6.a ANFIS-Grid model output vs the actual thermal drift.. 7.ANFIS-Grid model output vs the actual thermal drift.. b ANFIS-FCM model output vs the actual thermal drift 5 h, Test II.. Abdu
Trang 1jo u r n al h om ep a g e :w w w e l s e v i e r c o m / l o c a t e/ a s o c
Centre for Precision Technologies, University of Huddersfield, HD1 3DH, UK
a r t i c l e i n f o
Article history:
Received 30 October 2012
Received in revised form 14 October 2014
Accepted 13 November 2014
Available online 21 November 2014
Keywords:
CNC machine tool
Thermal error modelling
ANFIS
Grey system theory
a b s t r a c t ThermalerrorscanhavesignificanteffectsonCNCmachinetoolaccuracy.Theerrorscomefromthermal deformationsofthemachineelementscausedbyheatsourceswithinthemachinestructureorfrom ambienttemperaturechange.Theeffectoftemperaturecanbereducedbyerroravoidanceornumerical compensation.Theperformanceofathermalerrorcompensationsystemessentiallydependsuponthe accuracyandrobustnessofthethermalerrormodelanditsinputmeasurements.Thispaperfirstreviews differentmethodsofdesigningthermalerrormodels,beforeconcentratingonemployinganadaptive neurofuzzyinferencesystem(ANFIS)todesigntwothermalpredictionmodels:ANFISbydividingthedata spaceintorectangularsub-spaces(ANFIS-Gridmodel)andANFISbyusingthefuzzyc-meansclustering method(ANFIS-FCMmodel).Greysystemtheoryisusedtoobtaintheinfluencerankingofallpossible temperaturesensorsonthethermalresponseofthemachinestructure.Alltheinfluenceweightingsof thethermalsensorsareclusteredintogroupsusingthefuzzyc-means(FCM)clusteringmethod,the groupsthenbeingfurtherreducedbycorrelationanalysis
AstudyofasmallCNCmillingmachineisusedtoprovidetrainingdatafortheproposedmodelsand thentoprovideindependenttestingdatasets.TheresultsofthestudyshowthattheANFIS-FCMmodel
issuperiorintermsoftheaccuracyofitspredictiveabilitywiththebenefitoffewerrules.Theresidual valueoftheproposedmodelissmallerthan±4m.Thiscombinedmethodologycanprovideimproved accuracyandrobustnessofathermalerrorcompensationsystem
©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense
(http://creativecommons.org/licenses/by/3.0/)
Thermalerrorsofmachinetools,causedbyinternaland
exter-nalheatsources,areoneofthemainfactorsaffectingCNCmachine
toolaccuracy.Internalheatsourcescompriseallheatsourcesthat
aredirectlycausedbythemachinetoolandcuttingprocess,such
asspindlemotors,frictioninbearings,etc.Externalheatsources
areattributedtotheenvironmentinwhichthemachineislocated,
suchasneighbouringmachines,opening/closingofmachineshop
doors,cyclicvariationoftheenvironmentaltemperatureduring
thedayandnightanddifferingbehaviourbetweenseasons.The
complexthermal behaviourofa machineis createdby
interac-tionbetweenthesedifferentheatsources.Accordingtovarious
publications[1–3],thermalerrorsrepresentupto75%ofthetotal
positioningerroroftheCNCmachinetool.Theresponsetospindle
∗ Corresponding author Tel.: +44 0 1484 472596.
E-mail addresses: Ali.Abdulshahed@hud.ac.uk , aa shahed@yahoo.com
(A.M Abdulshahed), a.p.longstaff@hud.ac.uk (A.P Longstaff), s.fletcher@hud.ac.uk
(S Fletcher).
heatingisconsideredtobethemajorerrorcomponentamongthem [4].Oneofthemethodsemployedtoavoidthisprobleminvolves theuseofthermallystablematerialssuchasfibre-reinforced plas-tics,cementconcrete,etc.intheconstructionofthemachinetool
ortodesignsymmetryandisolateheatsources[4].Althoughthese aregoodpractisestoreducethedeformationoftheCNCmachine toolstructure,theymaketheeliminationoferrorsveryexpensive andcanleadtootherproblems,suchasincreasedvibrationorlower acceleration
Anothertechniqueisreducingthermalerrorsthrough numeri-calcompensation.Compensationisaprocesswherethethermal error present at a particular time and position is corrected
by adjusting the position of a machine’s axes by an amount equal totheerroratthat position.Errorcompensationscanbe more attractive than making physical changes to the machine structure.First,errorcompensationisoftenless expensivethan thedesign effort, manufacturingand runningcosts involved in error avoidance Secondly, error compensation is more adapt-able in that it can accommodate changes in error sources, whichsometimescannotbeaccommodatedbystructuralchange techniques[3]
http://dx.doi.org/10.1016/j.asoc.2014.11.012
1568-4946/© 2014 The Authors Published by Elsevier B.V This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/3.0/ ).
