Kỷ yếu hội nghị khoa học công nghệ toàn quốc khí - Lần thứ IV HOẠCH ĐỊNH QUỸ ĐẠO ĐI BỘ CHO ROBOT HAI CHÂN PLANNING WALKING TRAJECTORY FOR A BIPED ROBOT Trường Thịnh, 1bNguyễn Ngọc Phương, 1cNguyễn Trọng Tuấn Trường ĐH Sư phạm Kỹ thuật TPHCM a thinhnt@hcmute.edu.vn; bphuongnn@hcmute.edu.vn; cnguyentrongtuan778@gmail.com 1aNguyễn TÓM TẮT Bài báo trình bày phương pháp xây dựng quỹ đạo di chuyển theo phương nghiêng góc α cho robot hai chân dạng người không gian 3D, đảm bảo cho trình di chuyển mềm mại ổn định Dựa cách di chuyển bước tự nhiên người với điểm bắt đầu, điểm kết thúc, số điểm đặc biệt khác chu kỳ chuyển động để xây dựng quỹ đạo chuyển động cho khớp quay Quỹ đạo hình thành xây dựng mặt phẳng dọc, mặt phẳng trước mặt phẳng ngang dựa phương pháp nội suy bậc ba với phương trình ràng buộc Bằng cách thay đổi thông số ràng buộc quỹ đạo với vùng ổn định lớn xác định Trong báo này, thực nghiệm tiến hành để so sánh kết thông qua mô kết thực nghiệm Từ khóa: Robot dạng người, robot hai chân, quỹ đạo di chuyển ABSTRACT This paper presents a method for planning three-dimensional walking patterns and can walk to the direction of skew angle for biped robot in order to obtain stable smooth dynamic motion To determine the rotational trajectory for each joint, there are some particular key points gained from natural human walking whose value is defined at the beginning, end and some specific points of a motion cycle The constraint equation of the motion between the key points will be then formulated in such a way to be compatible with geometrical constraints These trajectorys are determined in sagittal and then developed to front plane of motion It’s determined by third spline interpolation base on constraint equations By defining different values of the constraint parameters, we were able to find the trajectory with maximum stability region Finally, walking patterns is described through simulation studies, and the experimental results Keywords: Humanoid, Biped Robot, walking trajectory GIỚI THIỆU Ngày nay, robot di chuyển hai chân dạng người thu hút ý nhiều nhà nghiên cứu toàn giới có nhiều nghiên cứu tập trung vào chủ đề hoạch định quỹ đạo cho robot hai chân Theo tài liệu [1] tác giả nghiên cứu xây dựng quỹ đạo cho robot cách ghi lại liệu động học người Các báo [2-4] đưa phương pháp dáng cách giảm thiểu lượng tiêu thụ Để đảm bảo chuyển động ổn định cho robot số giải pháp cho mô hình dựa vào điểm cân moment (Zero Moment Point - ZMP) đưa theo báo [5-8] ZMP điểm mặt phẳng tiếp xúc với bàn chân mà tổng moment tất lực tác động không Để cho robot có khả di chuyển điều kiện mặt đất khác robot phải có di chuyển khác bàn chân Ví dụ robot đưa chân lên cao thay đổi góc độ chân trụ để thích nghi với điều kiện địa hình khác Các nghiên cứu trước xây dựng quỹ đạo chân nội suy đa thức, di chuyển bề mặt không phẳng bậc đa thức cao dẫn đến khó khăn cho trình Kỷ yếu hội nghị khoa học công nghệ toàn quốc khí - Lần thứ IV tính toán Để tránh vấn đề báo [9,10] trình bày phương pháp tạo quỹ đạo chân phép nội suy bậc ba Nhưng tác giả thực với ràng buộc đơn giản góc bàn chân không đổi Nội