Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 26 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
26
Dung lượng
15,41 MB
Nội dung
CHAPTER FOUR
CONCLUSION
Stem cells are invaluable tools for the understanding of cell based therapies and the
development of important disease models to aid in drug discovery and therapy (26).
Therefore it is vital to be able to control and monitor stem cell development and
differentiation without any manipulations or side effects to the cells. Here we propose
that a highly specific fluorescence probe is essential for the above to visualize and
monitor live mESC.
From all the data supported in this thesis, we report the first highly selective bioimaging
fluorescent probe for mESCs (CDy9) via high throughput screening using DOFLA.
Although several mESC fluorescent probes (CDy1, CDg4, CDb8) have been published
previously, none of them are as specific to mESC as CDy9. The probe’s specificity to
only mESC is very important especially if the probe is injected into mouse disease
models. This is because; non specific binding to other cell types may result in false
positive results and interfere with stem cell tracking. This may then prevent the
development of drug therapies or cell based therapies that are necessary for the treatment
of that disease. Furthermore, as mentioned earlier, the current methods of mESC
detection via the use of immuno fluorescence, fluorescence proteins or fluorescence tags
such as GFP are time consuming, expensive, require cell fixing or prior genetic
modification to the cells. These are undesirable or unwanted complications to the cell
behavior and thus need to be avoided. Therefore, a small molecule probe such as CDy9
will allow the visualization of mESC in their native forms.
CDy9 also showed the capability to isolate out mESC successfully from a mixture of
samples and it also stained other pluripotent stem cells such as miPSCs. This further
illustrates the ability of CDy9 to bind to only pluripotent stem cells specifically compared
to other cell types as shown in the cell panel test. It is also known that miPSC generation
is a very time consuming and tedious process and so CDy9 staining can be used as an
1
additional confirmation step to the GFP signal for miPSC generation as CDy9 compound
signal do not overlap with the GFP signal.
The ability of CDy9 to isolate out single mESC cells also proved that the compound is
able to purify undifferentiated stem cells from a mixture of differentiated cells. This way
stem cell colony can be cultured from just a single cell that was isolated by CDy9 as
demonstrated by the FACS analysis and reculture. Since the amount of pluripotent stem
cells present in the body are very minimal, CDy9 may therefore aid in isolating just one
pluripotent stem cell from the body and this cell can be cultured (given the correct culture
conditions) to grow in a colony of cells which may then be used for further experiments
or therapies. Besides its excellent selectivity, CDy9 also showed minimal cytotoxicity at
the working concentrations and proved to bind to mESC in a stable manner. CDy9 also
seemed promising in isolating potential stem cells from mouse fats and may also be
employed to other organs to isolate similar pluripotent potent-like stem cells. This is
especially important since fats may be voluntarily donated or removed and hence can be
an easy source for pluripotent stem cells.
Identification of the target to which CDy9 binds, may also be necessary to be determined
in the future. This is because once the target protein is found, then its signaling pathways,
its mechanisms and functions can be deduced. This will hence give a clearer picture on
the compound staining and interaction with the stem cells and a better understanding of
what is resulting in pluripotent stem cells to bind specifically to CDy9 as compared to the
other cells. This may eventually aid in drug discovery function, especially if the target
protein plays a role in any metabolic pathway or signaling pathway of a disease (34, 35).
Knowing the target of CDy9 may also help in improving the ability of the compound so
that a better version of CDy9 can be synthesized and perhaps a smaller compound
concentration or incubation time is enough to detect pluripotent stem cells specifically.
Furthermore, this can also be the starting point for the generation of other types of stem
cell specific probes. However, current methods of target identifications using techniques
such as affinity matrix have proven to be tedious and have met with limited success. This
is because the above mentioned method may require the modification of compounds in
order to be firmly attached to a solid-phase resin but this modification may affect the
2
biological properties of the compounds and give rise to false target identification (36).