Trang 2thermalerrorsinadirectorindirectway.Directcompensationis
simpleyetefficientphilosophy,makinguseofdirectlymeasured
displacementsbetweenatoolandaworkpiece,oftenusing
pro-bing.However,directmeasurementcompensationhasanumber
ofdisadvantages.For instance,itislikelythatsomeofthemost
significantthermalproblemsarecausedbyrapidthermalchanges
Trackingandcorrectingtheserapidmovementswouldrequire
fre-quentmeasurements.Whenatool-mountedprobeisused,each
measurementrequiresabreakinmachining,thereforeintroducing
unacceptabletimedelays.Inaddition,probingmeasurementscan
bepronetoerrorscausedbyswarforcoolantonthesurfaceofthe
workpiece[3].Thiscanbeovercomebyrepeatedmeasurementsor
othermeans,butincursfurthercostintermsofhardwareor
pro-ductiontime.Realistically,direct thermalcompensationismost
applicabletofixedtooling,suchaslathes[2],whereadedicated
sensorcanbeconvenientlylocated
1.1 Thermalmodellingmethods
Therearetwo generalschoolsof thoughtrelated toindirect
thermalerrorcompensation.Thefirstmethodusesprinciple-based
modelssuchasthefiniteelementanalysis(FEA)model[5]andfinite
differenceelementmethod(FDEM)[2].Mianetal.[5]proposed
anovelofflineapproachtomodellingtheenvironmentalthermal
errorofmachinetoolsinordertoreducethedowntimerequired
tocalibratethemodel.BasedonanFEAmodel,themethodwas
foundtoreducethemachinedowntimefromafortnightto12.5h
Theirmodellingapproachwastestedandvalidatedonaproduction
machinetooloveraone-yearperiodandfoundtobeveryrobust
However,buildinganumericalmodelcanbeagreatchallengedue
toproblemsofestablishingtheboundaryconditionsandaccurately
obtainingthecharacteristicsofheattransfer
Thesecondmethodisempiricalmodellingbasedoncorrelation
betweenthemeasuredtemperaturechangesandtheresultant
dis-placementofthefunctionalpointofthemachinetool,whichisthe
changeinrelativelocationbetweenthetoolandworkpiece.Linear
regressionisthesimplestmethodtocorrelatemeasured
tempera-tureswithresultingdisplacement.Aleastsquaresapproachisused
toobtainthecoefficientsthatdeterminetherelationshipbetween
inputsandoutputwithoutusinganyphysicalequation.Although
thismethodcanprovidereasonableresultsforagivenmachinetest
regime,thethermaldisplacementusuallychangeswithvariation
inthemachiningprocessandtheenvironment,whichintroduces
anderrorintothemodel[6].Thelinearregressionmodelisalso
time-consumingandlabourintensivetodesign
Inrecentyears,ithasbeenshownthatthermalerrorscanbe
suc-cessfullypredictedbyartificialintelligencemodellingtechniques
suchasartificialneuralnetworksANNs[7,8],fuzzylogic[9],
adap-tiveneuro-fuzzyinferencesystems[8]andacombinationofseveral
differentmodellingmethods[10]
Theadaptiveneurofuzzyinferencesystem(ANFIS)hasbecome
anattractive,powerful,generalmodellingtechnique,combining
wellestablishedlearninglawsofANNsand thelinguistic
trans-parencyoffuzzylogictheory[11].ByemployingtheANNtechnique
to update theparameters of the Takagi-Sugeno type inference
model,theANFISisgiventheabilitytolearnfromtrainingdata
inthesamewayasanANN.Thesolutionsmappedoutontoafuzzy
inferencesystem(FIS)canthereforebedescribedinlinguisticlabels
(fuzzysets)[12].Thus,thenodesandthehiddenlayersare
deter-minedprecisely bya FISintheANFIS network.Thiseliminates
thewell-knowndifficultyofdeterminingthehiddenlayerofANN
modelsandatthesametimeimprovingitspredictioncapability
ANFISisconsideredbecauseitdoesnotrequirecomplex
mathe-maticalmodel,itisfastandadaptiveandthedevelopedprediction
toolcanbeimplementedquickly,whichisessentialforthermal
errorscompensation.ANFIStechniqueshavealreadybeenapplied
todifferentengineeringareassuchassupporttodecision-making [13,14],modellingtool wearin turningprocess [15], and mod-ellingthermalerrorsinmachinetools[8,16].Abdulshahedetal.[8] comparedtheabilityofANFISandANNstopredictthermalerror compensation inCNC machine tools.The resultsindicated that althoughANNshaveagoodlevelofpredictionaccuracy,theANFIS modelsweresuperiorintermsofforecasting ability.Wang[16] alsoproposedathermalmodelusingANFIS.Experimentalresults indicatedthatthethermalerrorcompensationmodelcouldreduce thethermalerrortolessthan9mundercuttingconditions.He usedsixinputswiththreefuzzysetsperinput,producinga com-pleterulesetof729(36)rulesinordertobuildanANFISmodel Clearly,Wang’smodel ispractically limitedtolow dimensional modelling.Itisimportanttonotethataneffectivepartitionofthe inputspacecandecreasethenumberofrulesandthusincreasethe speedinbothlearningandapplicationphases.However,areliable andreproducibleproceduretobeappliedinapracticalmannerin ordinaryworkshopconditionswasnotproposed.Forexample,the numberoffuzzyrulesincreasesexponentiallywhenthenumber
ofvariablesrises.Toovercomethislimitation,fuzzyc-means algo-rithmscouldbeusedtodetermineclusterseffectively,providing betterclusteredinputstopredictionmodel
1.2 Reductionofmodelinputs Intuitively, locatinga largenumberof sensorsonamachine toolstructureshouldenhancetheaccuracyofthethermal error model sinceit increasestheinformation input.However,many researchersaimtoreducethenumberofrequiredtemperature sen-sors.Toolargeanumberofsensorsmightleadtoanincreaseinthe constraintsandcostofthecompensationsystem,aswellaspossibly leadingtopoorrobustnessofthethermalmodelbecauseofincrease
indatanoise.Severalstudieshaveusedstatisticalapproachessuch
asengineeringjudgement,thermalmodeanalysis,stepwise regres-sionandcorrelationcoefficientstoselectthetemperaturesensors forthermalerrorcompensationmodels[17].YanandYang[18] proposedanMRAmodelcombingtwomethods,namelythedirect criterionmethodandindirectgroupingmethod;bothmethodsare basedonsyntheticGreycorrelation.Usingthismethod,the num-beroftemperaturesensorswasreducedfrom16tofourandthe residualrangewasreducedfor69.1%.Hanetal.[19]proposeda correlationcoefficientanalysisand fuzzyc-meansclusteringfor selectingtemperaturesensorsbothintheirrobustregression ther-mal errormodel and ANN model [20]; the number of thermal sensorswasreducedfrom32tofive.However,thesemethods suf-ferfromthefollowingdrawbacks:alargeamountofdataisneeded
inordertoselectpropersensors;andtheavailabledatamust sat-isfyatypicaldistributionsuchasnormal(orGaussian)distribution [21].Therefore,asystematicapproachisstillneededtominimise thenumberoftemperaturesensorsandselecttheirlocationsso thatthedowntimeandresourcescanbereducedwhilerobustness
isincreased
GreysystemtheoryisamethodintroducedbyDenginearly 1980s[22]withtheintentiontostudytheGreysystemsbyusing mathematicalmethodswithpoorinformationandsmalldatasets
InGreysystemtheory,GM(h,N)denotesaGreymodel,whereh
istheorderofdifferenceequationandNisthenumberof vari-ables.TheGM(h,N)modelcanbeusedtodescribetherelationship betweentheinfluencingsequencefactorsandthemajorsequence factorofasystem.Furthermore,weightsofeachfactorrepresent theirimportancetothemajorsequencefactorofthesystem.Its mostsignificantadvantageisthatitneedsonlyasmallamountof experimentaldataforaccurateprediction,andtherequirementfor thedatadistributionisalsolow[21]
Trang 3Fig 1.Basic structure of ANFIS.