dung báo mô tả phương pháp xây dựng quỹ đạo cho robot di chuyển hai chân dạng người điều kiện bề mặt di chuyển không phẳng ràng buộc trình di chuyển QUÁ TRÌNH DI CHUYỂN CỦA ROBOT HAI CHÂN DẠNG NGƯỜI Hình Kết cấu robot hai chân dạng người Một robot di chuyển hai chân dạng người với phần thân Hình xem xét báo Mỗi chân bao gồm đùi, bắp chân bàn chân, có sáu bậc tự (DOF): ba bậc tự khớp hông, bậc tự khớp gối hai bậc tự cổ chân Quá trình robot hai chân dạng người có tính chu kỳ chu kỳ gồm có hai pha: pha trụ đơn (SSP) pha trụ đôi (DSP) Pha trụ đơn có chân chạm đất chân lại đưa từ sau tới trước Pha trụ đôi hai chân tiếp xúc với mặt đất, pha bắt đầu với gót chân trước chạm đất kết thúc với ngón chân chân sau chuẩn bị rời mặt đất Để giống với chu kỳ người khoảng thời gian pha đôi khoảng 20% chu kỳ [11,12] Nên giá trị sử dụng cho tính toán sau Tc Ds khoảng thời gian chiều dài toàn chu kỳ Td thể khoảng thời gian pha trụ đôi chu kỳ Hình Các mặt phẳng sử dụng để phân tích Nếu quỹ đạo hông cổ chân xây dựng tất quỹ đạo khớp robot xác định dựa vào ràng buộc động học Không giống với số nghiên cứu trước đây, quỹ đạo chuyển động cho hai chân robot không xây dựng mặt phẳng dọc Kỷ yếu hội nghị khoa học công nghệ toàn quốc khí - Lần thứ IV với chuyển động thẳng phía trước mà xác định mặt phẳng trước mặt phẳng ngang Hình theo hướng nghiêng góc α so với hướng thẳng Cho (xa, ya, za) (xh, yh, zh) tọa độ khớp cổ chân khớp hông θa góc quay bàn chân so với mặt đất mặt phẳng dọc θl góc quay chân mặt phẳng trước Tất tính toán thực cho chân lặp lại cho chân QUỸ ĐẠO CỔ CHÂN Quỹ đạo cổ chân xác định phép nội suy đa thức Để đảm bảo ràng buộc tính liên tục đạo hàm đòi hỏi bậc đa thức cao dẫn đến khó khăn nội suy tính toán đa thức Do đó, quỹ đạo bàn chân nội suy từ đường cong Spline bậc 3, đạo hàm cấp hai chúng liên tục Hình Các giai đoạn bàn chân chu kỳ bước Hình Các thông số robot hai chân Quỹ đạo bàn chân bước thứ k thông số động học chân giải thích Hình Hình Trong nghiên cứu trước tập trung vào xây dựng quỹ đạo chân với bàn chân song song mặt đất, tức giá trị θ a 0, với dạng quỹ đạo linh hoạt việc di chuyển với tốc độ cao khó khăn Trong đề tài xét trình chạm đất bàn chân gót chân bàn chân rời khỏi mặt đất mũi bàn chân Như vậy, bàn chân xét đến hai giá trị q b q f rời mặt đất chạm mặt đất Để cho quỹ đạo mịn đòi hỏi đạo hàm bậc (vận tốc) phải khác đạo hàm bậc hai (gia tốc) phải liên tục thời điểm t Bằng cách thay đổi giá trị tham số ràng buộc q b , q f , Lao , H ao ta tìm quỹ đạo bàn chân mong muốn Việc xây dựng quỹ đạo chân thực cách lập trình Matlab Khi xây dựng quỹ đạo cho cổ chân theo phương thẳng quỹ đạo theo phương nghiêng góc α dễ dàng xác định công thức (1-2): Kỷ yếu hội nghị khoa học công nghệ toàn quốc khí - Lần thứ IV xa1 ( xa1 − ya1 t gα )cosα = y a1 =( xa1 − ya1 t gα )sin α + ya1 / cosα (1) xa ( xa − ya t gα )cosα = y a =( xa − ya t gα )sin α + ya / cosα (2) QUỸ ĐẠO HÔNG Quỹ đạo hông nội suy với đường cong Spline bậc để thỏa mãn ràng buộc tính liên tục, giả sử điểm cao hông nằm pha trụ đơn điểm thấp nằm pha trụ đôi Thành phần z h (t) ảnh hưởng đến điểm cân moment (ZMP), ta