Furthermore, low abundance of target protein expression may also inhibit effective
detection of the target protein. Therefore, to circumvent these issues, the DOFL
compounds allow easier target identification without any modifications of the original
compounds due to their intrinsic fluorescence nature. Therefore proteomics, SDS PAGE
or HPLC analysis of mESC stained with CDy9 can be employed to determine the
possible protein of interest that binds to the compound specifically (Figure 12). Mass
spectrometry analysis may then be performed from these samples to determine the
identity of the protein of interest. Western blots can also be performed to confirm the
presence of the target protein that binds to the compound specifically. One success story
of target identification for a DOFL compound is the fatty acid binding protein 7 for
neural stem cell specific compound, CDr3 (36). As such finding the target binding
partner of CDy9 may provide useful insights on the high specificity of CDy9 to mESC
cells compared to the other already found mESC probes.
Upon identifying the molecular binding partner of CDy9, the compound may also be
translated to be a human pluripotent stem cells probe. The target protein or molecule
found in the mESC can be compared with hESC using PCR or western blots. If the
amount of target molecule/protein present in both stem cells is comparable, CDy9 can
also be tested on hESC and be developed as a hESC specific probe. Human fats from
liposuction may also be used to isolate pluripotent hESCs from human fats. This may
then allow a readily available source of pluripotent human stem cells which can be
utilized for the treatment of many diseases.
3
Figure 12: A general workflow of target identification for CDy9. The compounds are
incubated with CDy9 and then prepared for SDS-PAGE analysis followed by target
identification by mass spectrometry.
This fluorescent optical probe may also be translated in the future to PET/SPECT animal
imaging probes without any chemical modifications for subsequent clinical applications
(33). This is because the DOFL fluorescent compounds have the ability to be altered into
PET/SPECT probes via the introduction of radioisotopes into the compound structure.
This will therefore allow CDy9 to be used for in vivo testing with the aim for use in
animal clinical testing and to contribute as an invaluable tool for stem cell detection,
disease diagnosis and treatment.
Thus, in conclusion, this new specific bioimaging probe CDy9, will be valuable tool for
stem cell based research as our data strongly demonstrate that CDy9 can allow live
detection of mESC very specifically compared to the other already known mESC markers
without the need of any genetic manipulation.
4
BIBLIOGRAPHY
1) J A Thomson, J I Eldor, S S Shapiro, M A Waknitz, J J Swiergiel, V S Marshall, J
M Jones. Embryonic Stem Cell Lines Derived from Human Blastocysts. 1998.
Science. VOL 282.
2) N Amariglio, A Hirshberg, B W Scheithauer, Y Cohen, R Loewenthal, L
Trakhtenbrot, N Paz, M Koren-Michowitz, D Waldman, L Leider-Trejo, A Toren,
S Constantini, G Rechavi. 2009. PLoS Med. 6, e29.
3) M Sato, T Nakano, Embryonic Stem cell. Internal Medicine. 2001 Vol. 40, No. 3
4) JM Slack. Stem Cells in Epithelial Tissues. 2000 Science. 287, 1431–1433
5) A I Caplan. Mesenchymal stem cells. J. Orthop. Res., 1991 9: 641–650.
6) E Pall, I Groza, M Cenariu, O Soritau, E Gocza, C Tomuleasa. Establishment of
an embryonic stem cell line from blastocyst stage mouse embryos. 2011. Rom J
Morphol Embryol , 52(3 Suppl):1005–1010
7) K Takahashi and S Yamanaka. Induction of Pluripotent Stem Cells from Mouse
Embryonic and Adult Fibroblast Cultures by Defined Factors. 2006 Cell. 126,
663–676.
8) I H Park, N Arora, H Huo, N Maherali, T Ahfeldt, A Shimamura, M W Lensch, C
Cowan, K Hochedlinger, and G Q Daley. Disease-specific induced pluripotent
stem (iPS) cells. 2008. Cell. 134(5): 877–886.
9) N Maherali, K Hochedlinger. Guidelines and Techniques for the Generation of
Induced Pluripotent Stem Cells. 2008. Cell Stem Cell. 595-605.
10) M F Pera, B Reubinoff and A Trounson. Human embryonic stem cells. 2000.
Journal of Cell Science.113, 5-10
11) J A Thomson. Embryonic Stem Cell Lines Derived from Human Blastocysts.
