ITU đã đưa ra đề án tiêu chuẩn hoá hệ thống thông tin di động thế hệ ba với tên gọi IMT-2000 để đạt được các mục tiêu chính sau đây
Trang 1LỜI NÓI ĐẦU
Ngày này thông tin di động là ngành công nghiệp viễn thông phát triển nhanhnhất với con số thuê bao đã đạt đến 3,6 tỷ tính đến cuối năm 2008 Khởi nguồn từ dịch
vụ thoại đắt tiền cho một số ít người đi xe, đến nay với sự ứng dụng ngày càng rộng rãicác thiết bị thông tin di động thể hệ ba, thông tin di động có thể cung cấp nhiều hìnhloại dịch vụ đòi hỏi tốc độ số liệu cao cho người sử dụng kể cả các chức năng camera,MP3 và PDA Với các dịch vụ đòi hỏi tốc độ cao ngày các trở nên phổ biến này, nhucầu 3G cũng như phát triển nó lên 4G ngày càng trở nên cấp thiết
ITU đã đưa ra đề án tiêu chuẩn hoá hệ thống thông tin di động thế hệ ba với têngọi IMT-2000 để đạt được các mục tiêu chính sau đây:
Tốc độ truy nhập cao để đảm bảo các dịch vụ băng rộng như truy nhập internetnhanh hoặc các ứng dụng đa phương tiện, do yêu cầu ngày càng tăng về cácdịch vụ này
Linh hoạt để đảm bảo các dịch vụ mới như đánh số cá nhân toàn cầu và điệnthoại vệ tinh Các tính năng này sẽ cho phép mở rộng đáng kể tầm phủ của các
hệ thống thông tin di động
Tương thích với các hệ thống thông tin di động hiện có để đảm bảo sự pháttriển liên tục của thông tin di động
Nhiều tiêu chuẩn cho hệ thống thông tin di động thế hệ ba IMT-2000 đã được
đề xuất, trong đó hai hệ thống WCDMA UMTS và cdma-2000 đã được ITU chấpthuận và đã được đưa vào hoạt động Các hệ thống này đều sử dụng công nghệ CDMAđiều này cho phép thực hiện tiêu chuẩn toàn thế giới cho giao diện vô tuyến của hệthống thông tin động thế hệ ba
HSDPA (High Speech Downlink Packet Access: truy nhập gói đường xuốngtốc độ cao) là một mở rộng của các hệ thống 3G WCDMA UMTS đã có thể cung cấptốc độ lên đến 10 Mbps trên đường xuống HSDPA là một chuẩn tăng cường của3GPP-3G nhằm tăng dung lượng đường xuống bằng cách thay thế điều chế QPSKtrong 3G UMTS bằng 16QAM trong HSDPA HSDPA hoạt động trên cơ sở kết hợpghép kênh theo thời gian (TDM) với ghép kênh theo mã và sử dụng thích ứng đườngtruyền Nó cũng đưa ra một kênh điều khiển riêng để đảm bảo tốc độ truyền dẫn sốliệu Các kỹ thuật tương tự cũng được áp dụng cho đường lên trong chuẩn HSUPA(High Speech Uplink Packet Access) Hai công nghệ truy nhập HSDPA và HSUPAđược gọi chung là HSPA (High Speed Packet Data) Để làm cho công nghệ 3GPPUTRA/UTRAN mang tính cạnh tranh hơn nữa (chủ yếu là để cạnh tranh với các côngnghệ mới của 3GPP2 và WiMAX), 3GPP quyết định phát triển E-UTRA và E-UTRAN (E: Elvolved ký hiệu cho phát triển) còn được gọi là siêu 3G (Super-3G) hayLTE (Long Term Evolution) mà thực chất là giai đoạn đầu 4G Công việc phát triển sẽtiến hành trong 10 năm và sau đó như là sự phát triển dài hạn (LTE: Long TermEvolution) của công nghệ truy nhập vô tuyến 3GPP Trong giai đoạn này tốc độ số liệuđạt được 30-100Mbps với băng thông 20MHz Tiếp sau LTE, IMT-Adv (IMT tiêntiến) sẽ được phát triển, đây sẽ là thời kỳ phát triển của 4G với tốc độ từ 100 đến 1000Mbps và băng thông 100MHz Hình L.1 cho thấy viễn cảnh của thông tin di động 4G
về khả năng đáp ứng tốc độ chuyển động và và tốc độ truyền số liệu
Trang 2B3G: Broad Band 3G: 3G băng rộng
WLAN: Wirless Local Area Network: Mạng nội vùng không dây
BWA: Broad Band Wirless Access: truy nhập không dây băng rộng
Hình L.1 Viễn cảnh thông tin di động 4G theo khả năng hỗ trợ tốc độ chuyển
động và tốc độ truyền số liệu
Hiện nay tai Việt Nam băng tần I dành cho WCDMA đã được chia là bốn khe
và được cấp phát cho bốn nhà khai thác: Viettel, VMS, GPC, EVN+HT Trong cácnăm tới 3GWCDMA UMTS sẽ được triển khai trên băng tần này
Bài giảng “Giới thiệu công nghệ 3G WCDMA UMTS” nhằm cung cấp các kháiniệm cơ bản về công nghệ 3G WCDMA UMTS cho các cán bộ Tổng Công ty ViễnThông Quân Đội (Viettel)
Bài giảng bao gồm bốn chương Chương đầu trình bày khái quát chung về sựphát triển của các hệ thống thông tin di động lên 4G, kiến trúc chung của một mạng3G; các kiến trúc R3, R4, R5 và R6 của mạng thông tin di động 3G WCDMA UMTS.Chương hai trình bầy đa truy nhập CDMA và các kỹ thuật liên quan được áp dụng choWCDMA Chương ba giới thiệu giao diện vô tuyến cả WCDMA Chương bốn giớithiêu công nghệ đa truy nhập tốc độ cao HSPA
Các chương của tài liệu này đều được kết cấu theo modul để học viên dễ họchọc Mỗi chương đều có phần giới thiệu chung, nội dung và tổng kết
Hà Đông ngày 12 tháng 6 năm 2009
Tác giả
Trang 3M C L C ỤC LỤC ỤC LỤC
Chương 1 TỔNG QUAN MẠNG 3G WCDMA UMTS 5
1.1 GIỚI THIỆU CHUNG 5
1.2 LỘ TRÌNH PHÁT TRIỂN THÔNG TIN DI ĐỘNG LÊN 4G 5
1.3 KIẾN TRÚC CHUNG CỦA MỘT HỆ THỐNG THÔNG TIN DI ĐỘNG 3G .7 1.4 CHUYỂN MẠCH KÊNH (CS), CHUYỂN MẠCH GÓI (PS), DỊCH VỤ CHUYỂN MẠCH KÊNH VÀ DỊCH VỤ CHUYỂN MẠCH GÓI 8
1.5 CÁC LOẠI LƯU LƯỢNG VÀ DỊCH VỤ ĐƯỢC 3GWCDMA UMTS HỖ TRỢ 11
1.6 KIẾN TRÚC 3G WCDMA UMTS R3 12
1.7 KIẾN TRÚC 3G WCDMA UMTS R4 19
1.8 KIẾN TRÚC 3G WCDMA UMTS R5 và R6 21
1.9 CHIẾN LƯỢC DỊCH CHUYỂN TỪ GSM SANG UMTS 23
1.10 CẤU HÌNH ĐỊA LÝ CỦA HỆ THỐNG THÔNG TIN DI ĐỘNG 3G 26
1.11 TỔNG KẾT 29
Chương 2 CÔNG NGHỆ ĐA TRUY NHẬP CỦA WCDMA 30
2.1 GIỚI THIỆU CHUNG 30
2.2 TRẢI PHỔ VÀ ĐA TRUY NHẬP PHÂN CHIA THEO MÃ 30
2.3 ĐIỀU KHIỂN CÔNG SUẤT 34
2.4 CHUYỂN GIAO TRONG HỆ THỐNG CDMA 34
2.5 MÁY THU PHÂN TẬP ĐA ĐƯỜNG HAY MÁY THU RAKE 36
2.6 CÁC MÃ TRẢI PHỔ SỬ DỤNG TRONG WCDMA 37
2.7 TRẢI PHỔ VÀ ĐIỀU CHẾ ĐƯỜNG LÊN 39
2.8 TRẢI PHỔ VÀ ĐIỀU CHẾ ĐƯỜNG XUỐNG 41
2.9 TỔNG KẾT 44
Chương 3 GIAO DIỆN VÔ TUYẾN CỦA WCDMA UMTS 45
3.1 GIỚI THIỆU CHUNG 45
3.2 MỞ ĐẦU 45
3.3 KIẾN TRÚC NGĂN XẾP GIAO THỨC CỦA GIAO DIỆN VÔ TUYẾN WCDMA/FDD 46
3.4 CÁC THÔNG SỐ LỚP VẬT LÝ VÀ QUY HOẠCH TẦN SỐ 48
3.5 CÁC KÊNH CỦA WCDMA 51
3.6 CẤU TRÚC KÊNH VẬT LÝ RIÊNG 59
3.7 SƠ ĐỒ TỔNG QUÁT MÁY PHÁT VÀ MÁY THU WCDMA 60
3.8 PHÂN TẬP PHÁT 61
3.9 ĐIỀU KHIỂN CÔNG SUẤT TRONG WCDMA 63
3.10 CÁC KIỂU CHUYỂN GIAO VÀ CÁC SỰ KIỆN BÁO CÁO TRONG WCDMA 66
3.11 CÁC THÔNG SỐ MÁY THU VÀ PHÁT VÔ TUYẾN CỦA UE 68
3.12 AMR CODEC CHO W-CDMA 68
3.13 TỔNG KẾT 69
Chương 4 TRUY NHẬP GÓI TỐC ĐỘ CAO (HSPA) 70
Trang 44.1 GIỚI THIỆU CHUNG 70
4.2 TỔNG QUAN TRUY NHẬP GÓI TỐC ĐỘ CAO (HSPA) 70
4.3 KIẾN TRÚC NGĂN XẾP GIAO THỨC GIAO DIỆN VÔ TUYẾN HSPA CHO SỐ LIỆU NGƯỜI SỬ DỤNG 71
4.4 TRUY NHẬP GÓI TỐC ĐỘ CAO ĐƯỜNG XUỐNG (HSDPA) 73
4.5 TRUY NHẬP GÓI TỐC ĐỘ CAO ĐƯỜNG LÊN (HSUPA) 84
4.6 CHUYỂN GIAO TRONG HSDPA 90
4.7 TỔNG KẾT 93
Thuật ngữ và viết tắt 95
Tài liệu tham khảo……… 100
Trang 5Chương 1 TỔNG QUAN MẠNG 3G WCDMA UMTS
1.1 GIỚI THIỆU CHUNG
1.1.1 Mục đích chương
Hiểu lộ trình phát triển thông tin di động lên 4G
Hiểu được kiến trúc tổng quát của một mạng thông tin di động 3G
Hiểu các kiến trúc mạng 3G WCDMA UMTS: R3, R4 và R5 và chiến lược chuyển dịch GSM lên 3G UMTS
1.1.2 Các chủ đề được trình bầy trong chương
Lộ trình phát triển các công nghệ thông tin di động lên 4G
Kiến trúc chung của một mạng thông tin di động 3G
Các khái niệm về các dịch vụ chuyển mạch kênh và các dịch vụ chuyển mạch gói
Các loại lưu lượng và các loại dịch vù mà 3G WCDMA UMTS có thể hỗ trợ
Kiến trúc 3G WCDMA UMTS qua các phát hành khác nhau: R3, R4, R5 và R6
Chiến lược chuyển dịch GSM lên 3G UMTS
1.1.3 Hướng dẫn
Học kỹ các tư liệu được trình bầy trong chương
Tham khảo thêm các tái liệu tham khảo cuối tài liệu
1.2 LỘ TRÌNH PHÁT TRIỂN THÔNG TIN DI ĐỘNG LÊN 4G
Lộ trình phát triển các công nghệ thông tin di động lên 4G được cho trên hình 1.1 và lộ trình nghiên cứu phát triển trong 3GPP được cho trên hình 1.2
Trang 6AMPS: Advanced Mobile Phone System
TACS: Total Access Communication System
GSM: Global System for Mobile Telecommucations
WCDMA: Wideband Code Division Multiple Access
EVDO: Evolution Data Only
IMT: International Mobile Telecommnications
IEEE: Institute of Electrical and Electtronics Engineers
WiFi: Wireless Fidelitity
WiMAX: Worldwide Interoperability for Microwave Access