Inthispaper,theGM(1,N)modelandfuzzyc-means
cluster-ingareusedtodeterminethemajorsensorsinfluencingthermal
errorsofasmallverticalmillingmachine(VMC),whichis
capa-bleofsimplifyingthesystempredictionmodel.Thenweusedthe
ANFIStobuildtwothermalpredictionmodelsbasedonselected
sensors:ANFISbydividingthedataspaceintorectangular
sub-spaces(ANFIS-Grid)andANFISbyusingfuzzyc-meansclustering
methodwithANFIS(ANFIS-FCM).Thiscombinedmethodologycan
helptoimproverobustnessoftheproposedmodel,andreducethe
effectofsensoruncertainty
introducedbyJang[11].AccordingtoJang,theANFISisaneural
networkthatisfunctionallythesameasaTakagi-Sugenotype
infer-encemodel.ANFIShasbecomeanattractive,powerfulmodelling
technique,combiningwellestablishedlearninglawsofANNsand
thelinguistictransparencyoffuzzylogictheorywithinthe
frame-workofadaptivenetworks.Fuzzyinferencesystems(FIS)areone
ofthemostwell-knownapplicationsoffuzzylogictheory.Inthe
fuzzyinferencesystems,themembershipfunctionstypicallyhave
tobemanuallyadjustedbytrialanderror.TheFISmodelperforms
likeawhitebox,meaningthatthemodeldesignerscandiscover
howthemodelachieveditsgoal.Ontheotherhand,artificialneural
networks(ANNs)canlearn,butperformlikeablackboxregarding
howthegoalisachieved.ApplyingtheANNtechniquetodevelop
theparametersofafuzzymodelallowsustolearnfromagiven
setoftrainingdata,justlikeanANN.Atthesametime,the
solu-tionmappedoutintothefuzzymodelcanbeexplainedinlinguistic
termsasacollectionof“IF–THEN”rules
2.1 ANFISarchitecture
ThearchitectureofANFISisshowninFig.1.Fivelayersareused
toconstructthismodel.Eachlayercontainsseveralnodesdescribed
bythenodefunction.Adaptivenodes,denotedbysquares,
rep-resent the parameter sets that are adjustable in these nodes
Conversely,fixednodes,denotedbycircles,representthe
param-etersetsthatarefixedinthemodel.Simple ANFISarchitecture,
whichusestwovariables(T1andT2)asinputsandoneoutput(F:
thermaldrift),willbedescribedinthissectioninordertoexplain
theconceptoftheANFISstructure
intoafuzzysetbymeansofmembershipfunctions(MFs).It
con-tainsadaptivenodeswithnodefunctionsdescribedas:
whereT1 and T2 are theinputnodei, AandB arethe
linguis-tic labels associated with this node, (T ) and (T ) are the
membershipfunctions(MFs),TherearemanytypesofMFsthat canbeused.However,aGaussianshapedfunctionwithmaximum andminimumequalto1and0isusuallyadapted.Parametersin thislayeraredefinedaspremiseparameters
circleandlabelledby
,withthenodefunctiontobemultiplied
byinputsignalstoserveasoutputsignal
O2,i=wi=Ai(T1)·Bi−2(T2), fori=1,2 (3) wheretheO2,iistheoutputofLayer2.Theoutputsignalwi repre-sentsthefiringstrengthoftherule
markedbyacircleandlabelledbyN,withnodefunctionto nor-malisethefiringstrengthbycomputingtheratiooftheithnode firingstrengthtosumofallrules’firingstrength
O3,i= ¯w= wi
wheretheO3,iistheoutputofLayer3.Thequantity ¯w isknownas thenormalisedfiringstrength
byasquare,withnodefunctionasfollowing:
wheref1andf2arethefuzzyif–thenrulesasfollows:
• Rule1.IFT1isA1andT2isB1,THENf1=p1T1+q1T2+r1
• Rule2.IFT1isA2andT2isB2,THENf2=p2T1+q2T2+r2 wherepi,qiand riaretheparametersset,referredtoasthe consequentparameters
byacircleandlabelledby
,withnodefunctiontocalculatethe overalloutputby:
O5,i=
iw¯i·fi=
iwifi
ThesimplestlearningruleofANFISis“back-propagation”which computeserrorsignalsrecursivelyfromtheoutputlayer(Layer5) backwardtotheinputnodes(Layer1).Thislearningruleisexactly thesameastheback-propagationlearningruleusedinthecommon feed-forwardneuralnetworks[8,23].Althoughthismethodcanbe appliedtoidentifytheparametersinanANFISnetwork,themethod
isgenerallyslowandlikelytobecometrappedinlocalminima[11] Differentlearningtechniques,suchasahybrid-learningalgorithm [14]orgeneticalgorithm(GA)[24],canbeadoptedtosolvethis trainingproblem.BetterperformanceofANFISmodelshasbeen shownbyadoptingarapidhybridlearningmethod,which inte-gratesthegradientdescentmethodandtheleast-squaresmethod
tooptimiseparameters[23,25,26].Thusinthispaper,thehybrid learningmethodisusedforconstructingtheproposedmodels 2.2 Extractionoftheinitialfuzzymodel
Inordertostartthemodellingprocess,aninitialfuzzymodel hastobederived.Thismodelisrequiredtoselecttheinput vari-ables,inputspacepartitioningorclustering,choosingthenumber andtypeofmembershipfunctionsforinputs,creatingfuzzyrules, andtheirpremiseandconclusionparts.Foragivendataset, differ-entANFISmodelscanbeconstructedusingdifferentidentification methodssuchasgridpartitioning,andfuzzyc-meansclustering (FCM)[23]
AThe ANFIS-Grid partition method is the combination of grid partitionandANFIS.Thedataspacedividesintorectangular sub-spaces usingaxis-paralleledpartitionsbasedonapre-defined
Trang 4lim-itationofthismethodisthatthenumberofrulesrisesrapidly