1998. Science. 282. 1145.
12) C Melton. Opposing microRNA families regulate self-renewal in mouse
embryonic stem cells. 2010. Nature 463:621-6.
13) T Terai and T Nagano. Fluorescent probes for bioimaging applications. 2008.
Current Opinion in Chemical Biology, 12:515–521
14) C N Im, N Y Kang, H H Ha, X Bi, J J Lee, S J Park, S Y Lee, M Vendrell, Y K
Kim, J S Lee, J Li, Y H Ahn, B Feng, H H Ng, S W Yun, and Y T Chang. A
Fluorescent Rosamine Compound Selectively Stains Pluripotent Stem Cells. 2010.
Angew. Chem. Int. Ed, 49, 7497 –7500
15) W E Moerner.. New directions in single molecule imaging and analysis. 2007.
Proc. Natl. Acad. Sci. U.S.A. 104, 12596-12602.
16) W Liu, M Howarth, A B Greytak, Y Zheng, D G Nocera, A Y Ting, M G
Bawendi. Compact biocompatible quantum dots functionalized for cellular
imaging. 2008. J. Am. Chem. Soc. 130, 1274-1284.
17) R Y Tsien. The Green Fluorescent Protein. 1998. Annu. Rev. Biochem. 67:509–
44
18) D Domaille, E L Que, C J Chang, Synthetic fluorescent sensors for studying the
cell biology of metals. 2008. Nat. chem. Bio. 4, 168-175
19) M S Goncalves. Fluorescent labeling of biomolecules with organic probes. 2009.
Chem Rev. 109, 190-212.
5
20) N Y Kang , H H Ha, S W Yun, Y H Yu and Y T Chang . Diversity-driven
chemical probe development for biomolecules: beyond hypothesis-driven
approach. 2011 Chem. Soc. Rev, 40, 3613-3626
21) S Wang and Y T Chang. Diversity-Oriented Fluorescence Library Approach for
Novel Sensor Development. 2009. Combinatorial Methods for Chemical and
Biological Sensors, 10.1007/978
22) S C Lee, N Y Kang, S J Park, S W Yun, Y Chandran and Y T Chang.
Development of a fluorescent chalcone library and its application in the discovery
of a mouse embryonic stem cell probe. 2012. Chem. Commun, 48, 6681–6683
23) K K Ghosh, H H Ha, N Y Kang, Y Chandran and Y T Chang. Solid phase
combinatorial synthesis of a xanthone library using click chemistry and its
application to an embryonic stem cell probe. 2011. Chem. Commun. 47, 74887490
24) A L Givan. Flow Cytometry: An introduction. Flow Cytometry Protocols,
Methods in Molecular Biology, vol. 699
25) H Sathananthan, K Selvaraj, J Clark. Fine structure of progenitor cells in early
ectopic human embryos. 2012. Reproductive BioMedicine Volume 25, Issue 3 .
26) V Sanchez-Freire, A D Ebert, T Kalisky, S R Quake, J C Wu. Microfluidic
single-cell real-time PCR for comparative analysis of gene expression patterns.
2012. Nature protocols. Vol 7 NO.5 829
27) S B Arumugam, O A Trentz, D Arikketh, V Senthinathan, B Rosario, PV
Mohandas. Detection of embryonic stem cell markers in adult human adipose
tissue-derived stem cells. 2011. Indian J Pathol Microbiol. 54(3):501-8.
28) K R Boheler, J Czyz, D Tweedie, H T Yang, S V Anisimov, and A M Wobus.
Differentiation of Pluripotent Embryonic Stem Cells Into Cardiomyocytes. 2002.
Circ Res. 91:189-201.
29) I S Schroeder, A Rolletschek, P Blyszczuk, G Kania, A M Wobus. Differentiation
of mouse embryonic stem cells to insulin-producing cells. 2006. Nat Protoc.
