Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 160 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
160
Dung lượng
15,23 MB
Nội dung
A STUDY ON MANGANESE CATALYZED EPOXIDATION OF STYRENE USING ONLINE RAMAN AND IN-SITU FTIR MONITORING TECHNIQUES QUAH CHEE WEE NATIONAL UNIVERSITY OF SINGAPORE 2006 A STUDY ON MANGANESE CATALYZED EPOXIDATION OF STYRENE USING ONLINE RAMAN AND IN-SITU FTIR MONITORING TECHNIQUES QUAH CHEE WEE (B.Eng.(Hons.), NUS) A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF ENGINEERING DEPARTMENT OF CHEMICAL & BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2006 Acknowledgements Embarking on my first journey in research, I have learnt some of the rigors involved but it also provides me with an insight to how interesting and fulfilling the actual experience can be. Research can be utterly tedious and involves unassuming patience cum perseverance working towards making scientific contribution in one’s own area through well-designed experiments and diligent execution of any possible ideas. With the completion of this work, I like to thank Dr Carpenter, executive director of Institute of Chemical and Engineering Sciences (A*Star-ICES) for his encouragement and concern in my work. I also like to express my gratitude to both supervisors - Prof Garland and Dr Bujie for their advice. They provide inspiration and motivation for me to understand the meaning of passion in research work which is important for aspiring research students. They impart perseverance and innovativeness which are crucial for young minds to better apply our knowledge to solve problems. I really need to thank my seniors Dr Chew Wee, Dr Effendi Widjaja, Mr Guo Liangfeng and Mr Zhang Huajun for their guidance in signal processing. In addition, I also wish to acknowledge the assistance of Mettler-Toledo for the use of ReactIR instrument for in-situ ATR measurements. Lastly, I would like to make a special mention of my family and girlfriend, Ms Chew Meizeng who are always there to support me at the end of the day and colleagues in ICES. It is with pleasure that I complete my thesis, bearing in mind, the KISS (Keep It Short and Sweet) principle and present my work in a scientifically concise manner. i Table of Contents TABLE OF CONTENTS Description Chapter Page Introduction 1.1 Introduction to Epoxidation 1.2 Important Applications of Epoxides 1.3 Motivation for Studying Mn-Bicarbonate-H2O2 Catalytic System 1.4 Objective and Scope of Study 1.5 Outline of Thesis structure Chapter Literature Review 2.1 Overview of Catalysts for Epoxidation 2.2 Homogeneous Catalysis for Epoxidation 2.2.1 Manganese-Salen Complexes 2.2.2 1,4,7-Triazacyclononane(TACN) Complexes 2.2.3 Metalloporphyrins- Iron and Mn Porphyrin Complexes 2.2.4 Methyltrioxorhenium (MTO) Catalyst 2.2.5 Polyoxometalates- Peroxotungstates/Peroxomolybate 2.2.6 Iron and Manganese Pyridyl-Amine Complexes 2.3 Heterogeneous Catalysis for Epoxidation 2.3.1 Zeolites and Hydrotalcite Systems 2.3.2 Homogeneous Catalysts Anchored onto Silica Support 22 2.4 Reaction Controlled Phase Transfer Catalysts 25 2.5 Comparison of Various Catalysts 27 2.6 Introduction to Chemometrics 29 2.7 Band Target Entropy Minimization (BTEM) 2.7.1 Introduction to BTEM 2.7.2 Applicability of BTEM 2.7.3 Singular Vector Decomposition (SVD) 2.7.4 Shannon