asthenumberofinputs(sensors)increases.Forexample,ifthe
numberofinputsensorsisnandthepartitionedfuzzysubsetfor
eachinputsensorism,thenthenumberofpossiblefuzzyrules
ismn.Whilethenumberofvariablesraises,thenumberoffuzzy
rulesincreasesexponentially,whichrequiresalargecomputer
memory.AccordingtoJang[11],gridpartitionisonlysuitable
forproblemswithasmallnumberofinputvariables(e.g.fewer
than6).Inthispaper,theproposedthermalerrormodelhasfive
inputs.ItisreasonabletoapplytheANFIS-Gridpartitionmethod
BTheANFIS-fuzzyc-meansclusteringisthemostcommonmethod
offuzzyclustering[25].Essentially,itworkswiththeprincipleof
minimisinganobjectivefunctionthatdefinesthedistancefrom
anygivendatapointtoaclustercentre.Thisdistanceisweighted
bythevalueofMFsofthedatapoint[25].IntheFCMmethod,
whichisproposedtoimproveANFISperformance,thedataare
classifiedintopertinentgroupsbasedontheirdegreesofMFs.In
thisclusteringmethod,itisassumedthatthenumberofclusters,
nc,isknownoratleastfixed.ItdividesagivendatasetX={x1, ,
xn}intocclusters.Moredetailcanbefoundinthenextsection
Inordertoobtainasmallnumberoffuzzyrules,afuzzyrule
generationtechniquethatintegratesANFISwithFCMclustering
canbeused,wheretheFCMisusedtosystematicallyidentifythe
fuzzyMFsandfuzzyrulebaseforANFISmodel.Inthispaper,to
identifypremisemembershipfunctions,thetwoaforementioned
methodswereusedandcompared
2.3 Fuzzyc-meansclustering
Fuzzyc-means(FCM)isasoftclusteringmethodinwhicheach
datapointbelongstoacluster,withadegreespecifiedbya
mem-bershipgrade.Dunnintroducedthisalgorithmin1973[28]andit
wasimprovedbyBezdek[29].FCMalgorithmisthefuzzymode
ofK-meansalgorithmanditdoesnotconsidersharpboundaries
betweentheclusters[30,31].Thus, thesignificantadvantageof
FCMistheallowanceofpartialbelongingsofanyobjecttodifferent
groupsoftheuniversalsetinsteadofbelongingtoasinglegroup
totally
FCMpartitionsacollectionofnvectorsxi,i=1,2, ,ninto
fuzzygroups,anddeterminesaclustercentreforeachgroupsuch
thattheobjectivefunctionofdissimilaritymeasureisreduced
i=1,2, ,carearbitrarilyselectedfromthenpoints.Thesteps
oftheFCMmethodarenowbrieflyexplained:firstly,thecentresof
eachclusterci,i=1,2, ,carerandomlyselectedfromthendata
patterns{x1,x2,x3, ,xn}.Secondly,themembershipmatrix()
iscomputedwiththefollowingequation:
where,
ij:thedegreeofmembershipofobjectjinclusteri;
M:thefuzzinessindexvaryingintherange[1,∞];and
dij=||ci−xj||:theEuclideandistancebetweenciandxj
Thirdly,theobjectivefunctioniscalculatedwiththefollowing
equation.Theprocessisstoppedifitfallsbelowacertainthreshold:
J(U,c1,c2, ,cc)=
c
Ji= c
c
Finally,thenewcfuzzyclustercentresci,i=1,2, ,care cal-culatedusingthefollowingequation:
ci=
n
j=1mijxj
n
j=1m ij
(9)
Inthispaper,theFCMalgorithmwillbeusedtoseparatewhole training datapairs intoseveralsubsets (membershipfunctions) withdifferentcentres.EachsubsetwillbetrainedbytheANFIS,as proposedbyParketal.[32].Furthermore,theFCMalgorithmwill
beusedtofindtheoptimaltemperaturedataclustersforthermal errorcompensationmodels[33]
influenceonpredicationaccuracyandrobustnessofathermal pre-dictionmodel.Oneofthedifficultissuesinthermalerrormodelling
istheselectionofappropriatelocationsforthetemperature sen-sors,which isa key factorintheaccuracy ofthethermal error model.ThisstudyadoptsGreysystemtheorytoidentifytheproper sensorpositionsforthermalerrormodelling
The Grey systems theory is a methodology that focuses on studyingtheGreysystemsbyusingmathematicalmethodswith
aonlyfewdatasetsandpoorinformation.Thetechniqueworkson uncertainsystemsthathavepartialknownandpartialunknown information.Itsmostsignificantadvantageisthatitneedsasmall amount of experimental data for accurate prediction, and the requirementforthedatadistributionisalsolow[21].Thereare manytypesofGreymodels;theGreyGM(1,N)modelwillbeused
inthiswork
3.1 TheGM(1,N)model Thefirst-orderGreymodel,GM(1,N),isamultivariableGrey modelformulti-factorforecasting.GM(1,N)meansaGreymodel thathasNvariablesincludingonedependentvariableandN−1 independentvariables.AssumethatthereareNvariables,xi(i=1,
2, ,N),andeachvariablehasninitialsequencesas:
x(0)i ={x(0)
i (1),x(0)i (2), ,x(0)i (n)} (i=1,2, ,N)
the smoothness of the sequence, the accumulative generation operation (AGO) is applied to convert the sequences to be strictlymonotonicincreasingsequences.Forsimplification,letus definethefirst-orderaccumulativegenerationoperation(1-AGO) sequenceforx(0)i as:
x(1)i ={x(1)
i (1),x(1)i (2), ,x(1)i (n)}, where,
x(1)i (k)=
k
j=1
x(0)i (j) (k=1,2, ,n)
Then,theGM(1,N)modelcanbeexpressedbythefollowing Greydifferentialequation[21]:
x(0)1 (k)+az(1)1 (k)=
N
j=2
bjXj(1)(k)
=b2x(1)2 (k)+b3x(1)3 (k)+···+bNx(1)N (k), (10)
Trang 5Fig 2.Block diagram of the proposed system.