1(2):495-507
30) M Bibel, J Richter, K Schrenk, K L Tucker, V Staiger, M Korte, M Goetz & Y A
Barde. Differentiation of mouse embryonic stem cells into a defined neuronal
lineage. 2004. Nature Neuroscience 7, 1003 - 1009
31) E M Gordon , R W Barrett , W J Dower , S P Fodor , M A Gallop. Applications
of Combinatorial Technologies to Drug Discovery. 2. Combinatorial Organic
Synthesis, Library Screening Strategies, and Future Directions. 1994. J. Med.
Chem, 37 (10), pp 1385–1401
32) H K Narsinh, N Sun, V Sanchez-Freire, A S. Lee, P Almeida, S Hu, T Jan, K D
Wilson, D Leong, J Rosenberg, M Yao, R C Robbins, and J C Wu, Single cell
transcriptional profiling reveals heterogeneity of human induced pluripotent stem
cells. 2011 J Clin Invest. 121(3):1217–1221.
33) S W Yun, N Y Kang, and Y T Chang. Diversity Oriented Fluorescence Library
Approach for Stem Cell Probe Development. 2011. Stem Cells and Cancer Stem
Cells, Volume 3, 7 1007/978-94-007
34) R K Das, A Samanta, K Ghosh, D Zhai, W Xu, Do Su, C Leong and Y T Chang.
Target Identification: A Challenging Step in Forward Chemical Genetics. 2011
IBC. vol. 3, no. 3, pp. 1-18
6
35) F C Atwood, K Cheung, and S M A. Huang, Chemical Genetics–Based Target
Identification in Drug Discovery. 2012. Annu. Rev. Pharmacol. Toxicol. 52:57–78
36) S W Yun, C Leong, D Zhai, Y L Tan, L Lim, X Bi, J J Lee, H J Kim, N Y Kang,
S H Ng, L W Stantond, and Y T Chang. Neural stem cell specific fluorescent
chemical probe binding to FABP7. 2012. PNAS. 10214–10217 vol 109. no. 26
7
APPENDICES
Cell Panel results for other hit compounds
mESC
MEF
Beta
mMSC
Acinar
Alpha
BDL C2
Hoechst
33342
NS5
NS5-D
BDL C2
Hoechst
33342
Pri Neurons
Mixed glial
3T3 –L1
3T3
BDL C2
Hoechst
33342
C2C12
Splenocytes
B cell
T cell
EBs
BDL C2
Hoechst
33342
8
mESC
MEF
Alpha
Acinar
BDL H3
Hoechst
33342
Beta
mMSC
NS5
NS5-D
3T3
3T3 –L1
BDL H3
Hoechst
33342
Pri Neurons
Mixed glial
BDL H3
Hoechst
33342
C2C12
Splenocytes
B cell
T cell
EBs
BDL H3
Hoechst
33342
9
mESC
MEF
Beta
mMSC
Alpha
Acinar
NS5
NS5-D
BDL E5
Hoechst
33342
BDL E5
Hoechst
33342
Pri Neurons
Mixed glial
3T3
3T3 –L1
BDL E5
Hoechst
33342
C2C12
Splenocytes
B cell
T cell
EBs
BDL E5
Hoechst
33342
10
mESC
MEF
Alpha
Acinar
BDD1 A2
Hoechst
33342
Beta
mMSC
NS5
Mixed glial
3T3
NS5-D
BDD1 A2
Hoechst
33342
Pri Neurons
3T3 –L1
BDD1 A2
Hoechst
33342
C2C12
Splenocytes
B cell
T cell
EBs
