1. Trang chủ
  2. » Công Nghệ Thông Tin

GIÁO TRÌNH MATLAB căn bản CHƯƠNG 6

11 239 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 271,43 KB

Nội dung

CHƯƠNG 6: MATLAB VÀ ĐIỀU KHIỂN TỰ ĐỘNG    §1. CÁC VẤN ĐỀ CHUNG  1. Các dạng mô hình hệ thống: Để xây dựng mô hình của hệ thống, MATLAB  cung  cấp  một  số  lệnh.  Mô  hình  hệ  thống  mô  tả  bằng  hàm  truyền  được  xây  dựng nhờ lệnh tf(ts,ms) với ts là đa thức tử số và ms là đa thức mẫu số. Hàm  zpk(z,  p,  k)  với  z  là  vec  tơ  điểm  không,  p  là  vec  tơ  điểm  cực  và  k  là  hệ  số  khuyếch đại tạo nên mô hình điểm không‐điểm cực. Hàm ss(a, b, cʹ, d) với a, b,  c, d là các ma trận tạo nên mô hình không gian‐trạng thái.   Ví  dụ:  Ta  tạo  ra  một  số  mô  hình  nhờ  các  lệnh  MATLAB  sau(lưu  trong  ct6_1.m):  clc  ts = [1 2];  ms = [1 5 4];  sys1 = tf(ts,ms)    sys2 = zpk([‐6 1 1],[‐5 1],3)    sys3 = ss([1 2; 3 4],[1 1; 0 1],[0 1; 1 2; 3 1],0)  Kết quả là:  Transfer function:             s + 2  ‐‐‐‐‐‐‐‐‐‐‐‐‐  s^2 + 5 s + 4  Zero/pole/gain:  3 (s+6) (s‐1)^2  ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐    (s+5) (s‐1)     a =                           x1           x2             x1            1            2             x2            3            4  b =                           u1           u2             x1            1            1             x2            0            1  122     c =                           x1           x2             y1            0            1             y2            1            2             y3            3            1  d =                           u1           u2             y1            0            0             y2            0            0             y3            0            0  Continuous‐time model.    2. Điểm cực và điểm zero của hàm truyền: Để biến đổi hệ thống cho bởi hàm  truyền thành hệ cho bởi điểm cực, điểm zero và hệ số khuếch đại dùng hàm  tf2zp. Ta cũng có thể dùng hàm pole(sys) để tìm điểm cực của hệ thống sys và  dung hàm zero(sys) để tìm điểm không của hệ thống sys  Ví dụ: Cho hàm truyền:  s + 11s + 30s   H(s) =   s + 9s + 45s + 87 s + 50 Ta cần tìm các điểm cực p, điểm zero z và hệ số khuếch đại k của nó. Ta dùng  các lệnh MATLAB sau(lưu trong ct6_2.m):  ts = [1 11 30 0];  ms = [1 9 45 87 50];  [z,p,k] = tf2zp(ts,ms)  z =       0      ‐6      ‐5  p =   ‐3.0 + 4.0i   ‐3.0 ‐ 4.0i   ‐2.0                       ‐1.0                      k =       1    Như vậy:  123 ms = [1 2*z*wn  wn^2];   sys = tf(ts,ms);  t = 0:0.02:4;  c = step(sys,t);  plot(t,c)  Từ sơ đồ khối ta có:  C(s) d     =   R(s) s + (de + 1)s + d Phương trình đặc tính là:      s2 + (de + 1)s + d = s2 + 2ωnζs +  ω2n   Với  ω2n = wn = 0.28 và z = ζ = 4.0906 ta có d = 16.733 và e = 0.077  Khi có một hàm truyền ta có thể xác định hệ số tắt ζ và tần số tự nhiên ωn bằng  lệnh damp.  Ví dụ: Cho hệ có hàm truyền:  s + 5s + H(s) =   s + 2s + Tìm hệ số tắt ζ và tần số tự nhiên ωn. Các lệnh MATLAB (lưu trong  ct6_22.m)  như sau:  h = tf([2 5 1],[1 2 3]);  damp(h)          Eigenvalue                  Damping      Freq. (rad/s)    ‐1.00e+000 + 1.41e+000i     5.77e‐001      1.73e+000       ‐1.00e+000 ‐ 1.41e+000i     5.77e‐001      1.73e+000    2. Đáp ứng trong miền thời gian của hệ thống:  a. Đáp giá trị ban đầu: Đáp ứng giá trị ban đầu mô tả phản ứng của hệ  khi không có kích thích dầu vào nhưng tồn tại các giá trị ban đầu của vec tơ  trạng thái x0. Phản ứng đó được gọi là chuyển động tự do của hệ. Đáp ứng này  được xác định bằng hàm initial. Ta có các lệnh MATLAB tìm đáp ứng ban đầu  của một hệ thống (lưu trong ct6_23.m)như sau:  clc  a = [‐0.5572   ‐0.7814;0.7814  0];  c = [1.9691  6.4493];  x0 = [1 ; 0]  sys = ss(a,[],c,[]);  initial(sys,x0)  134 ... được xác định bằng hàm initial. Ta có các lệnh MATLAB tìm đáp ứng ban đầu  của một hệ thống (lưu trong ct6_23.m)như sau:  clc  a = [‐0.5572   ‐0.7814;0.7814  0];  c = [1. 969 1  6. 4493];  x0 = [1 ; 0]  sys = ss(a,[],c,[]); ...     =   R(s) s + (de + 1)s + d Phương trình đặc tính là:      s2 + (de + 1)s + d = s2 + 2ωnζs +  ω2n   Với  ω2n = wn = 0.28 và z = ζ = 4.09 06 ta có d =  16. 733 và e = 0.077  Khi có một hàm truyền ta có thể xác định hệ số tắt ζ và tần số tự nhiên ωn bằng ... Ta cần tìm các điểm cực p, điểm zero z và hệ số khuếch đại k của nó. Ta dùng  các lệnh MATLAB sau(lưu trong ct6_2.m):  ts = [1 11 30 0];  ms = [1 9 45 87 50];  [z,p,k] = tf2zp(ts,ms)  z =       0       6     ‐5  p =   ‐3.0 + 4.0i   ‐3.0 ‐ 4.0i 

Ngày đăng: 04/12/2015, 07:40

TỪ KHÓA LIÊN QUAN