)
(c) When R2 = 100 kΩ, R2 Rm =50kΩ
=+
3050
50
+30(40)100
Trang 45By the current division principle, the current through the ammeter will be
one-half its previous value when
Trang 46t+ R2 = m
fs
2RI
E − = −100=19 kΩ
10x.0
23(b) For half-scale deflection, Im = 0.05mA
E++ Rx = − + = − −20kΩ=
10x05.0
2)
RR(I
E
3 m
)120(R
)120
= (R
72 kW (high) Chapter 2, Solution 77
(a) 5 Ω = 1010=20202020
i.e., four 20 Ω resistors in parallel
(b) 311.8 = 300 + 10 + 1.8 = 300 + 2020+1.8 i.e., one 300Ω resistor in series with 1.8Ω resistor and
a parallel combination of two 20Ω resistors
Trang 47V0 = VS (1 )R0VS
R)1(R
R)
α
−+
α
−(
R)1(V
VS
2R
Rp
p = = = (12)=
4
10pR
R1 2
1 2
Case 2
Trang 48Chapter 2, Solution 81
Let R1 and R2 be in kΩ
5R
R1 2
eq = +
1 2
2 S
0
RR5
R5V
2
2 2
R5
R5R5
+
= or R2 = 3.33 kΩ From (1), 40 = R1 + 2 R1 = 38 kΩ
Trang 49The voltage across the tube is 2 x 60 mV = 0.06 V, which is negligible
compared with 24 V Ignoring this voltage amp, we can calculate the current through the devices
V9
V15
V
9R
IR 2
mA35
V92
Trang 50v1 = 9.143V, v2 = -10.286 V
P8Ω = = ( ) =
8
143.98
v10
v2 = + + 1− 2
36 = - 2v1 + 3v2 (2) Solving (1) and (2),
Trang 51v10
+++
i1 = =100v
v20k
Trang 52Chapter 3, Solution 6
2
10v6
v4
12
=
−++
a a
V
361010
b b
V
72240
5
920
3v5
=
−+
−+But 0 v1
Trang 53v3
v1 1 1−
+
=
−12
Trang 54At node 0,
0
0 2I2
4
2422
Trang 55At node 1,
40
0v20
vv10
v
v1 2 2
=
−+
At node number 2, [(v2 + 2) – 0]/10 + v2/4 = 3 or v2 = 8 volts
But, I = [(v2 + 2) – 0]/10 = (8 + 2)/10 = 1 amp and v1 = 8x1 = 8volts
v
=+
v52
v
+
=+
−
4v1 - 7v0 = -20 (2) Solving (1) and (2), v0 = 20 V
Trang 562 2
1
2 1v
v
2 2
P35 = (v −v )2G=(2)23=
3
Trang 58At node 1,
2
vv8
v4
v
60 2 1 2
=
−+
vv10
v604
v60
=
−+
−+
v2
vv2
v
v2 − 1 + 2 − 3 = 1 + 3 40 = 2v1 + v3 (2)
From Fig (b), - v1 - 10 + v3 = 0 v3 = v1+ 10 (3) Solving (1) to (3), we obtain v1 = 10 V, v2 = 20 V = v3
Trang 59Chapter 3, Solution 19
At node 1,
3 2 1 1
2 1 3
48
23
5= +V −V +V −V +V → = V −V − V (1)
At node 2,
3 2 1 3
2 2 2
42
V V V V
V
−+
2 3 1 3
724360
42
8
12
3+ −V +V −V +V −V = → − = V + V − V (3) From (1) to (3),
B AV V
24
271
417
3 2 1
Using MATLAB,
V267.12
V,933.4 V,10267
.12
933.4
10
3 2
04
Trang 60Between nodes 1 and 3,
120
5.4
Let v3 be the voltage between the 2kΩ resistor and the voltage-controlled voltage source
At node 1,
2000