BDD1 A2
Hoechst
33342
11
mESC
MEF
Alpha
Acinar
BDD1 A6
Hoechst
33342
Beta
mMSC
NS5
Mixed glial
3T3
NS5-D
BDD1 A6
Hoechst
33342
Pri Neurons
3T3 –L1
BDD1 A6
Hoechst
33342
C2C12
Splenocytes
B cell
T cell
EBs
BDD1 A6
Hoechst
33342
12
mESC
MEF
Alpha
Acinar
NS5
NS5-D
BDD1 E6
Hoechst
33342
Beta
mMSC
BDD1 E6
Hoechst
33342
Pri Neurons
3T3
Mixed glial
3T3 –L1
BDD1 E6
Hoechst
33342
C2C12
Splenocytes
B cell
T cell
EBs
BDD1 E6
Hoechst
33342
13
mESC
MEF
Alpha
Acinar
mMSC
NS5
NS5-D
Mixed glial
3T3
3T3 –L1
BDNCA1
H4
Hoechst
33342
Beta
BDNCA1
H4
Hoechst
33342
Pri Neurons
BDNCA1
H4
Hoechst
33342
C2C12
Splenocytes
B cell
T cell
EBs
BDNCA1
H4
Hoechst
33342
14
mESC
MEF
Alpha
Beta
mMSC
NS5
Acinar
BDNCA1
H5
Hoechst
33342
NS5-D
BDNCA1
H5
Hoechst
33342
Pri Neurons
Mixed glial
3T3
3T3 –L1
BDNCA1
H5
Hoechst
33342
C2C12
Splenocytes
B cell
T cell
EBs
BDNCA1
H5
Hoechst
33342
15
mESC
MEF
Beta
mMSC
Alpha
Acinar
NS5
NS5-D
BDNCA1
F3
Hoechst
33342
BDNCA1
F3
Hoechst
33342
Pri Neurons
3T3
Mixed glial
3T3 –L1
BDNCA1
F3
Hoechst
33342
C2C12
Splenocytes
B cell
T cell
EBs
BDNCA1
F3
Hoechst
33342
16
mESC
MEF
Alpha
Beta
mMSC
NS5
Acinar
BDNCA1
D4
Hoechst
33342
NS5-D
BDNCA1
D4
Hoechst
33342
Pri Neurons
Mixed glial
3T3
3T3 –L1
BDNCA1
D4
Hoechst
33342
C2C12
Splenocytes
B cell
T cell
EBs
BDNCA1
D4
Hoechst
33342
17
mESC
MEF
Alpha
Beta
mMSC
NS5
Acinar
BDNCA1
B5
Hoechst
33342
NS5-D
BDNCA1
B5
Hoechst
33342
Pri Neurons
Mixed glial
3T3
3T3 –L1
BDNCA1
B5
Hoechst
33342
C2C12
Splenocytes
B cell
T cell
EBs
BDNCA1
B5
Hoechst
33342
18
mESC
MEF
Alpha
Acinar
BDNCA1
H7
Hoechst
33342
mMSC
NS5
NS5-D
Pri Neurons
Mixed glial
3T3
3T3 –L1
C2C12
Splenocytes
Beta
BDNCA1
H7
Hoechst
33342
BDNCA1
H7
Hoechst
33342
B cell
T cell
EBs
BDNCA1
H7
Hoechst
33342
19
mESC
MEF
Beta
mMSC
Alpha
Acinar
NS5
NS5-D
BDNCA1
A10
Hoechst
33342
BDNCA1
A10
Hoechst
33342
Pri Neurons
Mixed glial
3T3
3T3 –L1
BDNCA1
A10
Hoechst
33342
C2C12
Splenocytes
B cell
T cell
EBs
BDNCA1
A10
Hoechst
33342
20
mESC
MEF
Beta
mMSC
Alpha
Acinar
BDMAC1
B9
Hoechst
33342
NS5
NS5-D
BDMAC1
B9
Hoechst
33342
Pri Neurons
Mixed glial
3T3
3T3 –L1
BDMAC1
B9
Hoechst
33342
C2C12
Splenocytes
B cell
T cell
EBs
BDMAC1
B9
Hoechst
33342
21
mESC
MEF
Alpha
Acinar
Beta
mMSC
NS5
NS5-D
CLU A3
Hoechst
33342
CLU A3
Hoechst
33342
Pri Neurons
Mixed glial
3T3
3T3 –L1
CLU A3
Hoechst
33342
C2C12
Splenocytes
B cell
T cell
EBs
CLU A3
Hoechst
33342
22
mESC
MEF
Alpha