LTE: Long Term Evolution
UMB: Untra Mobile Broadband
Hình 1.1 Lộ trình phát triển các công nghệ thông tin di động lên 4G
Hình 1.2 Lịch trình nghiên cứu phát triển trong 3GPP
Hình 1.3 cho thấy lộ trình tăng tốc độ truyền số liệu trong các phát hành của 3GPP
Trang 7Hình 1.3 Lộ trình tăng tốc độ truyền số liệu trong các phát hành của 3GPP
1.3 KIẾN TRÚC CHUNG CỦA MỘT HỆ THỐNG THÔNG TIN DI
ĐỘNG 3G
Mạng thông tin di động (TTDĐ) 3G lúc đầu sẽ là mạng kết hợp giữa các vùngchuyển mạch gói (PS) và chuyển mạch kênh (CS) để truyền số liệu gói và tiếng Cáctrung tâm chuyển mạch gói sẽ là các chuyển mạch sử dụng công nghệ ATM Trênđường phát triển đến mạng toàn IP, chuyển mạch kênh sẽ dần được thay thế bằngchuyển mạch gói Các dịch vụ kể cả số liệu lẫn thời gian thực (như tiếng và video)cuối cùng sẽ được truyền trên cùng một môi trường IP bằng các chuyển mạch gói.Hình 1.4 dưới đây cho thấy thí dụ về một kiến trúc tổng quát của TTDĐ 3G kết hợp cả
CS và PS trong mạng lõi
RAN: Radio Access Network: mạng truy nhập vô tuyến
BTS: Base Transceiver Station: trạm thu phát gốc
BSC: Base Station Controller: bộ điều khiển trạm gốc
RNC: Rado Network Controller: bộ điều khiển trạm gốc
CS: Circuit Switch: chuyển mạch kênh
PS: Packet Switch: chuyển mạch gói
SMS: Short Message Servive: dịch vụ nhắn tin
Server: máy chủ
PSTN: Public Switched Telephone Network: mạng điện thoại chuyển mạch công cộng
PLMN: Public Land Mobile Network: mang di động công cộng mặt đất
Hình 1.4 Kiến trúc tổng quát của một mạng di động kết hợp cả CS và PS
Trang 8Các miền chuyển mạch kênh (CS) và chuyển mạch gói (PS) được thể hiện bằngmột nhóm các đơn vị chức năng lôgic: trong thực hiện thực tế các miền chức năng nàyđược đặt vào các thiết bị và các nút vật lý Chẳng hạn có thể thực hiện chức năngchuyển mạch kênh CS (MSC/GMSC) và chức năng chuyển mạch gói (SGSN/GGSN)trong một nút duy nhất để được một hệ thống tích hợp cho phép chuyển mạch vàtruyền dẫn các kiểu phương tiện khác nhau: từ lưu lượng tiếng đến lưu lượng số liệudung lượng lớn
3G UMTS (Universal Mobile Telecommunications System: Hệ thống thông tin
di động toàn cầu) có thể sử dụng hai kiểu RAN Kiểu thứ nhất sử dụng công nghệ đatruy nhập WCDMA (Wide Band Code Devision Multiple Acces: đa truy nhập phânchia theo mã băng rộng) được gọi là UTRAN (UMTS Terrestrial Radio Network:mạng truy nhập vô tuyến mặt đất của UMTS) Kiểu thứ hai sử dụng công nghệ đa truynhập TDMA được gọi là GERAN (GSM EDGE Radio Access Network: mạng truynhập vô tuyến dưa trên công nghệ EDGE của GSM) Tài liệu chỉ xét đề cập đến côngnghệ duy nhất trong đó UMTS được gọi là 3G WCDMA UMTS
1.4 CHUYỂN MẠCH KÊNH (CS), CHUYỂN MẠCH GÓI (PS), DỊCH VỤ CHUYỂN MẠCH KÊNH VÀ DỊCH VỤ CHUYỂN MẠCH GÓI.
3G cung cấp các dịch vụ chuyển mạch kênh như tiếng, video và các dịch vụchuyển mạch gói chủ yếu để truy nhập internet
Chuyển mạch kênh (CS: Circuit Switch) là sơ đồ chuyển mạch trong đó thiết
bị chuyển mạch thực hiện các cuộc truyền tin bằng cách thiết lập kết nối chiếm một tàinguyên mạng nhất định trong toàn bộ cuộc truyền tin Kết nối này là tạm thời, liên tục
và dành riêng Tạm thời vì nó chỉ được duy trì trong thời gian cuộc gọi Liên tục vì nóđược cung cấp liên tục một tài nguyên nhất định (băng thông hay dung lượng và côngsuất) trong suốt thời gian cuộc gọi Dành riêng vì kết nối này và tài nguyên chỉ dànhriêng cho cuộc gọi này Thiết bị chuyển mạch sử dụng cho CS trong các tổng đài củaTTDĐ 2G thực hiện chuyển mạch kênh trên trên cơ sở ghép kênh theo thời gian trong
đó mỗi kênh có tốc độ 64 kbps và vì thế phù hợp cho việc truyền các ứng dụng làmviệc tại tốc độ cố định 64 kbps (chẳng hạn tiếng được mã hoá PCM)
Chuyển mạch gói (PS: Packet Switch) là sơ đồ chuyển mạch thực hiện phân
chia số liệu của một kết nối thành các gói có độ dài nhất định và chuyển mạch các góinày theo thông tin về nơi nhận được gắn với từng gói và ở PS tài nguyên mạng chỉ bịchiếm dụng khi có gói cần truyền Chuyển mạch gói cho phép nhóm tất cả các số liệucủa nhiều kết nối khác nhau phụ thuộc vào nội dung, kiểu hay cấu trúc số liệu thànhcác gói có kích thước phù hợp và truyền chúng trên một kênh chia sẻ Việc nhóm các
số liệu cần truyền được thực hiện bằng ghép kênh thống kê với ấn định tài nguyênđộng Các công nghệ sử dụng cho chuyển mạch gói có thể là Frame Relay, ATM hoặcIP
Hình 1.5 cho thấy cấu trúc của CS và PS
Trang 9Hình 1.5 Chuyển mạch kênh (CS) và chuyển mạch gói (PS).
Dịch vụ chuyển mạch kênh (CS Service) là dịch vụ trong đó mỗi đầu cuối
được cấp phát một kênh riêng và nó toàn quyển sử dụng tài nguyên của kênh này trongthời gian cuộc gọi tuy nhiên phải trả tiền cho toàn bộ thời gian này dù có truyền tinhay không Dịch vụ chuyển mạch kênh có thể được thực hiện trên chuyển mạch kênh(CS) hoặc chuyển mạch gói (PS) Thông thường dịch vụ này được áp dụng cho cácdịch vụ thời gian thực (thoại)
Dịch vụ chuyển mạch gói (PS Service) là dịch vụ trong đó nhiều đầu cuối cùng
chia sẻ một kênh và mỗi đầu cuối chỉ chiếm dụng tài nguyên của kênh này khi cóthông tin cần truyền và nó chỉ phải trả tiền theo lượng tin được truyền trên kênh Dịch
vụ chuyển mạch gói chỉ có thể được thực hiện trên chuyển mạch gói (PS) Dịch vụ nàyrất rất phù hợp cho các dịch vụ phi thời gian thực (truyền số liệu), tuy nhiên nhờ sựphát triển của công nghệ dịch vụ này cũng được áp dụng cho các dịch vụ thời gianthực (VoIP)
Chuyển mạch gói có thể thực hiện trên cơ sở ATM hoặc IP
ATM (Asynchronous Transfer Mode: chế độ truyền dị bộ) là công nghệ thực
hiện phân chia thông tin cần phát thành các tế bào 53 byte để truyền dẫn và chuyểnmạch Một tế bào ATM gồm 5 byte tiêu đề (có chứa thông tin định tuyến) và 48 bytetải tin (chứa số liệu của người sử dụng) Thiết bị chuyển mạch ATM cho phép chuyểnmạch nhanh trên cơ sở chuyển mạch phần cứng tham chuẩn theo thông tin định tuyếntiêu đề mà không thực hiện phát hiện lỗi trong từng tế bào Thông tin định tuyến trongtiêu đề gồm: đường dẫn ảo (VP) và kênh ảo (VC) Điều khiển kết nối bằng VC (tươngứng với kênh của người sử dụng) và VP (là một bó các VC) cho phép khai thác vàquản lý có khả năng mở rộng và có độ linh hoạt cao Thông thường VP được thiết lậptrên cơ sở số liệu của hệ thống tại thời điểm xây dựng mạng Việc sử dụng ATM trongmạng lõi cho ta nhiều cái lợi: có thể quản lý lưu lượng kết hợp với RAN, cho phépthực hiện các chức năng CS và PS trong cùng một kiến trúc và thực hiện khai tháccũng như điều khiển chất lượng liên kết
Trang 10Chuyển mạch hay Router IP (Internet Protocol) cũng là một công nghệ thực
hiện phân chia thông tin phát thành các gói được gọi là tải tin (Payload) Sau đó mỗigói được gán một tiêu đề chứa các thông tin địa chỉ cần thiết cho chuyển mạch Trongthông tin di động do vị trí của đầu cuối di động thay đổi nên cần phải có thêm tiêu đề
bổ sung để định tuyến theo vị trí hiện thời của máy di động Quá trình định tuyến nàyđược gọi là truyền đường hầm (Tunnel) Có hai cơ chế để thực hiện điều này: MIP(Mobile IP: IP di động) và GTP (GPRS Tunnel Protocol: giao thức đường hầmGPRS) Tunnel là một đường truyền mà tại đầu vào của nó gói IP được đóng bao vàomột tiêu đề mang địa chỉ nơi nhận (trong trường hợp này là địa chỉ hiện thời của máy
di động) và tại đầu ra gói IP được tháo bao bằng cách loại bỏ tiêu đề bọc ngoài (hình1.6)
Hình 1.6 Đóng bao và tháo bao cho gói IP trong quá trình truyền tunnel
Hình 1.7 cho thấy quá trình định tuyến tunnel (chuyển mạch tunnel) trong hệthống 3G UMTS từ tổng đài gói cổng (GGSN) cho một máy di động (UE) khi nóchuyển từ vùng phục vụ của một tổng đài gói nội hạt (SGSN1) này sang một vùngphục vụ của một tổng đài gói nội hạt khác (SGSN2) thông qua giao thức GTP
Hình 1.7 Thiết lập kết nối tunnel trong chuyển mạch tunnel