Inwhich,z(1)1 (K)isdefinedas:
z1(1)(k)=0.5x(1)1 (k−1)+0.5x(1)1 (k) k=2,3,4, ,n
wherethecoefficientsaandbjarecalledthesystemdevelopment
parameterandthedrivingparameters,respectively
FromEq.(10),wecanwrite:
x(0)1 (2)+az1(1)(2)=b2x(1)2 (2)+···+bNx(1)N (2),
x(0)1 (3)+az1(1)(3)=b2x(1)2 (3)+···+bNx(1)N (3),
x1(0)(n)+az(1)1 (n)=b2x(1)2 (n)+···+bNx(1)N (n)
(11)
Eq.(5)canbewritteninthematrixformas:
⎡
⎢
⎢
⎢
⎣
x(0)1 (2)
x(0)1 (3)
x(0)1 (n)
⎤
⎥
⎥
⎥
⎦
=
⎡
⎢
⎢
⎢
⎣
z1(1)(2) x2(1)(2) ··· x(1)N (2)
z1(1)(3) x2(1)(3) ··· x(1)N (3)
z1(1)(n) x2(1)(n) ··· x(1)N (n)
⎤
⎥
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣
a
b2
bN
⎤
⎥
⎥
Thecoefficientsofthemodelcanthenbeobtainedusingthe
least-squareestimatemethodas:
where,ˆ =
⎡
⎢
⎣
a
b2
bN
⎤
⎥
⎦, Y=
⎡
⎢
⎢
x(0)1 (2)
x(0)1 (3)
x(0)1 (n)
⎤
⎥
⎥,
B=
⎡
⎢
⎢
z(1)1 (2) x1(1)(2) ··· x(1)N (2)
z(1)1 (3) x1(1)(3) ··· x(1)N (3)
z(1)1 (n) x(1)2 (n) ··· x(1)N (n)
⎤
⎥
⎥
Therefore,theinfluencerankingfromtheindependentvariables
tothedependentvariablecanbeknownbycomparingthemodel
valuesofb2∼bN
Toobtainrobustmodels,alltheinfluenceweightingofthermal
sensorsisclusteredintogroupsusingFCM.Then,onesensorfrom
eachclusterisselectedtorepresentthetemperaturesensorsof
thesamecategoryaccordingtoitsinfluencecoefficientwiththe
Fig 3.Location of thermal sensors on the machine.
thermaldrift.Therefore,byselectingfivesensors,theANFISmodels canbebuilteasilytopredictthethermaldrift
Thewholeblockdiagramoftheproposedsystemisshownin Fig.2,wherevariablesT1toTNrepresentthetemperaturedata cap-turedfromthetemperaturesensors,andthethermaldriftobtained fromnon-contactdisplacementtransducers(NCDTs)
4.1 Setupofmeasurementsystem Fig.3showstheblockdiagramofathree-axisverticalmilling machine(VMC).Themotorsfortheaxesaredirectlycoupledtoa ballscrewthatissupportedbybearingsateachend.Thespindleis rotatedbyaDCmotormountedonthetopofthespindlecarrier Thespindlespeedcanbecontrolledfrom60rpmto8000rpm.In ordertoobtainthetemperaturedataofthismachinetool,atotal
of76thermalsensorsareplacedonthemachine.Thesensorscan
beclassifiedintodifferentcategoriesaccordingtotheirpositions
asillustratedinTable1 Themachinetoolissubjectedtocontinuouslychanging oper-ationconditions Itis rarelymaintainedatsteady stateandthe heatgeneratedinternallywillvarysignificantlyasthespindle rota-tionspeedischanged.Whenthisiscombinedwiththeeffectof ambientchanges,theresultisthecomplexthermalbehaviourof themachine.Fivenon-contactdisplacementtransducers(NCDTs) are used to measure the displacement of a precision test bar,
Trang 60 10 20 30 40 50 60 0
5 10 15
Time (Minutes)
Temperature sensor T11 (Test II, 4000 rpm) Temperature sensor T11 (Test III, 4000 rpm) Temperature sensor T11 (Test V, 8000 rpm) Temperature sensor T11 (Test VI, 8000 rpm)
0 10 20 30 40 50 60
20
22
24
26
28
30
32
34
36
38
40
Time (Minutes)
Temperature sensor T11 (Test II, 4000 rpm) Temperature sensor T11 (Test III, 4000 rpm) Temperature sensor T11 (Test V, 8000 rpm) Temperature sensor T11 (Test VI, 8000 rpm)
Fig 4.(a) Absolute temperature of the selected sensor in different tests (b) Magnitude of temperature changes in different tests.
The location of the temperature sensors.
8–32 Strip 1 Sensors (placed on the carrier)
33–61 Strip 2 Sensors (placed on the carrier)
representingthetool,intheX,YandZaxes.Theconfigurationis
showninFig.3
Inthiswork,avarietyofheatingandcoolingtestsarecarried
outindifferentambientconditionsanddifferentspindlespeedsof
theVMC(seeTable2).Briefappraisalofthemethodologyshows
thevariationconsideredinthisstudy.ComparingTestIandTestVI
showsthatahigherspindlerotationspeedcausesalargerthermal
errorforthesametimeduration.WhereascomparingTestIIwith
TestIIIandTestVwithTestVI,itcanbeseenthatthesamespindle
rotationspeed,andthesametimeduration,gaverisetodifferent
thermalerror.Thiswasduetochangeoftheambientconditionsand
hysteresiseffect.Moredetailofthesedifferencescanbeobserved
byexaminingaselectedtemperaturesensoronthespindlecarrier
(T11);Fig.4(a)showsdifferentinitialconditionsofthemachineand
Fig.4(b)showsthedifferentmagnitudeoftemperaturechangesin
differenttests.Anexampleofheatingandcoolingtestisillustrated
asfollows:theverticalmillingmachinewasexaminedbyrunning
atitshighestspindlespeedof8000rpmfor1htoexcitethelargest
thermalbehaviour.Thetemperaturesensorsattheselectedpoints
-20 0 20 40 60 80
Time (Minutes)
X axis
Y axis
Z axis
Fig 5. Thermal drift of the spindle (spindle speed 8000 rpm).
onthemachinetoolandthethermaldisplacementofthespindleare measuredsimultaneously;thethermaldisplacementofthevertical millingmachineisshowninFig.5.Themaximumdisplacementof theX-axisis3m,theY-axisis79mandtheZ-axisis22m.The X-axisthermaldisplacementismuchsmallerthanthatoftheY-axis andtheZ-axisduetothemechanicalsymmetryofthemachineand thereforeisnotinvestigatefurtherinthispaper;onlytheY-axisand Z-axiserrorsareconsidered
4.2 Influenceweightingofsensorsatvariouscriticalpoints Theselectionoftemperaturevariablesisakeyfactortothe accu-racyofthethermalerrormodel,whichwillbeadverselyaffected
The various heating and cooling tests.
Y-direction (m)
Test name
Trang 7Table 3
The clustering result.