Entropy Minimization 2.7.5 Corana’s Self-Annealing (SA) Optimization Method 2.7.6 Band Target Entropy Minimization (BTEM) 29 ii Table of Contents 2.7 Chapter Band Target Entropy Minimization (BTEM) 2.7.7 BTEM Pseudo Algorithm 2.7.8 BTEM as an Effective Data Analysis Tool 29 Experimental and Theory 3.1 Nuclear Magnetic Resonance (NMR) Spectroscopy 3.3.1 Investigations with 13C NMR Spectroscopy 3.3.2 Preparation of Standard Reagents 3.3.3 Exsistence of Peroxocarbonates and Mn-Complex 45 3.2 Online Raman Spectroscopy 3.2.1 Investigations with Online Raman Spectroscopy 3.2.1.1 Basic Experimental Set-up 3.2.1.2 Preparation of Reagents 3.2.1.3 Aspects of Experimental Design 49 3.2.2 Data analysis of Online Raman data 3.2.2.1 Application of BTEM 3.2.2.2 Singular Value Decomposition (SVD) 3.2.2.3 Band Targeting Using VT Vectors 3.2.2.4 Pure Component Spectra Reconstruction 3.2.2.5 Comparison of Reconstructed Spectra 3.2.2.6 Concentrated Profile of Individual Species 3.2.3 Assignment of Characteristic Peaks of Styrene and Epoxide 3.2.4 Spectral Analysis of Mn-Complex 3.2.4.1 Characteristic Raman Peaks of Mn-Complex 3.2.4.2 Embedded Peak of Mn-Complex 3.2.5 Control Experiments 3.2.5.1 Expt 1– Preparation of Mn-Complex in DMF 3.2.5.2 Expt 2– Preparation of complex without Mn2+ 3.2.5.3 Expt 3– Preparation of complex without HCO33.2.5.4 Expt 4– Interactions between DMF and Water 3.2.5.5 Expt 5– Interactions between DMF and Mn2+ 3.2.5.6 Expt 6– Interaction of HCO3- with H2O2 3.2.5.7 Expt 7– Artifact Peak belonging to H2O 3.2.6 Assignment of Vibration Modes in Mn-Complex 3.2.6.1 Metallic-Oxygen (Mn-O) Vibration Mode 3.2.6.2 Peroxo (O-O) Vibration Mode 3.2.6.3 Carbon-oxygen (C-O) and Carbonyl Carbon (C=O) modes iii Table of Contents 3.2 Online Raman Spectroscopy 3.2.7 3.2.8 3.2.9 Postulated Structure for Mn-Complex Solvated in DMF Existence of [MLn(CO4)] species (M= Fe, Rh, Pt, Pd, Ni) Evidence for Existence of Manganese-Peroxocarbonate Complex 3.3 Introduction to UV-Vis Spectroscopy 3.3.1 Introduction to UV-Vis Spectroscopy 3.3.2 Preparation of Standard Reagents 3.3.3 UV-Vis Analysis of Pure Reagents 3.3.4 UV-Vis Analysis of Mn-Complex (LMCT) 88 3.4 Reaction Calorimetry 3.4.1 Online Calorimetry for reaction studies 3.4.2 Experimental Design 3.4.3 Reaction Studies I: Two-Step Epoxidation 3.4.3.1 Step - Preparation of Mn-complex 3.4.3.2 Step - Epoxidation of Styrene 3.4.4 Reaction Studies II: One-Pot Epoxidation 93 3.5 In-situ Mid-Infrared Attenuated Total Reflection 3.5.1 Singular Value Decomposition of ATR Spectra 3.5.2 Band Targeting and Corana’s Self-Annealing 3.5.3 Pure Component Spectra Reconstruction 3.5.4 Effect of Dosing on Concentration Profile 99 Chapter Results and Discussions 4.1 Interpretation of Experimental Results 106 4.2 Investigation on Role of Reagents 107 4.3 Proposed Reaction Mechanism 109 4.4 Purpose of Kinetics Studies 112 4.5 Order and Molecularity in the Rate Law 113 4.6 Kinetic Studies 4.6.1 Rate Expressions and Rate Equation 4.6.2 Determination of Overall Rate Constant 114 iv Table of Contents Chapter Conclusions and Future Work 5.1 Review of Mn-catalyzed Epoxidation 117 5.2 Major Significant Findings 117 5.3 Recommendations for Future Work 118 References ACKNOWLEDGEMENTS TABLE OF CONTENTS SUMMARY LIST OF TABLES LIST OF FIGURES LIST OF SCHEMES LIST OF SYMBOLS 119 