Vì 3G WCDMA UMTS được phát triển từ những năm 1999 khi mà ATM làcông nghệ chuyển mạch gói còn ngự trị nên các tiêu chuẩn cũng được xây dựng trêncông nghệ này Tuy nhiên hiện nay và tương lai mạng viễn thông sẽ được xây dựngtrên cơ sở internet vì thế các chuyển mạch gói sẽ là chuyển mạch hoặc router IP
Trang 111.5 CÁC LOẠI LƯU LƯỢNG VÀ DỊCH VỤ ĐƯỢC 3GWCDMA UMTS
HỖ TRỢ
Vì TTDĐ 3G cho phép truyền dẫn nhanh hơn, nên truy nhập Internet và lưulượng thông tin số liệu khác sẽ phát triển nhanh Ngoài ra TTDĐ 3G cũng được sửdụng cho các dịch vụ tiếng Nói chung TTDĐ 3G hỗ trợ các dịch vụ tryền thông đaphương tiện Vì thế mỗi kiểu lưu lượng cần đảm bảo một mức QoS nhất định tuỳ theoứng dụng của dịch vụ QoS ở W-CDMA được phân loại như sau:
Loại hội thoại (Conversational, rt): Thông tin tương tác yêu cầu trễ nhỏ (thoại chẳng
hạn)
Loại luồng (Streaming, rt): Thông tin một chiều đòi hỏi dịch vụ luồng với trễ nhỏ
(phân phối truyền hình thời gian thực chẳng hạn: Video Streaming)
Loại tương tác (Interactive, nrt): Đòi hỏi trả lời trong một thời gian nhất định và tỷ lệ
lỗi thấp (trình duyệt Web, truy nhập server chẳng hạn)
Loại nền (Background, nrt): Đòi hỏi các dịch vụ nỗ lực nhất được thực hiện trên nền
cơ sở (e-mail, tải xuống file: Video Download)
Môi trường hoạt động của 3WCDMA UMTS được chia thành bốn vùng vớicác tốc độ bit Rb phục vụ như sau:
Vùng 1: trong nhà, ô pico, Rb 2Mbps
Vùng 2: thành phố, ô micro, Rb 384 kbps
Vùng 2: ngoại ô, ô macro, Rb 144 kbps
Vùng 4: Toàn cầu, Rb = 12,2 kbps
Có thể tổng kết các dịch vụ do 3GWCDMA UMTS cung cấp ở bảng 1.1
Bảng 1.1 Phân loại các dịch vụ ở 3GWDCMA UMTS
Kiểu Phân loại Dịch vụ chi tiết
Dịch vụ di
động
Dịch vụ di động Di động đầu cuối/di động cá nhân/di động dịch
vụDịch vụ thông tinđịnh vị
- Theo dõi di động/ theo dõi di động thôngminh
Dịch vụ âm thanh - Dịch vụ âm thanh chất lượng cao (16-64 kbps)
- Dịch vụ truyền thanh AM (32-64 kbps)
- Dịch vụ truyền thanh FM (64-384 kbps)Dịch vụ
phương tiện
- Dịch vụ Video (384 kbps)
Trang 12Kiểu Phân loại Dịch vụ chi tiết
Dịch vụ truy nhập Web (384 kbps-2Mbps)
Dịch vụ Internetthời gian thực
Dịch vụ Internet (384 kbps-2Mbps)
Dịch vụ internet
đa phương tiện
Dịch vụ Website đa phương tiện thời gian thực( 2Mbps)
3G WCDMA UMTS được xây dựng theo ba phát hành chính được gọi là R3,R4, R5 Trong đó mạng lõi R3 và R4 bao gồm hai miền: miền CS (Circuit Switch:chuyển mạch kênh) và miền PS (Packet Switch: chuyển mạch gói) Việc kết hợp nàyphù hợp cho giai đoạn đầu khi PS chưa đáp ứng tốt các dịch vụ thời gian thực nhưthoại và hình ảnh Khi này miền CS sẽ đảm nhiệm các dịch vụ thoại còn số liệu đượctruyền trên miền PS R4 phát triển hơn R3 ở chỗ miền CS chuyển sang chuyển mạchmềm vì thế toàn bộ mạng truyền tải giữa các nút chuyển mạch đều trên IP Dưới đây
ta xét ba kiến trúc 3G WCDMA UMTS nói trên
1.6 KIẾN TRÚC 3G WCDMA UMTS R3
WCDMA UMTS R3 hỗ trợ cả kết nối chuyển mạch kênh lẫn chuyển mạch gói:đến 384 Mbps trong miền CS và 2Mbps trong miền PS Các kết nối tốc độ cao nàyđảm bảo cung cấp một tập các dich vụ mới cho người sử dụng di động giống như trongcác mạng điện thoại cố định và Internet Các dịch vụ này gồm: điện thoại có hình (Hộinghị video), âm thanh chất lượng cao (CD) và tốc độ truyền cao tại đầu cuối Một tínhnăng khác cũng được đưa ra cùng với GPRS là "luôn luôn kết nối" đến Internet.UMTS cũng cung cấp thông tin vị trí tốt hơn và vì thế hỗ trợ tốt hơn các dịch vụ dựatrên vị trí
Một mạng UMTS bao gồm ba phần: thiết bị di động (UE: User Equipment),mạng truy nhập vô tuyến mặt đất UMTS (UTRAN: UMTS Terrestrial RadioNetwork), mạng lõi (CN: Core Network) (xem hình 1.8) UE bao gồm ba thiết bị: thiết
bị đầu cuối (TE), thiết bị di động (ME) và module nhận dạng thuê bao UMTS (USIM:UMTS Subscriber Identity Module) UTRAN gồm các hệ thống mạng vô tuyến (RNS:Radio Network System) và mỗi RNS bao gồm RNC (Radio Network Controller: bộđiều khiển mạng vô tuyến) và các nút B nối với nó Mạng lõi CN bao gồm miềnchuyển mạch kênh, chuyển mạch gói và HE (Home Environment: Môi trường nhà)
HE bao gồm các cơ sở dữ liệu: AuC (Authentication Center: Trung tâm nhận thực),HLR (Home Location Register: Bộ ghi định vị thường trú) và EIR (Equipment IdentityRegister: Bộ ghi nhận dạng thiết bị)
Trang 13Hình 1.8 Kiến trúc 3G WCDMA UMTS R31.6.1 Thiết bị người sử dụng (UE)
UE (User Equipment: thiết bị người sử dụng) là đầu cuối mạng UMTS củangười sử dụng Có thể nói đây là phần hệ thống có nhiều thiết bị nhất và sự phát triểncủa nó sẽ ảnh hưởng lớn lên các ứng dụng và các dịch vụ khả dụng Giá thành giảmnhanh chóng sẽ tạo điều kiện cho người sử dụng mua thiết bị của UMTS Điều này đạtđược nhờ tiêu chuẩn hóa giao diện vô tuyến và cài đặt mọi trí tuệ tại các card thôngminh
1.6.1.1 Các đầu cuối (TE)
Vì máy đầu cuối bây giờ không chỉ đơn thuần dành cho điện thoại mà còn cungcấp các dịch vụ số liệu mới, nên tên của nó được chuyển thành đầu cuối Các nhà sảnxuất chính đã đưa ra rất nhiều đầu cuối dựa trên các khái niệm mới, nhưng trong thực
tế chỉ một số ít là được đưa vào sản xuất Mặc dù các đầu cuối dự kiến khác nhau vềkích thước và thiết kế, tất cả chúng đều có màn hình lớn và ít phím hơn so với 2G Lý
do chính là để tăng cường sử dụng đầu cuối cho nhiều dịch vụ số liệu hơn và vì thếđầu cuối trở thành tổ hợp của máy thoại di động, modem và máy tính bàn tay
Đầu cuối hỗ trợ hai giao diện Giao diện Uu định nghĩa liên kết vô tuyến (giaodiện WCDMA) Nó đảm nhiệm toàn bộ kết nối vật lý với mạng UMTS Giao diện thứhai là giao diện Cu giữa UMTS IC card (UICC) và đầu cuối Giao diện này tuân theotiêu chuẩn cho các card thông minh
Mặc dù các nhà sản xuất đầu cuối có rất nhiều ý tưởng về thiết bị, họ phải tuântheo một tập tối thiểu các định nghĩa tiêu chuẩn để các người sử dụng bằng các đầucuối khác nhau có thể truy nhập đến một số các chức năng cơ sở theo cùng một cách
Các tiêu chuẩn này gồm:
Bàn phím (các phím vật lý hay các phím ảo trên màn hình)
Đăng ký mật khẩu mới
Thay đổi mã PIN
Giải chặn PIN/PIN2 (PUK)
Trang 14 Trình bầy IMEI
Điều khiển cuộc gọi
Các phần còn lại của giao diện sẽ dành riêng cho nhà thiết kế và người sử dụng sẽchọn cho mình đầu cuối dựa trên hai tiêu chuẩn (nếu xu thế 2G còn kéo dài) là thiết kế
và giao diện Giao diện là kết hợp của kích cỡ và thông tin do màn hình cung cấp (mànhình nút chạm), các phím và menu
mã truy nhập giao dịch ngân hàng an ninh) Ngoài ra có thể có nhiều USIM trên cùngmột UICC để hỗ trợ truy nhập đến nhiều mạng
USIM chứa các hàm và số liệu cần để nhận dạng và nhận thực thuê bao trongmạng UMTS Nó có thể lưu cả bản sao hồ sơ của thuê bao
Người sử dụng phải tự mình nhận thực đối với USIM bằng cách nhập mã PIN.Điểu này đảm bảo rằng chỉ người sử dụng đích thực mới được truy nhập mạng UMTS.Mạng sẽ chỉ cung cấp các dịch vụ cho người nào sử dụng đầu cuối dựa trên nhận dạngUSIM được đăng ký
1.6.2 Mạng truy nhập vô tuyến UMTS
UTRAN (UMTS Terrestrial Radio Access Network: Mạng truy nhập vô tuyếnmặt đất UMTS) là liên kết giữa người sử dụng và CN Nó gồm các phần tử đảm bảocác cuộc truyền thông UMTS trên vô tuyến và điều khiển chúng
UTRAN được định nghĩa giữa hai giao diện Giao diện Iu giữa UTRAN và CN,gồm hai phần: IuPS cho miền chuyển mạch gói và IuCS cho miền chuyển mạch kênh;giao diện Uu giữa UTRAN và thiết bị người sử dụng Giữa hai giao diện này là hainút, RNC và nút B
1.6.2.1 RNC
RNC (Radio Network Controller) chịu trách nhiệm cho một hay nhiều trạm gốc
và điều khiển các tài nguyên của chúng Đây cũng chính là điểm truy nhập dịch vụ màUTRAN cung cấp cho CN Nó được nối đến CN bằng hai kết nối, một cho miềnchuyển mạch gói (đến GPRS) và một đến miền chuyển mạch kênh (MSC)
Trang 15Một nhiệm vụ quan trọng nữa của RNC là bảo vệ sự bí mật và toàn vẹn Sau thủtục nhận thực và thỏa thuận khóa, các khoá bảo mật và toàn vẹn được đặt vào RNC.Sau đó các khóa này được sử dụng bởi các hàm an ninh f8 và f9.