vv4000
vv10
vv4
v
v1 2 1 3 2
=
−+
−
3v1 - 5v2 - 2v3 = 0 (2) Note that v0 = v2 We now apply KVL in Fig (b)
- v3 - 3v2 + v2 = 0 v3 = - 2v2 (3)
From (1) to (3),
Trang 61Chapter 3, Solution 22
At node 1,
8
vv34
v2
++
Trang 621 1
24
6
1
30
V V V
V V
2 2
25
v102
v401
v
=
−+
−+
−
v0 = 20V
i = 20− v0
= 0 A
Trang 63Chapter 3, Solution 26
At node 1,
3 2 1 2
1 3 1
510
3
20
15
V V V V
V V V
−+
4
5
3 2 2 2
=
−+
2 3 3
55
1010
3+V −V +− −V +V −V = → − =V + V − V (4) Putting (1), (3), and (4) in matrix form produces
B AV V
Using MATLAB leads to
982.4
835.9
1B A
V
Thus,
V95.1
V,982.4
V,835
Trang 64161
4117
3 2 1
,1767
134
161
4117
160
4112
101
427
061
2117
b c
c
V
2115
05
4
At node b,
c b a b
b c b
V
2445
84
a a d
V
427300
8
4516
d d d
V
72515010
204
30
−+
=
→
−+
=
−
−
(4)
Trang 65B AV V
V V V
d c b
72
0
5
40
2
7
02
4
1
211
736.1
847.7
14.10
V,736.1
V,847.7 V,14
1 1 4
At node 2,
3 2 1 3
2 2
3 3
4 1 4
In matrix form, (1) to (4) become
B AV V
V V
5101
1540
0471
1014
4 3 2 1
309.2
209.1
7708.0
V
Trang 66v120v
v76
97
o 1
554497
6
97
=+
720
9280
2807
−
=
∆
Trang 673 1
Solving (2) to (4) leads to,
v1 = 4 V, v2 = 4 V, v3 = 0 V
Trang 68We have a supernode as shown in figure (a) It is evident that v2 = 12 V, Applying KVL
to loops 1and 2 in figure (b), we obtain,
-v1 – 10 + 12 = 0 or v1 = 2 and -12 + 20 + v3 = 0 or v3 = -8 V
Thus, v1 = 2 V, v2 = 12 V, v3 = -8V
Chapter 3, Solution 33
(a) This is a non-planar circuit because there is no way of redrawing the circuit
with no crossing branches
(b) This is a planar circuit It can be redrawn as shown below
Trang 69v0 = 4i2 = 20 volts
Trang 70355
6
,1143
35
36
65
Trang 71Applying mesh analysis to loops 1 and 2, we get,
6i1 – 1i2 + 3 = 0 which leads to i2 = 6i1 + 3 (1) -1i1 + 6i2 – 3 + 4v 0= 0 (2)
Using (1), (2), and (3) we get i1 = -5/9
Therefore, we get v 0 = -2i1 = -2(-5/9) = 1.111 volts
+ v 0 –
i 2
i 1
We apply mesh analysis
12 = 3 i1 + 8(i1 – i2) which leads to 12 = 11 i1 – 8 i2 (1) -2 v0 = 6 i2 + 8(i2 – i1) and v0 = 3 i1 or i1 = 7 i2 (2) From (1) and (2), i1 = 84/69 and v0 = 3 i1 = 3x89/69
v 0 = 3.652 volts Chapter 3, Solution 39
For mesh 1,
06102
10− I x + I1− I2 =
−But I x =I1−I2 Hence,
2 1 2
1 2
A,8
I
Trang 72Assume all currents are in mA and apply mesh analysis for mesh 1
30 = 12i1 – 6i2 – 4i3 15 = 6i1 – 3i2 – 2i3 (1) for mesh 2,