GROUP 5 T1–T3, T6, T7, T64–T67, T70, T71, T73–T75
ifthereisinsufficientcoverageofthetemperaturedistribution.At
thesametime,thecalibration/trainingtimeandtherelativecost
ofthesystemwillincreaseifthenumberofinputvariablesislarge
Therefore,thelocationofsuitabletemperaturesensorsshouldbe
determinedbeforethemodellingprocess
Byapplying theGrey modelGM (1,N) ontheexperimental
datafromone of abovementioned tests(Test VI),theinfluence
coefficientscanbeobtainedasfollows:
SupposethatT1∼T76representsthemajorvariables(inputs)
x(0)2 ∼x(0)
n and the measurement of the NCDT sensors in the
Y-direction is the target variable (output) x(0)1 The influence
coefficientscanbeobtainedbyEq.(13),as b2 ∼ b76 .Thegreater
theinfluenceweight,thegreatertheimpactonthethermalerror,
and themore likely it is that the temperature variablecan be
regardedasapossiblemodellingvariable
Next,theinfluenceweightingsareclusteredtofiveclustersby
usingfuzzyc-meansclusteringanalysis(seeTable3).Afterward,
onesensorfromeachclusterisselectedaccordingtoitsinfluence
weightwiththethermaldisplacementtorepresentthe
tempera-turesensorsofthesamecategory.InthiscasetheyareT18,T55,T63,
T68andT71.Thesetemperaturesensorsarelocatedonthespindle
carrier(Strip1andStrip2),spindleboss,ambientnearthecolumn,
andambientnearthebase,respectively
Forthepurposeofcomparison,anothertestwascarriedouton
thewell-knownk-meansclustering.Thesoftclusteringapproach
producesmorereasonableresultsthanthehardclustering
How-ever,FCMrequiresmoreiterationsthank-means,becauseofthe
fuzzycalculations
4.3 ANFISmodelsdesign
Oneofthemainconcernswithdesigningathermalerror
com-pensationmodelusingANFIS,oranyotherself-learningalgorithm,
iswhetherthetrainingdatathatwasmeasuredatoneparticular
operatingconditionoftheCNCmachinetoolwouldbesufficient
totrainthemodelfullyforotheroperationalconditions.Inother
words,isthemeasureddatasufficientforthemodeltobeapplicable
foralloperatingconditions?
Ideally,anANFISmodelistrainedbyatrainingsetthatincludes
manytrainingpairscollectedfromalllikelyconditions.However,
therecostofmachinedowntimetocapturethetrainingdataisa
significantconcern,becausetheimpactonproductivitycanhavea
highpenalty.Forthisreason,reducingthenumberoftrainingpairs
requiredisveryattractive
TestIVwasconsideredtovalidatethemethodofreducingthe
numberoftrainingcycles.Measurementsofthermalerrorand
cor-respondingtemperatureswererecordedwhilethemachinewas
runthrougharangeofdutycycleasfollows:Itwasallowedtorun
atspindlespeed4000rpmfor120min,andthenpausedfor60min
beforerunningforanother120min;andthenstoppedfor180min
Hence,thedataobtainedfromthistestisdividedintothreeparts
whichweretraining,checking,andtestingdataset.Thechecking
datasetwasusedforover-fittingmodelvalidation,whilethe
test-ingdatasetwasusedtoverifytheaccuracyandtheeffectivenessof
thetrainedmodel
FivetemperaturesensorsfromSection4.2wereusedasinput
variablestothemodelsandthethermaldisplacementinthe
Y-directionwaschosenasatargetvariable.TheGaussianfunctions
Performance of ANFIS-FCM models with various numbers of n c Models Number of
clusters (n c )
Convergence epochs
RMSE of testing dataset
Table 5
Linguistic rules.
Linguistic rules
1 If (T18 is T18cluster1) and (T55 is T55cluster1) and (T63 is T63cluster1) and (T68 is T68cluster1) and (T71 is T71cluster1) then (out1 is out1cluster1)
2 If (T18 is T18cluster2) and (T55 is T55cluster2) and (T63 is T63cluster2) and (T68 is T68cluster2) and (T71 is T71cluster2) then (out1 is out1cluster2)
3 If (T18 is T18cluster3) and (T55 is T55cluster3) and (T63 is T63cluster3) and (T68 is T68cluster3) and (T71 is T71cluster3) then (out1 is out1cluster3)
areusedtodescribethemembershipdegreeoftheseinputs,dueto theiradvantagesofbeingsmoothandnon-zeroateachpoint[8] AftersettingtheinitialparametervaluesintheANFISmodels,the inputmembershipfunctionswereadjustedusingahybridlearning scheme
Extensivesimulationswereconductedtodeterminethe opti-mumstructure oftheFISmodelsthrough variousexperiments TheoptimalnumberofMFswasdeterminedbyassigning differ-entnumbersofMFsfortheANFIS-Gridmodel,anddifferentvalues
tothenumberofclusters(nc)fortheANFIS-FCMmodel, respec-tively.ToofewMFswillnotallowanANFISmodeltobemapped well.However,toomanyMFswillincreasethedifficultyof train-ingandwillleadtoover-fittingormemorisingundesirableinputs suchasnoise.Thepredictionerrorsweremeasuredseparatelyfor eachmodelusingtherootmeansquareerror(RMSE)indexwith thetestingdataset.Anexampleofselectingtheoptimumstructure fortheANFIS-FCMmodelispresentedasfollows:
Inthismodellingmethod,theoptimumsizeoftheFISmodelwas determined,andtheresultsareshowninTable4.Differentnumbers
ofepochswereselectedforeachmodelbecausethetrainingprocess onlyneedstobecarriedoutuntiltheerrorsconverge.Ascanbe seeninTable4,itcannotsimplybestatedthatbetterresultswill
beobtainedwithmoreclusters.ItwasfoundthattheFISmodel withthree(nc=3)clustersexhibitedthelowestRMSEvalue(1.7)for thetestingdataset.Consequently,thisFISmodelwiththreerules wasconsideredtobetheoptimal.Thecorrespondingrulesofthe optimummodelareprovidedinTable5
Similarly,theoptimumFISmodel forANFIS-Gridmodel was determinedbyarbitrarilyvaryingthenumberofMFsfrom2to4 TheFISmodelwiththreeMFsperinput(243rules)wasfoundto
betheoptimum
In this section,theaim is tousethestructure of theANFIS modelsdescribedintheprevioussectiontoderiveathermalerror compensationsystem Withthepurposeof evaluating the pre-dictionperformanceofthemodelsgeneratedusingdatasetTest
IV,theremainingdatasetsTestI,TestII,TestIII,TestV,andTest
VI were used to run the models The experimentaltests were carriedoutthroughoutdifferenttime durations,different ambi-enttemperaturesand differentspindlerotation speedsinorder
tovalidatetherobustnessofthemodellingmethod.The perfor-manceofthemodelsusedinthisstudywascomputedusingthree performance criteria,including root-mean-square error(RMSE), correlationcoefficient(R2)andalsotheresidualvalue
Trang 80 20 40 60 80 100 120 -5
0 5 10 15 20 25 30 35 40
Time (Minutes)
ANFIS-FCM Thermal Error Residual value
0 20 40 60 80 100 120
-5
0
5
10
15
20
25
30
35
40
Time (Minutes)
ANFIS-GRID Thermal Error Residual value
Fig 6.(a) ANFIS-Grid model output vs the actual thermal drift (b) ANFIS-FCM model output vs the actual thermal drift (2 h, Test I).