RNC có nhiều chức năng logic tùy thuộc vào việc nó phục vụ nút nào Người
sử dụng được kết nối vào một RNC phục vụ (SRNC: Serving RNC) Khi người sửdụng chuyển vùng đến một RNC khác nhưng vẫn kết nối với RNC cũ, một RNC trôi(DRNC: Drift RNC) sẽ cung cấp tài nguyên vô tuyến cho người sử dụng, nhưng RNCphục vụ vẫn quản lý kết nối của người sử dụng đến CN Vai trò logic của SRNC vàDRNC được mô tả trên hình 1.9 Khi UE trong chuyển giao mềm giữa các RNC, tồntại nhiều kết nối qua Iub và có ít nhất một kết nối qua Iur Chỉ một trong số các RNCnày (SRNC) là đảm bảo giao diện Iu kết nối với mạng lõi còn các RNC khác (DRNC)chỉ làm nhiệm vụ định tuyến thông tin giữa các Iub và Iur
Chức năng cuối cùng của RNC là RNC điều khiển (CRNC: Control RNC) Mỗinút B có một RNC điều khiển chịu trách nhiệm cho các tài nguyên vô tuyến của nó
Hình 1.9 Vai trò logic của SRNC và DRNC1.6.2.2 Nút B
Trong UMTS trạm gốc được gọi là nút B và nhiệm vụ của nó là thực hiện kếtnối vô tuyến vật lý giữa đầu cuối với nó Nó nhận tín hiệu trên giao diện Iub từ RNC
và chuyển nó vào tín hiệu vô tuyến trên giao diện Uu Nó cũng thực hiện một số thaotác quản lý tài nguyên vô tuyến cơ sở như "điều khiển công suất vòng trong" Tínhnăng này để phòng ngừa vấn đề gần xa; nghĩa là nếu tất cả các đầu cuối đều phát cùngmột công suất, thì các đầu cuối gần nút B nhất sẽ che lấp tín hiệu từ các đầu cuối ở xa.Nút B kiểm tra công suất thu từ các đầu cuối khác nhau và thông báo cho chúng giảmcông suất hoặc tăng công suất sao cho nút B luôn thu được công suất như nhau từ tất
cả các đầu cuối
1.6.3 Mạng lõi
Mạng lõi (CN) được chia thành ba phần, miền PS, miền CS và HE Miền PSđảm bảo các dịch vụ số liệu cho người sử dụng bằng các kết nối đến Internet và cácmạng số liệu khác và miền CS đảm bảo các dịch vụ điện thoại đến các mạng khácbằng các kết nối TDM Các nút B trong CN được kết nối với nhau bằng đường trụccủa nhà khai thác, thường sử dụng các công nghệ mạng tốc độ cao như ATM và IP.Mạng đường trục trong miền CS sử dụng TDM còn trong miền PS sử dụng IP
Trang 161.6.3.1 SGSN
SGSN (SGSN: Serving GPRS Support Node: nút hỗ trợ GPRS phục vụ) là nútchính của miền chuyển mạch gói Nó nối đến UTRAN thông qua giao diện IuPS vàđến GGSN thông quan giao diện Gn SGSN chịu trách nhiệm cho tất cả kết nối PS củatất cả các thuê bao Nó lưu hai kiểu dữ liệu thuê bao: thông tin đăng ký thuê bao vàthông tin vị trí thuê bao
Số liệu thuê bao lưu trong SGSN gồm:
IMSI (International Mobile Subsscriber Identity: số nhận dạng thuê bao di độngquốc tế)
Các nhận dạng tạm thời gói (P-TMSI: Packet- Temporary Mobile SubscriberIdentity: số nhận dạng thuê bao di động tạm thời gói)
Các địa chỉ PDP (Packet Data Protocol: Giao thức số liệu gói)
Số liệu vị trí lưu trên SGSN:
Vùng định tuyến thuê bao (RA: Routing Area)
Số liệu thuê bao lưu trong GGSN:
IMSI
Các địa chỉ PDP
Số liệu vị trí lưu trong GGSN:
Địa chỉ SGSN hiện thuê bao đang nối đến
GGSN nối đến Internet thông qua giao diện Gi và đến BG thông qua Gp
1.6.3.3 BG
BG (Border Gatway: Cổng biên giới) là một cổng giữa miền PS của PLMN vớicác mạng khác Chức năng của nút này giống như tường lửa của Internet: để đảm bảomạng an ninh chống lại các tấn công bên ngoài
1.6.3.4 VLR
Trang 17VLR (Visitor Location Register: bộ ghi định vị tạm trú) là bản sao của HLRcho mạng phục vụ (SN: Serving Network) Dữ liệu thuê bao cần thiết để cung cấp cácdịch vụ thuê bao được copy từ HLR và lưu ở đây Cả MSC và SGSN đều có VLR nốivới chúng.
Số liệu sau đây được lưu trong VLR:
IMSI
MSISDN
TMSI (nếu có)
LA hiện thời của thuê bao
MSC/SGSN hiện thời mà thuê bao nối đến
Ngoài ra VLR có thể lưu giữ thông tin về các dịch vụ mà thuê bao được cung cấp
Cả SGSN và MSC đều được thực hiện trên cùng một nút vật lý với VLR vì thếđược gọi là VLR/SGSN và VLR/MSC
1.6.3.5 MSC
MSC thực hiện các kết nối CS giữa đầu cuối và mạng Nó thực hiện các chứcnăng báo hiệu và chuyển mạch cho các thuê bao trong vùng quản lý của mình Chứcnăng của MSC trong UMTS giống chức năng MSC trong GSM, nhưng nó có nhiềukhả năng hơn Các kết nối CS được thực hiện trên giao diện CS giữa UTRAN vàMSC Các MSC được nối đến các mạng ngoài qua GMSC
1.6.3.6 GMSC
GMSC có thể là một trong số các MSC GMSC chịu trách nhiệm thực hiện cácchức năng định tuyến đến vùng có MS Khi mạng ngoài tìm cách kết nối đến PLMNcủa một nhà khai thác, GMSC nhận yêu cầu thiết lập kết nối và hỏi HLR về MSC hiệnthời quản lý MS
1.6.3.7 Môi trường nhà
Môi trường nhà (HE: Home Environment) lưu các hồ sơ thuê bao của hãng khaithác Nó cũng cung cấp cho các mạng phục vụ (SN: Serving Network) các thông tin vềthuê bao và về cước cần thiết để nhận thực người sử dụng và tính cước cho các dịch vụcung cấp Tất cả các dịch vụ được cung cấp và các dịch vụ bị cấm đều được liệt kê ởđây
Bộ ghi định vị thường trú (HLR)
Trang 18HLR là một cơ sở dữ liệu có nhiệm vụ quản lý các thuê bao di động Một mạng
di động có thể chứa nhiều HLR tùy thuộc vào số lượng thuê bao, dung lượng của từngHLR và tổ chức bên trong mạng
Cơ sở dữ liệu này chứa IMSI (International Mobile Subsscriber Identity: sốnhận dạng thuê bao di động quốc tế), ít nhất một MSISDN (Mobile Station ISDN: sốthuê bao có trong danh bạ điện thoại) và ít nhất một địa chỉ PDP (Packet DataProtocol: Giao thức số liệu gói) Cả IMSI và MSISDN có thể sử dụng làm khoá đểtruy nhập đến các thông tin được lưu khác Để định tuyến và tính cước các cuộc gọi,HLR còn lưu giữ thông tin về SGSN và VLR nào hiện đang chịu trách nhiệm thuê bao.Các dịch vụ khác như chuyển hướng cuộc gọi, tốc độ số liệu và thư thoại cũng cótrong danh sách cùng với các hạn chế dịch vụ như các hạn chế chuyển mạng
HLR và AuC là hai nút mạng logic, nhưng thường được thực hiện trong cùngmột nút vật lý HLR lưu giữ mọi thông tin về người sử dụng và đăng ký thuê bao.Như: thông tin tính cước, các dịch vụ nào được cung cấp và các dịch vụ nào bị từ chối
và thông tin chuyển hướng cuộc gọi Nhưng thông tin quan trọng nhất là hiện VLR vàSGSN nào đang phụ trách người sử dụng
Trung tâm nhận thực (AuC)
AUC (Authentication Center) lưu giữ toàn bộ số liệu cần thiết để nhận thực,mật mã hóa và bảo vệ sự toàn vẹn thông tin cho người sử dụng Nó liên kết với HLR
và được thực hiện cùng với HLR trong cùng một nút vật lý Tuy nhiên cần đảm bảorằng AuC chỉ cung cấp thông tin về các vectơ nhận thực (AV: Authetication Vector)cho HLR
AuC lưu giữ khóa bí mật chia sẻ K cho từng thuê bao cùng với tất cả các hàmtạo khóa từ f0 đến f5 Nó tạo ra các AV, cả trong thời gian thực khi SGSN/VLR yêucầu hay khi tải xử lý thấp, lẫn các AV dự trữ
Bộ ghi nhận dạng thiết bị (EIR)
EIR (Equipment Identity Register) chịu trách nhiệm lưu các số nhận dạng thiết
bị di động quốc tế (IMEI: International Mobile Equipment Identity) Đây là số nhậndạng duy nhất cho thiết bị đầu cuối Cơ sở dữ liệu này được chia thành ba danh mục:danh mục trắng, xám và đen Danh mục trắng chứa các số IMEI được phép truy nhậpmạng Danh mục xám chứa IMEI của các đầu cuối đang bị theo dõi còn danh mục đenchứa các số IMEI của các đầu cuối bị cấm truy nhập mạng Khi một đầu cuối đượcthông báo là bị mất cắp, IMEI của nó sẽ bị đặt vào danh mục đen vì thế nó bị cấm truynhập mạng Danh mục này cũng có thể được sử dụng để cấm các seri máy đặc biệtkhông được truy nhập mạng khi chúng không hoạt động theo tiêu chuẩn
1.6.4 Các mạng ngoài
Các mạng ngoài không phải là bộ phận của hệ thống UMTS, nhưng chúng cầnthiết để đảm bảo truyền thông giữa các nhà khai thác Các mạng ngoài có thể là cácmạng điện thoại như: PLMN (Public Land Mobile Network: mạng di động mặt đấtcông cộng), PSTN (Public Switched Telephone Network: Mạng điện thoại chuyển
Trang 19mạch công cộng), ISDN hay các mạng số liệu như Internet Miền PS kết nối đến cácmạng số liệu còn miền CS nối đến các mạng điện thoại.
1.6.5 Các giao diện
Vai trò các các nút khác nhau của mạng chỉ được định nghĩa thông qua các giaodiện khác nhau Các giao diện này được định nghĩa chặt chẽ để các nhà sản xuất có thểkết nối các phần cứng khác nhau của họ
Giao diện Cu Giao diện Cu là giao diện chuẩn cho các card thông minh Trong
UE đây là nơi kết nối giữa USIM và UE
Giao diện Uu Giao diện Uu là giao diện vô tuyến của WCDMA trong UMTS.