0 = - 6i1 + 14i2 – 2i3 0 = -3i1 + 7i2 – i3 (2) for mesh 2,
0 = -4i1 – 2i2 + 10i3 0 = -2i1 – i2 + 5i3 (3) Solving (1), (2), and (3), we obtain,
Trang 73For loop 1,
6 = 12i1 – 2i2 3 = 6i1 – i2 (1) For loop 2,
ii610
172
016
3 2 1
,2346
10
172
016
182
036
∆
382
10
872
316
Trang 74Chapter 3, Solution 42
For mesh 1,
(1) 2
1 2
2 1
3 1
2 2
40
0
40100
30
030
50
3 2 1
40.0
48.0
1B A
Trang 75Solving (1) to (3), i1 = -3.067, i3 = -1.3333; io = i1 – i3 = -1.7333 A
Trang 76For the supermesh, 6i3 + 14i4 – 2i1 – 6i2= 0 (3) But i4 – i3 = 4 which leads to i4 = i3 + 4 (4)
Solving (1) to (4) by elimination gives i = i1 = 8.561 A
Chapter 3, Solution 46
For loop 1,
128110
811
12+ 1− 2 = → 1− 2 =
For loop 2,
0214
81 + 2 + =
But v o =3i1,
2 1 1
8
77i2 − i2 = → i2= A and i1 = i72 =1.217 A
Trang 774
27
1
41
7
3 2 1
Using MATLAB,
8667.1,0333.0 ,5.28667
.1
0333.0
2
3 2
V
Trang 78Chapter 3, Solution 48
We apply mesh analysis and let the mesh currents be in mA
3kΩ
I4 4kΩ 2k Ω 5k Ω
3 1
4 1− 2 − 3 + 4 =
Putting (1) to (4) in matrix form gives
B AI I
I I
1452
4
51510
0
21013
1
401
5
4 3 2 1
087.8
217.7
Trang 79i0 = -i1 = 10.667 A, from fig (b), v0 = i3-3i1 = (16/9) + 32 = 33.78 V
Trang 81For loop 1, i1 = 5A (1)
For loop 2, -40 + 7i2 – 2i1 – 4i3 = 0 which leads to 50 = 7i2 – 4i3 (2) For loop 3, -20 + 12i3 – 4i2 = 0 which leads to 5 = - i2 + 3 i3 (3) Solving with (2) and (3), i2 = 10 A, i3 = 5 A
i1 = 3.5 A, i2 = -0.5 A, i3 = 2.5 A
Trang 82i1 = 3.5 A, i2 = -0.5 A, i3 = 2.5 A
Trang 83Chapter 3, Solution 54
Let the mesh currents be in mA For mesh 1,
2 1 2
210
12+ + I −I = → = I −I
For mesh 2,
(2) 3
2 1 3
3 2 2
10
131
012
3 2 1
Using MATLAB,
mA25.10,
mA5.8 ,mA25.525
.10
5.8
25.5
3 2
Trang 84It is evident that I1 = 4 (1)
For mesh 4, 12(I4 – I1) + 4(I4 – I3) – 8 = 0 (2)
For the supermesh 6(I2 – I1) + 10 + 2I3 + 4(I3 – I4) = 0
Trang 85In matrix form (1), (2), and (3) become,
131
112
3 2 1
311
131
112
131
162
031
612
V V
mA x k
V2 =4 Ω 18 =72 , 1 =100− 2 =100−72=28Current through R is
R R R
i V i
R
3
3283
Trang 86For loop 1, 120 + 40i1 – 10i2 = 0, which leads to -12 = 4i1 – i2 (1) For loop 2, 50i2 – 10i1 – 10i3 = 0, which leads to -i1 + 5i2 – i3 = 0 (2) For loop 3, -120 – 10i2 + 40i3 = 0, which leads to 12 = -i2 + 4i3 (3) Solving (1), (2), and (3), we get, i1 = -3A, i2 = 0, and i3 = 3A
123
1
3223
ii
3 2 1
13
0