Acinar
NS5
NS5-D
CLU G3
Hoechst
33342
Beta
mMSC
CLU G3
Hoechst
33342
Pri Neurons
Mixed glial
3T3
3T3 –L1
CLU G3
Hoechst
33342
C2C12
Splenocytes
B cell
T cell
EBs
CLU G3
Hoechst
33342
23
mESC
MEF
Alpha
Acinar
mMSC
NS5
NS5-D
CLU B6
Hoechst
33342
Beta
CLU B6
Hoechst
33342
Pri Neurons
Mixed glial
3T3 –L1
3T3
CLU B6
Hoechst
33342
C2C12
Splenocytes
B cell
T cell
EBs
CLU B6
Hoechst
33342
24
mESC
MEF
Beta
mMSC
Alpha
Acinar
CLU D6
Hoechst
33342
NS5
NS5-D
3T3
3T3 –L1
CLU D6
Hoechst
33342
Pri Neurons
Mixed glial
CLU D6
Hoechst
33342
C2C12
Splenocytes
B cell
T cell
EBs
CLU D6
Hoechst
33342
25
mESC
MEF
Alpha
Beta
mMSC
NS5
Acinar
CLU H7
Hoechst
33342
NS5-D
CLU H7
Hoechst
33342
Pri Neurons
Mixed glial
3T3 –L1
3T3
CLU H7
Hoechst
33342
C2C12
Splenocytes
B cell
T cell
EBs
CLU H7
Hoechst
33342
26
[...]... Acinar NS5 NS5-D CLU G3 Hoechst 33 342 Beta mMSC CLU G3 Hoechst 33 342 Pri Neurons Mixed glial 3T3 3T3 –L1 CLU G3 Hoechst 33 342 C2C12 Splenocytes B cell T cell EBs CLU G3 Hoechst 33 342 23 mESC MEF Alpha Acinar mMSC NS5 NS5-D CLU B6 Hoechst 33 342 Beta CLU B6 Hoechst 33 342 Pri Neurons Mixed glial 3T3 –L1 3T3 CLU B6 Hoechst 33 342 C2C12 Splenocytes B cell T cell EBs CLU B6 Hoechst 33 342 24 mESC MEF Beta mMSC... Acinar BDMAC1 B9 Hoechst 33 342 NS5 NS5-D BDMAC1 B9 Hoechst 33 342 Pri Neurons Mixed glial 3T3 3T3 –L1 BDMAC1 B9 Hoechst 33 342 C2C12 Splenocytes B cell T cell EBs BDMAC1 B9 Hoechst 33 342 21 mESC MEF Alpha Acinar Beta mMSC NS5 NS5-D CLU A3 Hoechst 33 342 CLU A3 Hoechst 33 342 Pri Neurons Mixed glial 3T3 3T3 –L1 CLU A3 Hoechst 33 342 C2C12 Splenocytes B cell T cell EBs CLU A3 Hoechst 33 342 22 mESC MEF Alpha... BDNCA1 H5 Hoechst 33 342 NS5-D BDNCA1 H5 Hoechst 33 342 Pri Neurons Mixed glial 3T3 3T3 –L1 BDNCA1 H5 Hoechst 33 342 C2C12 Splenocytes B cell T cell EBs BDNCA1 H5 Hoechst 33 342 15 mESC MEF Beta mMSC Alpha Acinar NS5 NS5-D BDNCA1 F3 Hoechst 33 342 BDNCA1 F3 Hoechst 33 342 Pri Neurons 3T3 Mixed glial 3T3 –L1 BDNCA1 F3 Hoechst 33 342 C2C12 Splenocytes B cell T cell EBs BDNCA1 F3 Hoechst 33 342 16 mESC MEF Alpha... NS5-D BDD1 E6 Hoechst 33 342 Beta mMSC BDD1 E6 Hoechst 33 342 Pri Neurons 3T3 Mixed glial 3T3 –L1 BDD1 E6 Hoechst 33 342 C2C12 Splenocytes B cell T cell EBs BDD1 E6 Hoechst 33 342 13 mESC MEF Alpha Acinar mMSC NS5 NS5-D Mixed glial 3T3 3T3 –L1 BDNCA1 H4 Hoechst 33 342 Beta BDNCA1 H4 Hoechst 33 342 Pri Neurons