sg cilo DUcvA DAorAo Ho vd tEnthl sinh: 56 bdo danh D4.I HQC HUE ri'rm rUYEN SINHsAUDAI HQCNAM 2012( Egt 1) Mdnthi: GIAITiCH @anh cho cao hqc) Thdi gian lam bdi: 180 Phut CAu1 a) Khaos6ttinh khavi cuahdm , ( 9'n6u (x; \ ' r y) +(o;o) \ f(x,!)=l*,*y' [o n6u(x;!) = (0;o) b) Tim mi0nhQitu cuachu6inamlfly thua @ Y L (-2)" _1,), (x n*L c) Tinh tich phdn ducrng * (x' + e' cosY)dY I G.siny + 2xy)d.x \ r /' | d,6L lii cungcuaparabol x - y2 chAytu di6m (0;0) d6nA(L; 1) Ciu Cho A ld tdp kh6c rSng kh6ng gian metric (X, d) Chrmg minh ring, him sO;, X + IRx6c dinh bdi f (r) = d(x;A) : IEId(a;x) liOntuctrOnX vd taphapM - {* X: s (d(*; A))' + d.(x;A) s 2}) - dongtrongX Ciu Xdt tApX g6m c6c hdm thgc x = x(t) liOntpc tr0n [0; +*) a) Chtmg minh (X; ll ll) h saocho erlx(t)l< +*' "i'Tl*' khdng gian dinh chuAnvoi l l r f l- s u p e t l x ( t ) ,l v x e X r e[ o ; + m ) b) Xet phi6m ham f , X + IR, saocho f (x) - Io** tx(t) dt Hdy ki6m tra sy x6c clinh cnaf Q) vd chrmgminh f tuy}ntinh li€n tpc Tinh ll/ll Cffu a) Chokh6nggianHilbertH vitM ldt4p contrum4ttrongcuaH Gid su x e H vit (x,")n ld ddy bi ch4ntrong H saocho v6i m6i y e M thi limrl-+@(xn;!l = (x;yl Chimg minh ring ddy (x) r, hQitq y6u d€nx b) Tr€n mQtkhdng gian Hilbert H, vsimoi a * chrmgminh ring, phi6mhamtuy6n rinh li€n t.ucfr(x) = (x; al ldmQttodn6nhvd suy fo cingld mOt6nhx4 mo Ghi chti: Cdn bQcoi thi khong giai thich gi th€m