123
1
322
126
1
32103
631
1023
Trang 87At node 1, (v1/1) + (0.5v1/1) = (10 – v1)/4, which leads to v1 = 10/7
At node 2, (0.5v1/1) + ((10 – v2)/8) = v2/2 which leads to v2 = 22/7
At node 1, is = (v1/30) + ((v1 – v2)/20) which leads to 60is = 5v1 – 3v2 (1)
But v2 = -5v0 and v0 = v1 which leads to v2 = -5v1
Hence, 60is = 5v1 + 15v1 = 20v1 which leads to v1 = 3is, v2 = -15is
i0 = v2/50 = -15is/50 which leads to i0/is = -15/50 = -0.3
Trang 88We have a supermesh Let all R be in kΩ, i in mA, and v in volts
For the supermesh, -100 +4i1 + 8i2 + 2i3 + 40 = 0 or 30 = 2i1 + 4i2 + i3 (1)
Trang 90Casting (1) to (5) in matrix form gives
B AI I
I I I I
82110
25011
101580
118166
010612
5 4 3 2 1
Using MATLAB leads to
864.2
733.1
824.1
673.1
1B A
I
Thus,
A 411.2A,864.1A,733.1A,824.1A,673
We use mesh analysis Let the mesh currents be in mA
For mesh 1, 20=4I1 −I2 −I3 (1)
For mesh 2, −10=−I1+4I2 −I4 (2)
For mesh 3, 12=−I1+4I3 −I4 (3)
For mesh 4, −12=−I2 −I3 +4I4 (4)
Trang 91In matrix form, (1) to (4) become
B AI I
I I
41
1
0
14
0
1
10
4
1
01
1
4
4 3 2 1
75.3
75.1
5.5
v5.11
125.1
2 1
15.115
.11
125
)1429.1(1)7143.1(31
34286.11429.1
1429.17143.1v
v2 1
Clearly v1 = 4 volts and v2 = 2 volts
Trang 92231
518
3 2 1
85721
232
514,
347
25
231
518
231
418,
1097
15
221
548
Trang 9325.01
25.0
125
.075.1
3 2 1
−
−+
−
−+
+
1 2 1
3 2 1
5 3 1 3
3 2
1 2
2 4
2 1
IIIv
vvGGGG
0
GG
GG
0G
GGG
Trang 94Chapter 3, Solution 71
R11 = 4 + 2 = 6, R22 = 2 + 8 + 2 = 12, R33 = 2 + 5 = 7,
R12 = -2, R13 = 0, R21 = -2, R23 = -2, R31 = 0, R32 = -2
v1 = 12, v2 = -8, and v3 = -20 Now we can write the matrix relationships for the mesh-current equations
ii720
2122
026
3 2 1
Now we can solve for i2 using Cramer’s Rule
4087
200
282
0126,
4527
20
2122
026
iiii
5100
1540
0462
0027
4 3 2 1
Trang 952100
1604
0083
0439
4 3 2 1
Chapter 3, Solution 74
R11 = R1 + R4 + R6, R22 = R2 + R4 + R5, R33 = R6 + R7 + R8,
R44 = R3 + R5 + R8, R12 = -R4, R13 = -R6, R14 = 0, R23 = 0,
R24 = -R5, R34 = -R8, again, we note that Rij = Rji for all i not equal to j
The input voltage vector is =
VVVV
−
−
−+
+
−
−+
+
−
−
−+
+
4 3 2 1
4 3 2 1
8 5 3 8
5
8 8
7 6 6
5 5
4 2 4
6 4
6 4
1
VVVV
iiii
RRRR
R0
RR
RR0
R
R0
RRRR
0R
RR
R
R
Trang 97Clearly, v1 = 625 mVolts, v2 = 375 mVolts, and v3 = 1.625 volts, which agrees with
the solution obtained in Problem 3.27