BDNCA1 H4 Hoechst 33 342 C2C12 Splenocytes B cell T cell EBs BDNCA1 H4 Hoechst 33 342 14 mESC MEF Alpha... H7 Hoechst 33 342 mMSC NS5 NS5-D Pri Neurons Mixed glial 3T3 3T3 –L1 C2C12 Splenocytes Beta BDNCA1 H7 Hoechst 33 342 BDNCA1 H7 Hoechst 33 342 B cell T cell EBs BDNCA1 H7 Hoechst 33 342 19 mESC MEF Beta mMSC Alpha Acinar NS5 NS5-D BDNCA1 A10 Hoechst 33 342 BDNCA1 A10 Hoechst 33 342 Pri Neurons Mixed glial 3T3 3T3 –L1 BDNCA1 A10 Hoechst 33 342 C2C12 Splenocytes B cell T cell EBs BDNCA1 A10 Hoechst 33 342 20 mESC... Acinar BDD1 A2 Hoechst 33 342 Beta mMSC NS5 Mixed glial 3T3 NS5-D BDD1 A2 Hoechst 33 342 Pri Neurons 3T3 –L1 BDD1 A2 Hoechst 33 342 C2C12 Splenocytes B cell T cell EBs BDD1 A2 Hoechst 33 342 11 mESC MEF Alpha Acinar BDD1 A6 Hoechst 33 342 Beta mMSC NS5 Mixed glial 3T3 NS5-D BDD1 A6 Hoechst 33 342 Pri Neurons 3T3 –L1 BDD1 A6 Hoechst 33 342 C2C12 Splenocytes B cell T cell EBs BDD1 A6 Hoechst 33 342 12 mESC MEF Alpha... BDNCA1 D4 Hoechst 33 342 NS5-D BDNCA1 D4 Hoechst 33 342 Pri Neurons Mixed glial 3T3 3T3 –L1 BDNCA1 D4 Hoechst 33 342 C2C12 Splenocytes B cell T cell EBs BDNCA1 D4 Hoechst 33 342 17 mESC MEF Alpha Beta mMSC NS5 Acinar BDNCA1 B5 Hoechst 33 342 NS5-D BDNCA1 B5 Hoechst 33 342 Pri Neurons Mixed glial 3T3 3T3 –L1 BDNCA1 B5 Hoechst 33 342 C2C12 Splenocytes B cell T cell EBs BDNCA1 B5 Hoechst 33 342 18 mESC MEF Alpha... Alpha Acinar CLU D6 Hoechst 33 342 NS5 NS5-D 3T3 3T3 –L1 CLU D6 Hoechst 33 342 Pri Neurons Mixed glial CLU D6 Hoechst 33 342 C2C12 Splenocytes B cell T cell EBs CLU D6 Hoechst 33 342 25 mESC MEF Alpha Beta mMSC NS5 Acinar CLU H7 Hoechst 33 342 NS5-D CLU H7 Hoechst 33 342 Pri Neurons Mixed glial 3T3 –L1 3T3 CLU H7 Hoechst 33 342 C2C12 Splenocytes B cell T cell EBs CLU H7 Hoechst 33 342 26 ... NS5 NS5-D CLU G3 Hoechst 33 342 Beta mMSC CLU G3 Hoechst 33 342 Pri Neurons Mixed glial 3T3 3T3 –L1 CLU G3 Hoechst 33 342 C2C12 Splenocytes B cell T cell EBs CLU G3 Hoechst 33 342 23 mESC MEF Alpha... Beta mMSC NS5 NS5-D CLU A3 Hoechst 33 342 CLU A3 Hoechst 33 342 Pri Neurons Mixed glial 3T3 3T3 –L1 CLU A3 Hoechst 33 342 C2C12 Splenocytes B cell T cell EBs CLU A3 Hoechst 33 342 22 mESC MEF Alpha... 33 342 NS5 NS5-D BDL C2 Hoechst 33 342 Pri Neurons Mixed glial 3T3 –L1 3T3 BDL C2 Hoechst 33 342 C2C12 Splenocytes B cell T cell EBs BDL C2 Hoechst 33 342 mESC MEF Alpha Acinar BDL H3 Hoechst 33 342