Đây là giao diện mà qua đó UE truy nhập vào phần cố định của mạng Giaodiện này nằm giữa nút B và đầu cuối
Giao diện Iu Giao diện Iu kết nối UTRAN và CN Nó gồm hai phần, IuPS cho
miền chuyển mạch gói, IuCS cho miền chuyển mạch kênh CN có thể kết nốiđến nhiều UTRAN cho cả giao diện IuCS và IuPS Nhưng một UTRAN chỉ cóthể kết nối đến một điểm truy nhập CN
Giao diện Iur Đây là giao diện RNC-RNC Ban đầu được thiết kế để đảm bảo
chuyển giao mềm giữa các RNC, nhưng trong quá trình phát triển nhiều tínhnăng mới được bổ sung Giao diện này đảm bảo bốn tính năng nổi bật sau:
1 Di động giữa các RNC
2 Lưu thông kênh riêng
3 Lưu thông kênh chung
4 Quản lý tài nguyên toàn cục
Giao diện Iub Giao diện Iub nối nút B và RNC Khác với GSM đây là giao
diện mở
1.7 KIẾN TRÚC 3G WCDMA UMTS R4
Hình 1.10 cho thấy kiến trúc cơ sở của 3G UMTS R4 Sự khác nhau cơ bản giữaR3 và R4 là ở chỗ khi này mạng lõi là mạng phân bố và chuyển mạch mềm Thay choviệc có các MSC chuyển mạch kênh truyền thống như ở kiến trúc trước, kiến trúcchuyển mạch phân bố và chuyển mạch mềm được đưa vào
Về căn bản, MSC được chia thành MSC server và cổng các phương tiện (MGW:Media Gateway) MSC chứa tất cả các phần mềm điều khiển cuộc gọi, quản lý di động
có ở một MSC tiêu chuẩn Tuy nhiên nó không chứa ma trận chuyển mạch Ma trậnchuyển mạch nằm trong MGW được MSC Server điều khiển và có thể đặt xa MSCServer
Trang 20Hình 1.10 Kiến trúc mạng phân bố của phát hành 3GPP R4
Báo hiệu điều khiển các cuộc gọi chuyển mạch kênh được thực hiện giữa RNC
và MSC Server Đường truyền cho các cuộc gọi chuyển mạch kênh được thực hiệngiữa RNC và MGW Thông thường MGW nhận các cuộc gọi từ RNC và định tuyếncác cuộc gọi này đến nơi nhận trên các đường trục gói Trong nhiều trường hợp đường
trục gói sử dụng Giao thức truyền tải thời gian thực (RTP: Real Time Transport
Protocol) trên Giao thức Internet (IP) Từ hình 1.10 ta thấy lưu lượng số liệu gói từ
RNC đi qua SGSN và từ SGSN đến GGSN trên mạng đường trục IP Cả số liệu vàtiếng đều có thể sử dụng truyền tải IP bên trong mạng lõi Đây là mạng truyền tải hoàntoàn IP
Tại nơi mà một cuộc gọi cần chuyển đến một mạng khác, PSTN chẳng hạn, sẽ cómột cổng các phương tiện khác (MGW) được điều khiển bởi MSC Server cổng(GMSC server) MGW này sẽ chuyển tiếng thoại được đóng gói thành PCM tiêuchuẩn để đưa đến PSTN Như vậy chuyển đổi mã chỉ cần thực hiện tại điểm này Đểthí dụ, ta giả thiết rằng nếu tiếng ở giao diện vô tuyến được truyền tại tốc độ 12,2 kbps,thì tốc độ này chỉ phải chuyển vào 64 kbps ở MGW giao tiếp với PSTN Truyền tảikiểu này cho phép tiết kiệm đáng kể độ rộng băng tần nhất là khi các MGW cách xanhau
Giao thức điều khiển giữa MSC Server hoặc GMSC Server với MGW là giaothức ITU H.248 Giao thức này được ITU và IETF cộng tác phát triển Nó có tên làđiều khiển cổng các phương tiện (MEGACO: Media Gateway Control) Giao thứcđiều khiển cuộc gọi giữa MSC Server và GMSC Server có thể là một giao thức điều
khiển cuộc gọi bất kỳ 3GPP đề nghị sử dụng (không bắt buộc) giao thức Điều khiển cuộc gọi độc lập vật mang (BICC: Bearer Independent Call Control) được xây dựng
trên cơ sở khuyến nghị Q.1902 của ITU
Trang 21Trong nhiều trường hợp MSC Server hỗ trợ cả các chức năng của GMSC Server.Ngoài ra MGW có khả năng giao diện với cả RAN và PSTN Khi này cuộc gọi đếnhoặc từ PSTN có thể chuyển nội hạt, nhờ vậy có thể tiết kiệm đáng kể đầu tư.
Để làm thí dụ ta xét trường hợp khi một RNC được đặt tại thành phố A và đượcđiều khiển bởi một MSC đặt tại thành phố B Giả sử thuê bao thành phố A thực hiệncuộc gọi nội hạt Nếu không có cấu trúc phân bố, cuộc gọi cần chuyển từ thành phố Ađến thành phố B (nơi có MSC) để đấu nối với thuê bao PSTN tại chính thành phố A.Với cấu trúc phân bố, cuộc gọi có thể được điều khiển tại MSC Server ở thành phố Bnhưng đường truyền các phương tiện thực tế có thể vẫn ở thành phố A, nhờ vậy giảmđáng kể yêu cầu truyền dẫn và giá thành khai thác mạng
Từ hình 1.10 ta cũng thấy rằng HLR cũng có thể được gọi là Server thuê bao tạinhà (HSS: Home Subscriber Server) HSS và HLR có chức năng tương đương, ngoạitrừ giao diện với HSS là giao diện trên cơ sở truyền tải gói (IP chẳng hạn) trong khiHLR sử dụng giao diện trên cơ sở báo hiệu số 7 Ngoài ra còn có các giao diện (không
có trên hình vẽ) giữa SGSN với HLR/HSS và giữa GGSN với HLR/HSS
Rất nhiều giao thức được sử dụng bên trong mạng lõi là các giao thức trên cơ sởgói sử dụng hoặc IP hoặc ATM Tuy nhiên mạng phải giao diện với các mạng truyềnthống qua việc sử dụng các cổng các phương tiện Ngoài ra mạng cũng phải giao diệnvới các mạng SS7 tiêu chuẩn Giao diện này được thực hiện thông qua cổng SS7 (SS7GW) Đây là cổng mà ở một phía nó hỗ trợ truyền tải bản tin SS7 trên đường truyền tảiSS7 tiêu chuẩn, ở phía kia nó truyền tải các bản tin ứng dụng SS7 trên mạng gói (IPchẳng hạn) Các thực thể như MSC Server, GMSC Server và HSS liên lạc với cổngSS7 bằng cách sử dụng các giao thức truyền tải được thiết kế đặc biệt để mang các bảntin SS7 ở mạng IP Bộ giao thức này được gọi là Sigtran
1.8 KIẾN TRÚC 3G WCDMA UMTS R5 và R6
Bước phát triển tiếp theo của UMTS là đưa ra kiến trúc mạng đa phương tiện IP(hình 1.11) Bước phát triển này thể hiện sự thay đổi toàn bộ mô hình cuộc gọi Ở đây
cả tiếng và số liệu được xử lý giống nhau trên toàn bộ đường truyền từ đầu cuối củangười sử dụng đến nơi nhận cuối cùng Có thể coi kiến trúc này là sự hội tụ toàn diệncủa tiếng và số liệu
Trang 22Hình 1.11 Kiến trúc mạng 3GPP R5 và R6
Điểm mới của R5 và R6 là nó đưa ra một miền mới được gọi là phân hệ đaphương tiện IP (IMS: IP Multimedia Subsystem) Đây là một miền mạng IP được thiết
kế để hỗ trợ các dịch vụ đa phương tiện thời gian thực IP Từ hình 1.11 ta thấy tiếng và
số liệu không cần các giao diện cách biệt; chỉ có một giao diện Iu duy nhất mang tất cảphương tiện Trong mạng lõi giao diện này kết cuối tại SGSN và không có MGWriêng
Phân hệ đa phương tiện IP (IMS) chứa các phần tử sau: Chức năng điều khiển trạng thái kết nối (CSCF: Connection State Control Function), Chức năng tài nguyên
đa phương tiện (MRF: Multimedia Resource Function), chức năng điều khiển cổng các phương tiện (MGCF: Media Gateway Control Function), Cổng báo hiệu truyền tải (T-SGW: Transport Signalling Gateway) và Cổng báo hiệu chuyển mạng (R-SGW: Roaming Signalling Gateway).
Một nét quan trọng của kiến trúc toàn IP là thiết bị của người sử dụng được tăng
cường rất nhiều Nhiều phần mềm được cài đặt ở UE Trong thực tế, UE hỗ trợ giao
thức khởi đầu phiên (SIP: Session Initiation Protocol) UE trở thành một tác nhân của
người sử dụng SIP Như vậy, UE có khả năng điều khiển các dịch vụ lớn hơn trước rấtnhiều
CSCF quản lý việc thiết lập , duy trì và giải phóng các phiên đa phương tiện đến
và từ người sử dụng Nó bao gồm các chức năng như: phiên dịch và định tuyến CSCFhoạt động như một đại diện Server /hộ tịch viên
SGSN và GGSN là các phiên bản tăng cường của các nút được sử dụng ở GPRS
và UMTS R3 và R4 Điểm khác nhau duy nhất là ở chỗ các nút này không chỉ hỗ trợdịch vụ số liệu gói mà cả dịch vụ chuyển mạch kênh (tiếng chẳng hạn) Vì thế cần hỗtrợ các khả năng chất lượng dịch vụ (QoS) hoặc bên trong SGSN và GGSN hoặc ítnhất ở các Router kết nối trực tiếp với chúng
Trang 23Chức năng tài nguyên đa phương tiện (MRF) là chức năng lập cầu hội nghi được
sử dụng để hỗ trợ các tính năng như tổ chức cuộc gọi nhiều phía và dịch vụ hội nghị
Cổng báo hiệu truyền tải (T-SGW) là một cổng báo hiệu SS7 để đảm bảo tương
tác SS7 với các mạng tiêu chuẩn ngoài như PSTN T-SGW hỗ trợ các giao thức
Sigtran Cổng báo hiệu chuyển mạng (R-SGW) là một nút đảm bảo tương tác báo hiệu
với các mạng di động hiện có sử dụng SS7 tiêu chuẩn Trong nhiều trường hợp SGW và R-SGW cùng tồn tại trên cùng một nền tảng
T-MGW thực hiện tương tác với các mạng ngoài ở mức đường truyền đa phươngtiện MGW ở kiến trúc mạng của UMTS R5 có chức năng giống như ở R4 MGW
được điều khiển bởi Chức năng cổng điều khiển các phương tiện (MGCF) Giao thức
điều khiển giữa các thực thể này là ITU-T H.248
MGCF cũng liên lạc với CSCF Giao thức được chọn cho giao diện này là SIP.Tuy nhiên có thể nhiều nhà khai thác vẫn sử dụng nó kết hợp với các miềnchuyển mạch kênh trong R3 và R4 Điều này cho phép chuyển đồi dần dần từ cácphiên bản R3 và R4 sang R5 Một số các cuộc gọi thoại có thể vẫn sử dụng miền CSmột số các dịch vụ khác chẳng hạn video có thể được thực hiện qua R5 IMS Cấu hìnhlai ghép được thể hiện trên hình 1.12
Hình 1.12 Chuyển đổi dần từ R4 sang R51.9 CHIẾN LƯỢC DỊCH CHUYỂN TỪ GSM SANG UMTS
Trong phần này ta sẽ xét chiến lược dịch chuyển từ GSM sang UMTS của hãng
Alcatel Alcatel dự kiến phát triển RAN từ GSM lên 3G UMTS theo ba phát hành:
3GR1, 3GR2 và 3GR3 Với mỗi phát hành, các sản phẩm mới và các tính năng mớiđược đưa ra
1.9.1 3GR1 : Kiến trúc mạng UMTS chồng lấn
Phát hành 3GP1 dựa trên phát hành của 3GPP vào tháng 3 và các đặc tả kỹthuật vào tháng 6 năm 2000 Phát hành đầu của 3GR1 chỉ hỗ trợ UTRA-FDD và sẽ
Trang 24được triển khai chồng lấn lên GSM Chiến lược dịch chuyển từ GSM sang UMTS pháthành 3GR1 được chia thành ba giai đoạn được ký hiệu là R1.1, R1.2 và R1.3 (R:Release: phát hành) Trong các phát hành này các phần cứng và các tính năng mớiđược đưa ra Các nút B được gọi là MBS (Multistandard Base Station: trạm gốc đa tiêuchuẩn) Tuy nhiên MBS V1 chỉ đơn thuần là nút B, chỉ MBS V2 mới thực sự đa tiêuchuẩn và chứa các chức năng của cả nút B và BTS trong cùng một hộp máy Tương tựRNC V2 và OMC-R V2 được đưa ra để phục vụ cho cả UMTS và GSM.