-5 0 5 10 15 20 25 30 35 40
Time (Minutes)
ANFIS-FCM Thermal Error Residual value
-5
0
5
10
15
20
25
30
35
40
Time (Minutes)
ANFIS-GRID Thermal Error Residual value
Fig 7.ANFIS-Grid model output vs the actual thermal drift (b) ANFIS-FCM model output vs the actual thermal drift (5 h, Test II).
5.1 Samespindlespeedunderdifferentoperationconditions
ThepredictionmodelsestablishedusingthedatasetfromTest
IVareusedtoforecastthethermalerrorofTestI,TestII,andTest
III,respectively.Inallexperiments,themachinewasexaminedby
runningthespindleataspeedof4000rpm,butthedurationand
ambienttemperatureisdifferentbetweeneachtestanddifferent fromthetrainingdata,asillustratedinTable2.Thisis representa-tiveofamachinethatmanufacturessimilarparts,butinvarying factoryconditions.Thetemperaturesensorsattheselectedpoints
onthemachinetoolandthethermaldisplacementofthetestbar aremeasuredsimultaneously
0 50 100 150 200 250 300 -5
0 5 10 15 20 25 30 35 40
Time (Minutes)
ANFIS-FCM Thermal Error Residual value
0 50 100 150 200 250 300
-5
0
5
10
15
20
25
30
35
40
Time (Minutes)
ANFIS-GRID Thermal Error Residual value
Trang 90 20 40 60 80 100 120 0
10 20 30 40 50 60 70
Time (Minutes)
ANFIS-FCM Thermal Error Residual value
0 20 40 60 80 100 120
0
10
20
30
40
50
60
70
Time (Minutes)
ANFIS-GRID Thermal Error Residual value
Fig 9. ANFIS-Grid model output vs the actual thermal drift (b) ANFIS-FCM model output vs the actual thermal drift (5 h, Test V).
0 20 40 60 80 100 120 140
-10
0
10
20
30
40
50
60
70
80
Time (Minutes)
ANFIS-GRID Thermal Error Residua l value
0 20 40 60 80 100 120 140 -10
0 10 20 30 40 50 60 70 80
Time (Minutes)
ANFIS-FCM Ther mal Err or Residua l value
Fig 10.ANFIS-Grid model output vs the actual thermal drift (b) ANFIS-FCM model output vs the actual thermal drift (5 h, Test VI).
PredictiveresultsforthethreetestsusingANFIS-Gridmodeland
ANFIS-FCMmodelareshowninFigs.6–8.Resultsshowthatthese
twomodelsarecompetitive.Theperformanceofeachofthetwo
thermalpredictionmodelsispresentedinTable6.Theybothcan
predictthenewobservationsandreducetheresidualvaluetoless than±5mforeachtest.ItisclearthattheANFIS-FCMmodelhas
asmallerRMSE,residualvalueandhighercorrelationcoefficient thantheANFIS-Gridmodel
Performance calculation of the used models.
Table 7
Performance calculation of the used models.
Trang 105.2 Differentspindlespeedunderdifferentoperationconditions
ThepredictionmodelsestablishedusingthedatasetfromTest
IV were furthertested to represent a machine that has
differ-entmanufacturingparameters,alsoinvaryingfactoryconditions
Themachine wasrun at itshighest spindle speed of8000rpm
for one hourto excite more thermal response than duringthe
trainingdata,andthenpausedforanotherhourforcooling(see
TestVandTestVI).PredictiveresultsusingtheANFIS-Gridmodel
and ANFIS-FCMmodelare shownin Figs 9and 10 The
evalu-ation criteriavalues areprovided inTable7.Theresidualerror
obtainedusingtheANFIS-FCMmodelwasagainbetterthanthe
ANFIS-Gridmodel.Inaddition,theANFIS-FCMmodelhasalower
RMSEandslightlyhighercorrelationcoefficientthanthe
ANFIS-Gridmodel.ThisindicatesthattheANFIS-FCMmodelisa good
modellingchoiceforpredictingthethermalerrorofthemachine
tools
Thispaperproposesathermalerrormodellingmethodbased
ontheadaptive neuro fuzzyinferencesystem(ANFIS) in order
toestablishtherelationshipbetweenthethermalerrorsandthe
temperaturechanges.Theproposedmethodologyhastheability
toprovidea simple,transparentandrobustthermal error
com-pensationsystem.Ithastheadvantagesoffuzzylogictheoryand
the learning ability of theartificial neural network in a single
system.Theoptimallocationsforthetemperaturesensorswere
determinedthroughtheGreymodelandfuzzyc-means
cluster-ing.Afterclusteringintogroups,one sensorfromeachgroupis
selectedaccordingtoitsinfluencecoefficientvaluewiththe
ther-mal drift By this method, the number of temperature sensors
wasreducedfrom76possiblelocationstofive,whichsignificantly
minimisedthecomputationaltime,costandeffectofsensor
uncer-tainty
TwotypesofANFISmodelhavebeendiscussedinthispaper:
usinggrid-partitioningandusingfuzzyc-meansclustering.Both
modelswereconstructedandtestedonaCNCmillingmachine.The
resultsfromthetwosetsofvalidationtestsshowthatboth
ANFIS-basedmodels,derivedfromasingleheating-and-coolingcycle,can
improvetheaccuracyofthemachinetoolbyover80%for
vary-ingambientconditions,heatingdurationsandspindlespeeds.The
ANFIC-FCMproducedbetterresults,achievingupto94%
improve-ment in error with a maximum residual error of ±4m This
compares favourably with other compensation methods based
uponparametricorself-learningtechniques,suchassimilartests
bytheauthorsusingartificialneuralnetworks[8],asdiscussedin
Section1
Inadditiontothebetterabsoluteaccuracy,theANFIS-FCMhas
beenshowntohavetheadvantageofrequiringfewerrules,inthis
case requiringonlythree rules asopposed tothe243foundto
beoptimalfortheANFIS-Gridmodel.Thisisasignificantbenefit,
since the latter methodis significantly more laborious to
con-struct
Therefore,it canbeconcluded thattheANFIS-FCMmodel is
avalidandpromisingalternativeforpredictingthermalerrorof
machinetoolswithoutincreasingcomputationoverheads
Acknowledgements
TheauthorsgratefullyacknowledgetheUK’sEngineeringand
PhysicalSciencesResearchCouncil(EPSRC)fundingoftheEPSRC
CentreforInnovativeManufacturinginAdvancedMetrology(Grant
Ref:EP/I033424/1)
References
[1] J Bryan, International status of thermal error research, CIRP Ann Manuf Tech-nol 39 (1990) 645–656.