i ii-v vi vii-viii ix-xiv xv xvi-xvi i v Summary Summary Catalytic epoxidation of styrene using a cheap and effective combination of MnSO4 salt and bicarbonate-H2O2 solution in DMF was successfully carried out with complete conversion and up to 90% yield in about h. The use of 30% H2O2 oxidant is in line with current green chemistry practices as H2O2 gives environment friendly byproducts such as H2O and O2 in contrast to hydrocarbons if organic peroxides are used. Furthermore, manganese is also relatively non-toxic compared to traditional tungsten catalysts. This catalytic system is ligand-free and does not require any additives, carried out in DMF which is more environmentally compatible as opposed to halogenated solvents. Such advantageous catalytic system thus provides the motivation to study the reaction mechanism and carry out kinetic studies using online Raman, in-situ FTIR, 13C NMR and UV-Vis spectroscopy coupled with application of Band Target Entropy Minimization (BTEM) chemometric method. The active epoxidizing agent (manganese peroxocarbonate complex) was effectively elucidated from the array of online Raman data using BTEM. The characteristic Raman vibration modes of this complex suggest a bidentate coordination between the manganese center and a singular carbon-containing peroxocarbonate group, simultaneously supported by both 13C NMR and UV-Vis results. A plausible mechanism was then proposed. Based on this mechanism, the overall reaction rate constant was subsequently computed, which will be useful for reactor sizing and scale-ups. vi List of Tables List of Tables Table 2-1 Comparison of various epoxidation catalysts. Table 3-1 Amount of reagents used in Raman experiment. Table 3-2 Band selection for targeting. Table 3-3 Characteristic peaks of Mn-complex. Table 3-4 Embedded bands and corresponding BTEM-resolved peaks. Table 3-5 Control experiments for comparison. Table 3-6 Shifts in Raman bands due to H-Bonding between DMF and water. Table 3-7 Reported peak assignments for ν(Mn-O) mode. Table 3-8 Assigned complex peaks. Table 3-9 UV cut-offs of solvents taken for absorbance of 1.00 in a 10.0 mm cell versus distilled water. vii List of Tables Table 3-10 Amount of reagents used. Table 3-11 Targeted bands. Table 4-1 Role of reagents. viii References 62. Venturello, C., D’Aloisio, R., Bart, J. C. J., Ricci, M. J. Mol. Catal. 1985, 32, 107110. 63. Sato, K., Aoki, M., Ogawa, M., Hashimoto, T., Noyori, R. J. Org. Chem. 1996, 61, 8310-8311. 64. Sato, K., Aoki, M., Ogawa, M., Hashimoto, T., Panyella, D., Noyori, R. Bull. Chem. Soc. Jpn. 1997, 70, 905-915. 65. White, M. C., Doyle, A. G., Jacobsen, E. N. J. Am. Chem. Soc. 2001, 123, 71947195. 66. Brinksma, J., Hage, R., Kerschner, J., Feringa, B. L. Chem. Commun. 2000, 537538. 67. Clerici, M. G., Bellussi, G., Romano, U. J. Catal. 1991, 129 (1), 159-167. 68. Wu, P., Tatsumi, T. Chem. Commun. 2001, 897-898. 69. Wang, Y., Zhang, Q., Shishido, T., Takehira, K. J. Catal. 2002, 209, 186-196. 70. Yamaguchi, K., Ebitani, K., Kaneda, K. J. Org. Chem. 1999, 64, 2966-2968. 126 References 71. Ueno, S., Yamaguchi, K., Yoshida, K., Ebitani, K., Kaneda, K. Chem. Commun. 1998, 295-296. 72. Cativiela, C., Figueras, F., Fraile, J., Garcı´a, J., Mayoral, J. Tetrahedron Lett. 1995, 36 (23), 4125-4128. 