Hình 1.13 cho thấy kiến trúc đồng tồn tại GSM và UMTS được phát triển tronggiai đoạn triển khai UMTS ban đầu (3GR1.1)
Hình 1.13 Kiến trúc đồng tồn tại GSM và UMTS (phát hành 3GR1.1)1.9.2 3GR2 : Tích hợp các mạng UMTS và GSM
Trong giai đoạn triền khai UMTS thứ hai sự tích hợp đầu tiên giữa hai mạng sẽđược thực hiện bằng cách đưa ra các thiết bị đa tiêu chuẩn như: Nút B kết hợp BTS(MBS V2) và RNC kết hợp BSC (RNC V2) Các chức năng khai thác và bảo dưỡngmạng vô tuyến cũng có thể được thực hiện chung bởi cùng một OMC-R (V2) Hình1.14 mô tả kiến trúc mạng RAN tích hợp của giai đoạn hai
Trang 25Hình 1.14 Kiến trúc mạng RAN tích hợp phát hành 3GR2 (R2.1).
1.9.3 3GR3 : Kiến trúc RAN thống nhất
Trong kiến trúc RAN của phát hành này được xây dựng trên cơ sở phát hành R5vào tháng 9 năm 2000 của 3GPP Trong phát hành này RAN chung cho cả hệ thốngUMTS và GSM Cả UTRA-FDD và UTRA-TDD đều được hỗ trợ Giao thức truyềntải được thống nhất cho GSM, E-GPRS và UMTS, ngoài ra có thể ATM kết hợp IP.GERAN (GSM/EDGE RAN) cũng sẽ được hỗ trợ bởi phát hành này của mạng Kiếntrúc RAN của 3GR1.3 được thể hiện trên hình 1.15
Hình 1.15 Kiến trúc RAN thống nhất của 3GR3.1
Trang 261.10 CẤU HÌNH ĐỊA LÝ CỦA HỆ THỐNG THÔNG TIN DI ĐỘNG 3G
Do tính chất di động của thuê bao di động nên mạng di động phải được tổ chức theomột cấu trúc địa lý nhất định để mạng có thể theo dõi được vị trí của thuê bao
1.10.1 Phân chia theo vùng mạng
Trong một quốc gia có thể có nhiều vùng mạng viễn thông, việc gọi vào mộtvùng mạng nào đó phải được thực hiện thông qua tổng đài cổng Các vùng mạng diđộng 3G được đại diện bằng tổng đài cổng GMSC hoặc GGSN Tất cả các cuộc gọiđến một mạng di động từ một mạng khác đều được định tuyến đến GMSC hoặcGGSN Tổng đài này làm việc như một tổng đài trung kế vào cho mạng 3G Đây là nơithực hiện chức năng hỏi để định tuyến cuộc gọi kết cuối ở trạm di động.GMSC/GGSN cho phép hệ thống định tuyến các cuộc gọi vào từ mạng ngoài đến nơinhận cuối cùng: các trạm di động bị gọi
1.10.2 Phân chia theo vùng phục vụ MSC/VLR và SGSN
Một mạng thông tin di động được phân chia thành nhiều vùng nhỏ hơn, mỗivùng nhỏ này được phục vụ bởi một MSC/VLR (hình 1.16a) hay SGSN (1.16b) Tagọi đây là vùng phục vụ của MSC/VLR hay SGSN
Hình 1.16 Phân chia mạng thành các vùng phục vụ của MSC/VLR và SGSN
Để định tuyến một cuộc gọi đến một thuê bao di động, đường truyền qua mạng
sẽ được nối đến MSC đang phục vụ thuê bao di động cần gọi Ở mỗi vùng phục vụMSC/VLR thông tin về thuê bao được ghi lại tạm thời ở VLR Thông tin này bao gồmhai loại:
Thông tin về đăng ký và các dịch vụ của thuê bao
Thông tin về vị trí của thuê bao (thuê bao đang ở vùng định vị hoặc vùngđịnh tuyến nào)
1.10.3 Phân chia theo vùng định vị và vùng định tuyến
Mỗi vùng phục vụ MSC/VLR được chia thành một số vùng định vị: LA(Location Area) (hình 1.17a) Mỗi vùng phục vụ của SGSN được chia thành các vùngđịnh tuyến (RA: Routing Area) (1.17b)
Trang 27Hình 1.17 Phân chia vùng phục vụ của MSC/VLR và SGSN thành các vùng định
vị (LA: Location Area) và định tuyến (RA: Routing Area)
Vùng định vị (hay vùng định tuyến là một phần của vùng phục vụ MSC/VLR(hay SGSN) mà ở đó một trạm di động có thể chuyển động tự do và không cần cậpnhật thông tin về vị trí cho MSC/VLR (hay SGSN) quản lý vị trí này Có thể nói vùngđịnh vị (hay vùng định tuyến) là vị trí cụ thể nhất của trạm di động mà mạng cần biết
để định tuyến cho một cuộc gọi đến nó Ở vùng định vị này thông báo tìm sẽ đượcphát quảng bá để tìm thuê bao di động bị gọi Hệ thống có thể nhận dạng vùng định vịbằng cách sử dụng nhận dạng vùng định vị (LAI: Location Area Identity) hay nhậndạng vùng định tuyến (RAI Routing Area Identity) Vùng định vị (hay vùng địnhtuyến) có thể bao gồm một số ô và thuộc một hay nhiều RNC, nhưng chỉ thuộc mộtMSC (hay một SGSN)
1.10.4 Phân chia theo ô
Vùng định vị hay vùng định tuyến được chia thành một số ô (hình 1.18)
Hình 1.18 Phân chia LA và RA
Ô là một vùng phủ vô tuyến được mạng nhận dạng bằng nhận dạng ô toàn cầu (CGI:Cell Global Identity) Trạm di động nhận dạng ô bằng mã nhận dạng trạm gốc (BSIC:Base Station Identity Code) Vùng phủ của các ô thường được mô phỏng bằng hình lụcgiác để tiện cho việc tính toán thiết kế
Trang 28có thể được tạo ra từ phát xạ của nhiều hơn ba anten Trong thực tế mẫu ô có thể rất đadạng tùy vào địa hình cần phủ sóng Tuy nhiên các mẫu ô như trên hình 1.19 thườngđược sử dụng để thiết kế cho sơ đồ phủ sóng chuẩn.
1.10.6 Tổng kết phân chia vùng địa lý trong các hệ thống thông tin di động 3G
Trong các kiến trúc mạng bao gồm cả miền chuyển mạch kênh và miền chuyểnmạch gói, vùng phục mạng không chỉ được phân chia thành các vùng định vị (LA) màcòn được phân chia thành các vùng định tuyến (RA: Routing Area) Các vùng định vị(LA: Location Area) là khái niệm quản lý di động của miền CS kế thừa từ mạng GSM.Các vùng định tuyến (RA: Routing Area) là các thực thể của miền PS Mạng lõi PS sửdụng RA để tìm gọi Nhận dạng thuê bao P-TMSI (Packet- Temporary MobileSubsscriber Identity: nhận dạng thuê bao di động gói tạm thời) là duy nhất trong mộtRA
Trong mạng truy nhập vô tuyến, RA lại được chia tiếp thành các vùng đăng kýUTRAN (URA: UTRAN Registration Area) Tìm gọi khởi xướng UTRAN sử dụngURA khi kênh báo hiệu đầu cuối đã được thiết lập URA không thể nhìn thấy được ởbên ngoài UTRAN
Quan hệ giữa các vùng được phân cấp như cho ở hình 1.20 (ô không được thểhiện) LA thuộc 3G MSC và RA thuộc 3G SGSN URA thuộc RNC Theo dõi vị trítheo URA và ô trong UTRAN được thực hiện khi có kết nối RRC (Radio ResourceControl: điều khiển tài nguyên vô tuyến) cho kênh báo hiệu đầu cuối Nếu không có
Trang 29kết nối RRC, 3G SGSN thực hiện tìm gọi và cập nhật thông tin vị trí được thực hiệntheo RA
Hình 1.20 Các khái niệm phân chia vùng địa lý trong 3G WCDMA UMTS.
Chương 2 CÔNG NGHỆ ĐA TRUY NHẬP CỦA WCDMA
Trang 302.1 GIỚI THIỆU CHUNG
2.1.1 Mục đích chương
Hiểu tổng quan trải phổ và phương pháp đa truy nhập của WCDMA
Hiểu điều khiển công suất, chuyển giao mềm và máy thu phân tập đa đường (RAKE)
Hiểu các dạng mã trải phổ và các sơ đồ điều chế của WCDMA
2.1.2 Các chủ đề được trình bầy trong chương
Nguyên lý trải phổ và đa truy nhập phân chia theo mã
Điều khiển công suất
Chuyển giao
Máy thu phân tập đa đường (máy thu RAKE)
Các dạng mã trải phổ và các sơ đồ điều chết được sử dụng cho WCDMA
2.1.3 Hướng dẫn
Học kỹ các tư liệu được trình bầy trong chương
Tham khảo thêm các tài liệu tham khảo cuối tài liệu giảng dạy của khóa học
2.2 TRẢI PHỔ VÀ ĐA TRUY NHẬP PHÂN CHIA THEO MÃ
2.2.1 Các hệ thống thông tin trải phổ
Trong các hệ thống thông tin thông thường độ rộng băng tần là vấn đề quan tâmchính và các hệ thống này được thiết kế để sử dụng càng ít độ rộng băng tần càng tốt.Trong các hệ thống điều chế biên độ song biên, độ rộng băng tần cần thiết để phát mộtnguồn tín hiệu tương tự gấp hai lần độ rộng băng tần của nguồn này Trong các hệthống điều tần độ rộng băng tần này có thể bằng vài lần độ rộng băng tần nguồn phụthuộc vào chỉ số điều chế Đối với một tín hiệu số, độ rộng băng tần cần thiết có cùnggiá trị với tốc độ bit của nguồn Độ rộng băng tần chính xác cần thiết trong trường hợpnày phụ thuộc và kiểu điều chế (BPSK, QPSK v.v )
Trong các hệ thống thông tin trải phổ (viết tắt là SS: Spread Spectrum) độ rộngbăng tần của tín hiệu được mở rộng, thông thường hàng trăm lần trước khi được phát.Khi chỉ có một người sử dụng trong băng tần SS, sử dụng băng tần như vậy không cóhiệu quả Tuy nhiên ở môi trường nhiều người sử dụng, các người sử dụng này có thểdùng chung một băng tần SS (trải phổ) và hệ thống trở nên sử dụng băng tần có hiệusuất mà vẫn duy trì được các ưu điểm của trải phổ
Một hệ thống thông tin số được coi là SS nếu:
* Tín hiệu được phát chiếm độ rộng băng tần lớn hơn độ rộng băng tần tối thiểu cần thiết để phát thông tin.