cho z h (t) số thay đổi khoảng giá trị không đổi Hai thành phần x h , yh quan trọng nhất, chúng thay đổi tác động đến cân robot Ta có tthể thay đổi quỹ đạo hông để tạo ZMP mong muốn Điều tạo quỹ đạo tự nhiên cân Quỹ đạo theo phương y hông xây dựng từ quỹ đạo ZMP mong muốn [14]: AT nπ 02 ωn2 (1 − cos n π ) yh = ∑ sin n π (T02ωn2 + n 2π ) n =1 T0 ∞ t (3) Quỹ đạo hông theo hướng nghiêng góc α: xh ( xh − yh t gα )cosα = y h =( xh − yh t gα )sin α + yh / cosα (4) Hình Biên ổn định ZMP CÂN BẰNG ROBOT Xây dựng phương pháp đảm bảo cho quỹ đạo ổn định Như đề cập trên, điểm ZMP sử dụng để tính cân Nếu ZMP nằm vùng đa giác lồi tất điểm tiếp xúc robot cân ổn định Vùng ổn định vùng diện tích chân trụ Hình Vị trí ZMP tính [15]: n m ( xi ( xi zi ) zi + g z ) − ∑ i =1 i xZMP = n ∑ i=1mi (zi + g z ) n m ( yi ( zi + g z ) − yi zi ) ∑ i =1 i yZMP = n ∑ i=1mi (zi + g z ) (5) Kỷ yếu hội nghị khoa học công nghệ toàn quốc khí - Lần thứ IV Với: n: số khâu robot x i , yi , z i : tọa độ khối tâm khâu thứ i m i : khối lượng khâu thứ i Khoảng cách đường biên vùng ổn định ZMP gọi biên ổn định Vì vậy, để tìm quỹ đạo ổn định cần phải đánh giá tất quỹ đạo theo phương pháp Và cuối cùng, biên ổn định lớn lựa chọn Trong mặt phẳng dọc việc định nghĩa giá trị khác cho x sd x ed tìm vài quỹ đạo x h (t) có độ mịn cao Phạm vi giới hạn x sd x ed là: < xsd < Ds / < xed < Ds / (6) Từ đó, giá trị x ed x sd xác định KẾT QUẢ MÔ PHỎNG VÀ THỰC NGHIỆM Dựa vào nhân trắc học [7] thông số robot Hình xây dựng theo tỷ lệ định thể Bảng Bảng Thông số robot hai chân dạng người STT Thông số Ký hiệu Robot Chiều dài bắp đùi Lth 0,1m Chiều dài bắp chân Lsh 0,1m Chiều dài từ bàn chân đến cổ chân Lan 0,03m Khoảng cách từ cổ chân đến gót chân Lab 0,06m Khoảng cách từ cổ chân đến mũi bàn chân Laf 0,1m Chiều rộng bàn chân Lw 0,03m Hình Tỷ lệ kích thước người robot thiết kế Kỷ yếu hội nghị khoa học công nghệ toàn quốc khí - Lần thứ IV Để kiểm chứng giá trị xác định phần hoạch định Trong phần này, trình hoạch định cách mô dựa phần mềm Matlab Với thông số robot trình bày Bảng mô Hình Tốc độ di chuyển yêu cầu để mô với vận tốc 0,2 (km/h) Robot di chuyển với thời gian chu kỳ bước (s), thời gian pha chân trụ 0,3 (s), thời gian cổ chân vị trí cao 0,5s Và chiều dài bước 0,04 (m) Ngoài có thông số khác đưa vào tính toán mô như: góc bàn chân rời mặt đất, góc bàn chân chạm đất, chiều cao cổ chân vị trí cao nhất, chiều dài phương x cổ chân vị trí cao nhất, chiều cao hông vị trí cao chiều cao hông vị trí thấp Hình Mô hình mô robot hai chân Angle Trajectory 0.06 Qankle1 Qankle2 Angle (rad) 0.04 0.02 -0.02 -0.04 -0.06 0.2 0.15 0.1 0.05 Time (s) Hình Góc quay bàn chân robot Trajectory Y 0.1 0.06 0.05 Position Y (m) Position X (m) Trajectory X 0.08 0.04 0.02 -0.02 -0.05 Ankle 1_X Ankle 2_X Hip_X 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 -0.1 0.2 Ankle1_Y Ankle2_Y Hip_Y 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 Time (s) Time (s) Trajectory Z Trajectory 3D 0.3 0.2 Ankle1_Z Ankle2_Z Hip_Z 0.15 0.1 0.05 Ankle1 Ankle2 Hip 0.3 Position Z (m) Position Z (m) 0.25 0.25 0.2 0.15 0.1 0.05 -0.02 