[2] J Mayr, et al., Thermal issues in machine tools, CIRP Ann Manuf Technol 61 (2012) 771–791.
[3] S Postlethwaite, et al., The use of thermal imaging, temperature and distortion models for machine tool thermal error reduction, Proc Inst Mech Eng B: J Eng Manuf 212 (1998) 671–679.
[4] R Ramesh, et al., Error compensation in machine tools – a review: Part II Thermal errors, Int J Mach Tools Manuf 40 (2000) 1257–1284.
[5] N.S Mian, et al., Efficient estimation by FEA of machine tool distortion due to environmental temperature perturbations, Precis Eng 37 (2013) 372–379.
[6] B Tan, et al., A thermal error model for large machine tools that considers envi-ronmental thermal hysteresis effects, Int J Mach Tools Manuf 82-83 (2014) 11–20.
[7] J Chen, et al., Thermal error modelling for real-time error compensation, Int J Adv Manuf Technol 12 (1996) 266–275.
[8] A Abdulshahed, et al., Comparative study of ANN and ANFIS prediction models for thermal error compensation on CNC machine tools, in: Laser Metrology and Machine Performance X, Buckinghamshire, 2013, pp 79–88.
[9] J.-H Lee, et al., Thermal error modeling of a horizontal machining center using fuzzy logic strategy, J Manuf Process 3 (2001) 120–127.
[10] A Abdulshahed, et al., Application of GNNMCI(1, N) to environmental thermal error modelling of CNC machine tools, in: Presented at the the 3rd Interna-tional Conference on Advanced Manufacturing Engineering and Technologies, Stockholm, 2013, pp 253–262.
[11] J.S.R Jang, ANFIS: adaptive-network-based fuzzy inference system, IEEE Trans Syst Man Cybern 23 (1993) 665–685.
[12] P Melin, et al., A new approach for time series prediction using ensembles of ANFIS models, Expert Syst Appl 39 (2012) 3494–3506.
[13] G Özkan, M ˙Inal, Comparison of neural network application for fuzzy and ANFIS approaches for multi-criteria decision making problems, Appl Soft Comput 24 (2014) 232–238.
[14] S Kar, et al., Applications of neuro fuzzy systems: a brief review and future outline, Appl Soft Comput 15 (2014) 243–259.
[15] M Rizal, et al., Online tool wear prediction system in the turning process using an adaptive neuro-fuzzy inference system, Appl Soft Comput 13 (2013) 1960–1968.
[16] K.C Wang, Thermal error modeling of a machining center using grey system theory and adaptive network-based fuzzy inference system, in: Cybernetics and Intelligent Systems, Bangkok, 2006, pp 1–6.
[17] J Li, et al., Thermal-error modeling for complex physical systems: the-state-of-arts review, Int J Adv Manuf Technol 42 (2009) 168–179.
[18] J Yan, J Yang, Application of synthetic grey correlation theory on thermal point optimization for machine tool thermal error compensation, Int J Adv Manuf Technol 43 (2009) 1124–1132.
[19] J Han, et al., Thermal error modeling of machine tool based on fuzzy c-means cluster analysis and minimal-resource allocating networks, Int J Adv Manuf Technol 60 (2012) 463–472.
[20] J Han, et al., A new thermal error modeling method for CNC machine tools, Int.
J Adv Manuf Technol (2012) 1–8.
[21] S Liu, et al., Grey Systems: Theory and Applications, vol 68, Springer, Heidelberg, 2010.
[22] J.-L Deng, Control problems of grey systems, Syst Control Lett 1 (1982) 288–294.
[23] S Guillaume, Designing fuzzy inference systems from data: an interpretability-oriented review, IEEE Trans Fuzzy Syst 9 (2001) 426–443.
[24] J Soto, et al., Time series prediction using ensembles of ANFIS models with genetic optimization of interval type-2 and type-1 fuzzy integrators, Int J Hybrid Intell Syst 11 (2014) 211–226.
[25] A Karahoca, D Karahoca, GSM churn management by using fuzzy c-means clustering and adaptive neuro fuzzy inference system, Expert Syst Appl 38 (2011) 1814–1822.
[26] J Soto, et al., A new approach for time series prediction using ensembles of ANFIS models with interval type-2 and type-1 fuzzy integrators, in: 2013 IEEE Conference on Computational Intelligence for Financial Engineering & Eco-nomics (CIFEr), Singapore, 2013, pp 68–73.
[27] M Wei, et al., Predicting injection profiles using ANFIS, Inf Sci 177 (2007) 4445–4461.
[28] J.C Dunn, A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters, J Cybern (1973).
[29] J.C Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Kluwer Academic Publishers, 1981.
[30] T Velmurugan, Performance based analysis between k-means and fuzzy c-means clustering algorithms for connection oriented telecommunication data, Appl Soft Comput 19 (2014) 134–146.
[31] A.K Jain, Data clustering: 50 years beyond k-means, Pattern Recognit Lett 31 (2010) 651–666.
[32] S.H Park, et al., Proceedings of 2005 International Symposium on Comparison
of Recognition Rates Between BP and ANFIS with FCM Clustering Method on Off-line PD Diagnosis of Defect Models of Traction Motor Stator Coil in Electrical Insulating Materials, 2005 (ISEIM 2005), 2005, pp 849–852.
[33] S.M.N Arosha Senanayake, et al., A knowledge-based intelligent framework for anterior cruciate ligament rehabilitation monitoring, Appl Soft Comput 20