* Trải phổ được thực hiện bằng một mã độc lập với số liệu.
Trang 31Có ba kiểu hệ thống SS cơ bản: chuỗi trực tiếp (DSSS: Direct-SequenceSpreading Spectrum), nhẩy tần (FHSS: Frequency-Hopping Spreading Spectrum) vànhẩy thời gian (THSS: Time-Hopping Spreading Spectrum) Cũng có thể nhận đượccác hệ thống lai ghép từ các hệ thống nói trên WCDMA sử dụng DSSS DSSS đạtđược trải phổ bằng cách nhân luồng số cần truyền với một mã trải phổ có tốc độ chip(Rc=1/Tc, Tc là thời gian một chip) cao hơn nhiều tốc độ bit (Rb=1/Tb, Tb là thời gianmột bit) của luồng số cần phát Hình 2.1 minh họa quá trình trải phổ trong đó Tb=15Tc
hay Rc=15Rb Hình 2.1a cho thấy sơ đồ đơn giản của bộ trải phổ DSSS trong đó luồng
số cần truyền x có tốc độ Rb được nhân với một mã trải phổ c tốc độ Rc để được luồngđầu ra y có tốc độ Rc lớn hơn nhiều so với tốc độ Rb của luồng vào Các hình 2.1b và2.1b biểu thị quá trình trải phổ trong miền thời gian và miền tần số
Tại phía thu luồng y được thực hiện giải trải phổ để khôi phục lại luồng x bằngcách nhân luồng này với mã trải phổ c giống như phía phát: x=yc
x, y và c ký hiệu tổng quát cho tín hiệu vào, ra và mã trải phổ; x(t), y(t) và c(t) ký hiệu cho các tín hiệu vào, ra và mã trải phổ trong miền thời gian; X(f), Y(f) và C(f) ký hiệu cho các tín hiệu vào, ra và mã trải phổ trong miền tần số; T b là thời gian một bit của luồng số cần phát,
R b =1/T b là tốc độ bit của luồng số cần truyền; T c là thời gian một chip của mã trải phổ, R c =1/
T c là tốc độ chip của mã trải phổ R c =15R b và T b =15T c
Hình 2.1 Trải phổ chuỗi trực tiếp (DSSS)
2.2.2 Áp dụng DSSS cho CDMA
Trong công nghệ đa truy nhập phân chia theo mã dựa trên CDMA, một tập mã trực giao được sử dụng và mỗi người sử dụng được gán một mã trải phổ riêng Các mã
Trang 321 Tích hai mã giống nhau bằng 1: cici=1
2 Tích hai mã khác nhau sẽ là một mã mới trong tập mã: cicj=ck
3 Có số bit 1 bằng số bit -1 trong một mã
1
1
0
N k k
C
N
, trong đó N là số chip và
Ck là giá trị chip k trong một mã
Bảng 2.1 cho thấy thí dụ sử dụng bộ mã gồm tám mã trực giao: c0, c1, …, c7 Bảng 2.2 và 2.3 cho thấy thí dụ khi nhân hai mã giống nhau trong bảng 1 được 1 và nhân hai mã khác nhau trong bảng 2.1 ta được một mã mới
B ng 2.1 Thí d b tám mã tr c giao ảng 2.1 Thí dụ bộ tám mã trực giao ụ bộ tám mã trực giao ộ tám mã trực giao ực giao
Nếu ta xét một hệ thống gồm K người sử dụng được xây dựng trên cơ sở
CDMA, thì sau trải phổ các người sử dụng này sẽ phát vào không gian tập các tín hiệu
Trang 33kênh vì trong hệ thống CDMA chúng được phát trên cùng một tần số với xk) Nhân (2.1) với xk và áp dụng quy tắc trực giao nói trên ta được:
số trong miền tần số Hình 2.2 xét quá trình giải trải phổ và lọc ra tín hiệu hữu ích tạimáy thu k trong một hệ thống CDMA có K người sử dụng với giả thiết công suất phát
từ K máy phát như nhau tại đầu vào máy thu k Hình 2.2a cho thấy sơ đồ giải trải phổDSSS Hình 2.2b cho thấy phổ của tín hiệu tổng được phát đi từ K máy phát sau trảiphổ, hình 2.2c cho thấy phổ của tín hiệu này sau giải trải phổ tại máy thu k và hình2.2d cho thấy phổ của tín hiệu sau bộ lọc thông thấp với băng thông băng Rb
Hình 2.2 Quá trình giải trải phổ và lọc tín hiệu của người sử dụng k từ K tín
hiệu.
Từ hình 2.2 ta thấy tỷ số tín hiệu trên nhiễu (SIR: Signal to Interference Ratio)
là tỷ số giữa diện tích hình chữ nhật được tô đậm trên hình 2.2.b và tổng diện tích cáchình chữ nhật trắng trên hình 2.2.c: SIR=S1/S2 Tỷ số này tỷ lệ với tỷ số Rc/Rb vì thế tỷ
số Rc/Rb được gọi là độ lợi xử lý (TA: Processing Gain)
2.3 ĐIỀU KHIỂN CÔNG SUẤT
Trang 34Trong trường hợp một máy phát gây nhiễu đến gần máy thu k (đến gần nút Bchẳng hạn), công suất của máy phát này tăng cao dẫn đến MAI tăng cao, tỷ số tín hiệutrên nhiễu giảm mạnh và máy thu k không thể tách ra được tín hiệu của mình Hiệntượng này được gọi là hiện tượng gần và xa Để tránh hiện tượng này hệ thống phảiđiều khiển công suất sao cho công suất thu tại nút B của tất cả các UE đều bằng nhau(lý tưởng) Điều khiển công suất trong WCDMA được chia thành:
Điều khiển công suất vòng hở
Điều khiển công suất vòng kín
Điều khiển công suất vòng hở được thực hiện tự động tại UE khi nó thực hiệnthủ tục xin truy nhập Nút B (dựa trên công suất mà nó thu được từ kênh hoa tiêu phát
đi từ B), khi này UE chưa có kết nối với nút này Còn điều khiển công suất vòng kínđược thực hiện khi UE đã kết nối với nút B Điều khiển công suất vòng hở lại đượcchia thành:
Điều khiển công suất vòng trong được thực hiện tại nút B Điều khiển công suấtvòng trong được thực hiện nhanh với 1500 lần trong một giây dựa trên so sánhSIR thu với SIR đích
Điều khiển công suất vòng ngoài được thực hiện tại RNC để thiết lập SIR đích chonút B Điều khiển công suất này dựa trên so sánh tỷ lệ lỗi khối (BLER) thu đượcvới tỷ lệ đích
2.4 CHUYỂN GIAO TRONG HỆ THỐNG CDMA
Thông thường chuyển giao (HO: Handover) được hiểu là quá trình trong đókênh lưu lượng của một UE được chuyển sang một kênh khác để đảm bảo chất lượngtruyền dẫn Tuy nhiên trong CDMA khái niệm này chỉ thích hợp cho chuyển giaocứng còn đối với chuyển giao mềm khái niệm này phức tạp hơn, ta sẽ xét cụ thể trongphần dưới đây
Có thể chia HO thành các kiểu HO sau:
HO nội hệ thống xẩy ra bên trong một hệ thống WCDMA Có thể chia nhỏ HO
này thành
o HO nội hệ thống giữa các ô thuộc cùng môt tần số sóng mang WCDMA
o HO giữa các tần số (IF-HO) giữa các ô hoạt động trên các tần số WCDMA
khác nhau
HO giữa các hệ thống (IS-HO) giữa các ô thuộc hai công nghệ truy nhập vô tuyến
(RAT) khác nhau hay các chế độ truy nhập vô tuyến (RAM) khác nhau Trườnghợp thường xuyên xẩy ra nhất đối với kiểu thứ nhất là HO giữa các hệ thốngWCDMA và GSM/EDGE Tuy nhiên cũng có thể là IS-HO giữa WCDMA và hệthống các hệ thống CDMA khác (cdma2000 1x chẳng hạn) Thí dụ về HO giữacác RAM là HO giữa các chế độ UTRA FDD và UTRA TDD
Có thể có các thủ tục HO sau:
Trang 35 Chuyển giao cứng (HHO) là các thủ tục HO trong đó tất cả các đường truyền vô
tuyến cũ của một UE được giải phóng trước khi thiết lập các đường truyền vôtuyến mới
Chuyển giao mềm (SHO) và chuyển giao mềm hơn (xem hình 2.3) là các thủ tục
trong đó UE luôn duy trì ít nhất một đường vô tuyến nối đến UTRAN Trongchuyển giao mềm UE đồng thời được nối đến một hay nhiều ô thuộc các nút Bkhác nhau của cùng một RNC (SHO nội RNC) hay thuộc các RNC khác nhau(SHO giữa các RNC) Trong chuyển giao mềm hơn UE được nối đến ít nhất là haiđoạn ô của cùng một nút B SHO và HO mềm hơn chỉ có thể xẩy ra trên cùng mộttần số sóng mang và trong cùng một hệ thống
Hình 2.3 Chuyển giao mềm (a) và mềm hơn (b)
Phụ thuộc sự tham gia trong SHO, các ô trong một hệ thống WCDMA đượcchia thành các tập sau đây:
Tập tích cực bao gồm các ô (đoạn ô) hiện đang tham gia vào một kết nối SHO của
UE
Tập lân cận/ tập được giám sát (cả hai từ được sử dụng như nhau) Tập này bao
gồm tất cả các ô được giám sát/đo liên tục bởi UE và hiện thời không có trong tậptích cực
Tập được phát hiện Tập này bao gồm các ô được UE phát hiện nhưng không
thuộc tập tích cực lẫn tập lân cận
SHO là một tính năng chung của hệ thống WCDMA trong đó các ô lân cận họatđộng trên cùng một tần số Trong chế độ kết nối, UE liên tục đo các ô phục vụ và các ôlân cận (do RNC chỉ dẫn) trên tần số sóng mang hiện thời UE so sánh các kết quả đovới các ngưỡng HO do RNC cung cấp và gửi báo cáo kết quả đo đến RNC khi thựchiện các tiêu chuẩn báo cáo Vì thế SHO là kiểu chuyển giao được đánh giá bởi đầucuối di động (MEHO: Mobile Estimated HO) Tuy nhiên giải thuật quyết định SHOđược đặt trong RNC Dựa trên các báo cáo kết quả đo nhận được từ UE (hoặc định kỳhoặc được khởi động bởi một số các sự kiện nhất định), RNC lệnh cho UE bổ sunghay loại bỏ một số ô khỏi tập tích cực của mình (ASU: Active Set Apdate: cập nhật tậptích cực)
Trang 362.5 MÁY THU PHÂN TẬP ĐA ĐƯỜNG HAY MÁY THU RAKE
Phađinh đa đường trên kênh vô tuyến dẫn đến tán thời và chọn lọc tần số làmhỏng tín hiệu thu Để đánh giá hiện tượng tán thời trên đường truyền vô tuyến, người
ta phát đi một xung hẹp (xung kim) và đo đáp ứng xung này tại phía thu Đáp ứng này
là bức tranh thể hiện sự phụ thuộc công suất của các đường truyền khác nhau đến máythu vào thời gian trễ của các đường truyền này Đáp ứng này được gọi là lý lịch trễcông suất Hình 2.4a cho thấy truyền sóng đa đường và hình 2.4b cho thấy thí dụ về lýlịch trễ công suất