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.02 0.04 0.2 0.06 0.08 -0.1 -0.05 0.05 0.1 Position Y (m) Time (s) Position X (m) Hình Quỹ đạo robot theo trục x (a), y (b), z (c) quỹ đạo không gian 3D Kỷ yếu hội nghị khoa học công nghệ toàn quốc khí - Lần thứ IV Trajectory ZMP of SSP 0.06 ZMP 0.05 Y (m) 0.04 0.03 0.02 0.01 -0.08 -0.06 -0.04 -0.02 0.02 0.04 0.06 0.08 X (m) Hình 10 Quỹ đạo ZMP giai đoạn SSP Trajectory ZMP of DSP 0.1 ZMP Y (m) 0.05 -0.05 -0.08 -0.06 -0.04 -0.02 0.02 0.04 0.06 0.08 0.1 0.12 X (m) Hình 11 Quỹ đạo ZMP giai đoạn DSP Trajectory Z1 Trajectory X1 0.082 0.08 Position Z1 (m) Position X1 (m) 0.04 0.02 -0.02 Simulated Measured 0.08 0.06 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.076 0.074 0.072 Simulated Measured 0.078 0.07 0.2 0.02 0.04 0.06 0.12 0.14 0.16 0.18 0.2 0.0735 Simulated Measured Simulated Measured 0.073 Position Z2 (m) 0.044 Position X2 (m) 0.1 Trajectory Z2 Trajectory X2 0.046 0.042 0.04 0.038 0.036 0.034 0.08 Time (s) Time (s) 0.0725 0.072 0.0715 0.071 0.0705 0.07 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 Time (s) Time (s) Hình 12 Kết thực nghiệm quỹ đạo cổ chân chân lắc theo phương x, z (a, b, c) cổ chân chân trụ theo phương x, z(d, e, f) Kỷ yếu hội nghị khoa học công nghệ toàn quốc khí - Lần thứ IV Trajectory Yh 0.05 0.05 0.04 Position Yh (m) Position Xh (m) Trajectory Xh 0.06 0.04 0.03 0.03 0.02 0.01 0.02 0.01 Simulated Measured Simulated Measured 0.02 0.04 0.06 0.08 0.14 0.12 0.1 0.16 0.2 0.18 0.04 0.02 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 Time (s) Time (s) Trajectory Zh 1.5 Simulated Measured Position Zh (m) 0.5 -0.5 -1 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 Time (s) Hình 13 Kết thực nghiệm quỹ đạo hông theo phương x, y z Với Hình 12 Hình 13 quỹ đạo khớp cổ chân hông tương đối ổn định gần giống với quỹ đạo mô phỏng, sai lệch không đáng kể Để kiểm tra lại kết tính toán mô mô hình thực nghiệm robot hai chân thiết kế Mô hình thực nghiệm robot hai chân gồm có 10 bậc tự khối lượng 6[kg] thông số cho Hình 14 a6 m6 b6 b8 a4 a8 m4 m8 b4 b9 a9 m3 a1 m9 b3 a3 a11 b1 m m1 b11 11 Hình 14 Vectơ khâu (a), vectơ CoM khối lượng (b) Hình 15 Mô hình thực nghiệm robot hai chân 10 Kỷ yếu hội nghị khoa học công nghệ toàn quốc khí - Lần thứ IV (a) (e) (b) (f) (c) (d) (g) (h) Hình 16 Kết mô hình thực nghiệm bước robot Kết mô hình thực nghiệm cho bước robot hai chân thiết kế hoàn chỉnh Hình 15 Thông qua kết mô thực quỹ đạo ổn định sử dụng cho mô hình thực nghiệm Kết bước robot bao gồm giai đoạn bắt đầu giai đoạn kết thúc minh họa Hình 16 Trong Hình 16(a), 16(b), 16(c) robot vị trí ban đầu chân phải trụ chân trái bắt đầu bước tới Và ba Hình 16(d), 16(e) 16(f) thể trình bước robot với chân trái làm trụ chân phải bước tới hai hình cuối Hình 16(g) 16(h) giai đoạn kết thúc robot với chân phải trụ chân trái bước tới vị trí chân phải KẾT LUẬN Trong báo này, phương pháp mô tả để xây dựng quỹ đạo theo phương thẳng phương nghiêng cho robot hai chân dạng người có độ mịn độ ổn định cao Quỹ đạo mặt phẳng ngang thêm vào với quỹ đạo mặt phẳng dọc mặt phẳng trước để mô robot theo ba chiều Đồng thời đưa phương pháp tính