Hình 2.4 Truyền sóng đa đường và lý lịch trễ công suất
Chuỗi tín hiệu giả ngẫu nhiên được phát đi ở CDMA có thuộc tính là các phiênbản dịch thời của nó tại phía thu hầu như không tương quan Như vậy một tín hiệuđược truyền từ máy phát đến máy thu theo nhiều đường khác nhau (thời gian trễ khácnhau) có thể được phân giải vào các tín hiệu phađinh khác nhau bằng cách lấy tươngquan tín hiệu thu chứa nhiều phiên bản dịch thời của chuỗi giả ngẫu nhiên Máy thu sửdụng nguyên lý này được gọi là máy thu phân tập đa đường hay máy thu RAKE (hình2.5)
Trang 37Hình 2.5 Máy thu RAKE
Trong máy thu RAKE để nhận được các phiên bản dịch thời của chuỗingẫu nhiên, tín hiệu thu phải đi qua đường trễ trước khi được lấy tương quan và đượckết hợp Đường trễ bao gồm nhiều mắt trễ có thời gian trễ bằng thời gian một chip Tc.Máy thu dịch định thời bản sao mã trải phổ từng chip cho từng ký hiệu thông tin đểgiải trải phổ ký hiệu trong vùng một ký hiệu và tạo nên lý lịch trễ công suất (xem hình2.5a) Với tham khảo lý lịch trễ công suất (bức tranh thể hiện công suất và trễ của cácđường truyền) được tạo ra, máy thu chọn các đường truyền có công suất vượt ngưỡng
để kết hợp RAKE trên cơ sở số lượng bộ tương quan, bộ ước tính kênh và bộ bù trừthay đổi pha (được gọi là các ngón máy thu RAKE) Trong trường hợp áp dụng thuphân tập không gian hay phân tập giữa các đoạn ô, lý lịch trễ công suất được tạo ra chomỗi nhánh và các đường truyền được chọn từ lý lịch trễ công suất suất tổng hợp của tất
cả các nhánh Trong thực tế, vì các tín hiệu trải phổ gồm nhiễu của các người sử dụngkhác và các tín hiệu đa đường của kênh người sử dụng, nên giá trị ngưỡng được lậpdưạ trên mức công suất tạp âm nền và các đường truyền có SIR hiệu dụng (có côngsuất thu vượt ngưỡng) được chọn Vì MS chuyển động (hoặc môi trường truyền sóngthay đổi khi MS cố định), nên vị trí đường truyền (thời gian trễ) được kết hợp RAKEcũng sẽ thường xuyên thay đổi, máy phải định kỳ cập nhật lý lịch trễ đường truyền vàcập nhật các đường truyền được kết hợp RAKE trên cơ sở lý lịch mới (quá trình nàyđược gọi là tìm kiếm đường truyền vì nó liên quan đến tìm kiếm đường truyền để kếthợp RAKE)
2.6 CÁC MÃ TRẢI PHỔ SỬ DỤNG TRONG WCDMA
Khái niệm trải phổ được áp dụng cho các kênh vật lý, khái niệm này bao gồmhai thao tác Đâu tiên là thao tác định kênh, trong đó mỗi ký hiệu số liệu dược chuyểnthành một số chip nhờ vậy tăng độ rộng phổ tín hiệu Số chip trên một ký hiệu (hay tỷ
Trang 38số giữa tốc độ chip và tốc độ ký hiệu) được gọi là hệ số trải phổ (SF: SpectrumFactor), hay nói một cách khác SF=Rs/Rc trong đó Rs là tốc độ ký hiệu còn Rc là tốc đôchip Hệ số trải phổ là một giá trị khả biến, ngoại trừ đối với kênh chia sẻ đường xuốngvật lý tốc độ cao (HS-PDSCH ) trong HSDPA có SF=16 Thao tác thứ hai là thao tácngẫu nhiên hóa để tăng tính trực giao trong đó một mã ngẫu nhiên hóa được ‘trộn’ vớitín hiệu trải phổ Mã ngẫu nhiên hoá được xây dựng trên cơ sở mã Gold.
Trong quá trình định kênh, các ký hiệu số liệu được nhân với một mã OVSF(Orthogonal Variable Spread Factor: mã trực giao hệ số khả biến) đồng bộ về thời gianvới biên của ký hiệu Trong 3GPP, OVSF (hình 2.6) được sử dụng cho các tốc độ kýhiệu khác nhau và được ký hiệu là Cch,SF,k trong đó SF là hệ số trải phổ của mã và k là
số thứ tự mã (0kSF-1) Các mã định kênh có các tính chất trực giao và được sửdụng để phân biệt các thông tin được phát đi cùng từ một nguồn: (1) các kết nối khácnhau trên đường xuống trong cùng một ô trên đường xuống và giảm nhiễu nội ô, (2)các kênh số liệu vật lý đường lên từ một UE Trên đường xuống các mã OVSF trong
mộ ô bị hạn chế vì thế cần được quản lý bởi RNC, tuy nhiên điều này không xẩy ra đốivới đường lên
Cần lưu ý khi chọn mã định kênh để chúng không tương quan với nhau Chẳng hạn khi
đã chọn mã Cch,8,4=+1-1+1-1+1-1+1-1, không được sử dụng mã Cch,16,81+1-1+1-1+1-1+1-1+1-1; vì hai mã này hoàn toàn giống nhau (tích của chúng bằng 1)
=+1-1+1-1+1-và chúng sẽ gây nhiễu cho nhau
Các mã OVSF chỉ hiệu quả khi các kênh được đồng bộ hoàn hảo tại mức kýhiệu Mất tương quan chéo do truyền sóng đa đường được bù trừ bởi thao tác ngẫunhiên hóa bổ sung Với thao tác ngẫu nhiên hóa, phần thực (I) và phần ảo (Q) của tínhiệu trải phổ được nhân bổ sung với mã ngẫu nhiên hóa phức Mã ngẫu nhiên hóaphức được sử dụng để phân biệt các nguồn phát: (1) các ô khác nhau đối với đườngxuống và (2) các UE khác nhau đối với đường lên Các mã này có các tính chất tươngquan tốt (trung bình hóa nhiễu) và luôn được sử dụng để ‘trộn’ với các mã trải phổnhưng không làm ảnh hưởng độ rộng phổ tín hiệu và băng thông truyền dẫn
Hình 2.6 Cây mã định kênh
Đường truyền giữa nút B và UE trong WCDMA chứa nhiều kênh Có thể chia các kênh này thành hai loại: (1) kênh riêng để truyền lưu lượng và (2) kênh chung mang các thông tin điều khiển và báo hiệu Đường truyền từ UE đến nút B được gọi là
Trang 39đường lên, còn đường ngược lại từ nút B đến UE được gọi là đường xuống Trước hết
ta xét trải phổ cho các kênh đường lên
2.7 TRẢI PHỔ VÀ ĐIỀU CHẾ ĐƯỜNG LÊN
2.7.1 Trải phổ và điều chế các kênh riêng đường lên
Nguyên lý trải phổ cho DPDCH (Dedicated Physical Data Channel: kênh sốliệu vật lý riêng, kênh để truyền lưu lượng của người sử dụng) và DPCCH (DedicatedPhysical Control Channel: kênh điều khiển vật lý riêng; kênh đi cùng với DPDCH đểmang thông tin điều khiển lớp vật lý) được minh họa trên hình 2.7
Một DPCCH và cực đại sáu DPDCH song song giá trị thực có thể được trải phổ
và phát đồng thời DPCCH luôn được trải phổ bằng mã Cc=Cch,256,0, trong đó k=0 Nếuchỉ một kênh DPDCH được phát trên đường lên, thì DPDCH1 được trải phổ với mã
SF=128 thì k=32 Nếu nhiều DPDCH được phát, thì tất cả DPDCH đều có hệ số trảiphổ là 4 (tốc độ bit kênh là 960kbps) và DPDCHn được trải phổ bởi mã Cd,n=Cch,4,k,trong đó k=1 nếu n{1,2}, k=3 nếu n{3,4} và k=2 nếu n{5,6} Để bù trừ sự khácnhau giữa các hệ số trải phổ của số liệu, tín hiệu trải phổ được đánh trọng số bằng các
hệ số khuyếch đại ký hiệu là c cho DPCCH và d cho DPDCH Các hệ số khuyếch đạinày được tính toán bởi SRNC và được gửi đến UE trong giai đoạn thiết lập đườngtruyền vô tuyến hay đặt lại cấu hình Các hệ số khuyếch đại nằm trong dải từ 0 đến 1
và ít nhất một trong số các giá trị của c và d luôn luôn bằng 1 Luồng chip của cácnhánh I và Q sau đó được cộng phức với nhau và được ngẫu nhiên hóa bởi một mãngẫu nhiên hóa phức được ký hiệu là Sdpch,n trên hình 2.7 Mã ngẫu nhiên hóa này đượcđồng bộ với khung vô tuyến, nghĩa là chip thứ nhất tương ứng với đầu khung vô tuyến
Hình 2.7 Trải phổ và điều chế DPDCH và DPCCH đường lên
Trang 40Các nghiên cứu cho thấy mọi sự phát không liên tục trên đường lên có thể gâynhiễu âm thanh cho thiết bị âm thanh đặt gần máy đầu cuối di động Thí dụ điển hình
là trường hợp nhiễu tần số khung (217 Hz=1/4,615ms) gây ra do các đầu cuối GSM
Để tránh hiệu ứng này, kênh DPCCH và các kênh DPDCH không được ghép theo thờigian mà được ghép theo mã I/Q (điều chế QPSK hai kênh) với ngẫu nhiên hoá phức.Minh họa trên hình 2.8 cho thấy sơ đồ điều chế này cho phép truyền dẫn liên tục ngay
cả trong các chu kỳ im lặng khi chỉ có thông tin điều khiển lớp 1 để duy trì hoạt độngđường truyền (DPCCH) là được phát
Hình 2.8 Truyền dẫn kênh điều khiển vật lý riêng đường lên và kênh số liệu vật
lý riêng đường lên khi có/ không có (DTX) số liệu của người sử dụng
Như minh họa trên hình 2.9, các mã ngẫu nhiên hóa phức được tạo ra bằng cáchquay pha giữa các chip trong một chu kỳ ký hiệu trong giới hạn 900 Bằng cách nàyhiệu suất của bộ khuếch đại (liên quan đến tỷ số công suất đỉnh trên công suất trungbình) trong UE hầu như không đổi không phụ thụ thuộc vào tỷ số giữa DPDCH vàDPCCH
Hình 2.9 Chùm tín hiệu đối với ghép mã I/Q sử dung ngẫu nhiên hóa phức,
biểu diễn cho tỷ số công suất giữa DPDCH và DPCCH.
DPCCH và các DPDCH có thể được ngẫu nhiên hóa bằng các mã ngẫu nhiêndài hoặc ngắn Có 224 mã ngẫu nhiên hóa dài đường lên và 224 mã ngẫu nhiên ngắnđường lên Vì có thể sử dụng được hàng triệu mã nên không cần quy hoạch mã đườnglên Số mã ngẫu nhiên cho DPCH (0,…., 16777215), cùng với SF thấp nhất được phépcủa mã định kênh (4, 8, 16, 32, 128 và 256) cho phần số liệu được ấn định bởi các lớpcao hơn, chẳng hạn khi thiết lập kết nối RRC hoặc khi điều khiển chuyển giao