toán quỹ đạo hông việc sử dụng hai thông số kết hợp với tính toán động học động lực học để tìm quỹ đạo ổn định cho robot Bài báo đề cập phương pháp xây dựng quỹ đạo theo phương nghiêng robot không di chuyển theo phương thẳng nghiên cứu trước mà di chuyển theo phương tạo với phương thẳng góc TÀI LIỆU THAM KHẢO [1] M Y Zarrugh and C.W Radcliffe, “Computer Generation of Human Gait Kinematics”, Journal of Biomech, vol 12, pp 99–111, 1979 [2] P H Channon, S H Hopkins, and D T Phan, “Derivation of optimal walking motions for a biped walking robot,” Robotica, vol 10, no 2, pp 165–172, 1992 [3] M Rostami and G Bessonnet, “Impactless sagittal gait of a biped robot during the single support phase,” inProc IEEE Int Conf Robotics and Automation, 1998, pp 1385–1391 11 Kỷ yếu hội nghị khoa học công nghệ toàn quốc khí - Lần thứ IV [4] L Roussel, C Canudas-de-Wit, and A Goswami, “Generation of energy optimal complete gait cycles for biped robots,” inProc IEEE Int Conf Robotics and Automation, 1998, pp 2036–2041 [5] A Takanishi, M Ishida, Y Yamazaki, and I Kato, “The realization of dynamic walking robot WL-10RD,” inProc Int Conf Advanced Robotics, 1985, pp 459–466 [6] C L Shih, Y Z Li, S Churng, T T Lee, and W A Cruver, “Trajectory synthesis and physical admissibility for a biped robot during the singlesupport phase,” inProc IEEE Int Conf Robotics and Automation, 1990, pp 1646–1652 [7] K Hirai, M Hirose, Y Haikawa, and T Takenaka, “The development of honda humanoid robot,” inProc IEEE Int Conf Robotics and Automation, 1998, pp 1321–1326 [8] A Dasgupta and Y Nakamura, “Making feasible walking motion of humanoid robots from human motion capture data,” inProc IEEE Int Conf Robotics and Automation, 1999, pp 1044–1049 [9] C Shih, Gait synthesis for a biped robot, Robotica, vol 15, pp.599–607, 1997 [10] Ching-Long Shih, Ascending and descending stairs for a biped robot, IEEE Trans Syst., Man., Cybern A, vol 29, no 3, 1999 [11] T A McMahon, Muscles, Reflexes, and Locomotion Princeton, Princeton Univ Press, 1984 [12] V T Inman, H J Ralston, and F Todd, Human Walking Baltimore, MD: Willams & Wilkins, 1981 [13] Christopher L Vaughan, Brian L Davis, and Jeremy C O’Connor, Dynamics of Human Gait, Kiboho Publishers, 2nd edition, 1992 [14] M Y Zarrugh and C W Radcliffe, “Computer generation of human gait kinematics,”J Biomech., vol 12, pp 99–111, 1979 [15] Q Huang, K Yokoi, S Kajita, K Kaneko, H Arai, N Koyachi, and K Tanie, “Planning Walking Patterns for a Biped Robot,” IEEE Trans Robot Automat 12 ... dọc θl góc quay chân mặt phẳng trước Tất tính toán thực cho chân lặp lại cho chân QUỸ ĐẠO CỔ CHÂN Quỹ đạo cổ chân xác định phép nội suy đa thức Để đảm bảo ràng buộc tính liên tục đạo hàm đòi hỏi... CHUYỂN CỦA ROBOT HAI CHÂN DẠNG NGƯỜI Hình Kết cấu robot hai chân dạng người Một robot di chuyển hai chân dạng người với phần thân Hình xem xét báo Mỗi chân bao gồm đùi, bắp chân bàn chân, có sáu... thức Do đó, quỹ đạo bàn chân nội suy từ đường cong Spline bậc 3, đạo hàm cấp hai chúng liên tục Hình Các giai đoạn bàn chân chu kỳ bước Hình Các thông số robot hai chân Quỹ đạo bàn chân bước thứ