73. Mandelli, D., van Vliet, M. C. A., Arnold, U., Sheldon, R. A., Schuchardt, U. J. Mol. Catal. A: Chem. 2001, 168 (1-2), 165-171. 74. Munakata, H., Oumi, Y., Miyamoto, A. J. Phys. Chem. B. 2001, 105 (17), 34933414. 75. Tantanak, D., Vincent, M. A., Hillier, I. H. Chem. Commun.1998, 9, 1031-1032. 76. Notari, B. in Advances in Catalysis; Eley, D. D., Ed.; Academic Press: San Diego, 1996, Vol. 41. 77. Reichle, W. T., Kang, S. Y., Everhardt, D. S. J. Catal. 1986, 101 (2), 352-359. 78. Honma, T., Hakajo, M., Mizugaki, T., Ebitani, K., Kaneda, K. Tetrahedron Lett. 2002, 43, 6229-6232. 127 References 79. Capel-Sanchez, M. C., Campos-Martin, J. M., Fierro, J. L. G., de Frutos, M. P., Polo, A. P. Chem. Commun. 2000, 855-856. 80. Sakamoto, T., Pac, C. Tetrahedron Lett. 2000, 41 (51), 10009-10105. 81. Gelbard, G., Gauducheau, T., Vidal, E., Parvulescu, V. I., Crosman, A., Pop, V. M. J. Mol. Catal. A: Chem. 2002, 257, 182-183. 82. Villa de P., A. L., Sels, B. F., De Vos, D. E., Jacobs, P. A. J. Org. Chem. 1999, 64, 7267-7270. 83. Luz Villa de P., A., Farla´n Taborda, A., Montes de Correa, C. J. Mol. Catal. A: Chem. 2002, 185 (1-2), 269-277. 84. Vos, D.E.D., Wilderman, S.d., Sels,B.F., Grobet,P.J., Jacobs,P.A. Angew. Chem. Int. Ed. Engl. 1999, 38, 980-983. 85. Vinhado, F.S., Prado-Manso, M.C., Sacco, H.C., Iamamoto, Y. J. Mol. Catal. A: Chem. 2001, 174 (1-2), 279-288. 86. Cooke, P.R., Smith, J.R.L. Tetrahedron Lett. 1992, 33, 2737-2740. 87. Cooke,P.R., Smith,J.R.L. J. Chem. Soc. Perkin Trans. 1.1994, 1913-1923. 128 References 88. Martinez-Lorente, M. A., Battioni, P., Kleemiss, W., Bartoli, J.F., Mansuy, D. J. Mol. Catal. A: Chem. 1996, 113 (1-2), 343-353. 89. Doro, F. G., Smith, J. R. L., Ferreira, A. G., Assis, M. D. J. Mol. Catal. A: Chem. 2000, 164, 97-108. 90. Zuwei, X., Ning, Z., Yu, S., Kunlan, L. Science 2001, 292 (5519), 1139-1141. 91. Chew W., Widjaja E., Garland M. Organomet. 2002, 21 (9),1982-1990. 92. Widjaja E., Li C.Z., Garland M. Organomet. 2002, 21 (9), 1991-1997. 93. Widjaja E., Li C.Z., Chew W. Garland M. Anal. Chem 2003, 75 (17), 4499-4507. 94. Widjaja, E., Tan, B.H., Garland, M. Appl. Spectrosc. 2006, 60 (10), 294-303. 95. Ong L.R., Widjaja E., Stanforth R. Garland, M. J. Raman Spectrosc. 2003, 34 (4), 282-289. 96. Sin S.Y., Widjaja E., Yu L.E. J. Raman Spectrosc. 2003, 34 (10), 795-805. 97. Widjaja E., Crane N., Chen T.C. Appl. Spectrosc.2003, 57 (11), 1353-1362. 129 References 98. Zhang H.J., Garland M., Zeng Y.Z. J. Am. Soc. Mass Spectrosc. 2003, 14 (11), 1295-1305. 99. Guo L.F., Kooli F., Garland M. Anal .Chimica Acta. 2004, 517 (1-2), 229-236. 100. Guo L.F., Wiesmath A., Sprenger P., Garland M. Anal. Chem. 2005,77 (6), 1655-1662. 101. Li C.Z., Widjaja E., Chew W., Garland M. Angew. Chem. Int. Ed. 2002, 41(20), 3785-3789. 102. Li C.Z., Widjaja E., Garland M. J. Am. Chem. Soc. 2003, 125, 5540-5548. 103. Li C.Z., Widjaja E., Garland M. J. Catal. 2003, 213 (2), 126-134. 104. Widjaja, E., Li, C.Z., Garland, M. J. Catal. 2004, 223, 278-289. 105. Li C.Z., Guo L.F., Garland M. Organomet. 2004, 23 (22), 5275-5279. 106. Li C.Z., Guo L.F., Garland M. Organomet. 2004. 23 (9), 2201-2204. 107. Allian A.D., Garland M. Dalton Transactions. 2005, 11, 1957-1965. 130 References 108. Tjahjono M., Guo L.F., Garland M. Chem. Eng. Sci., 60 (12), 3239-3249. 109. Watanabe S. in Pattern Recognition, 13, 381-387. 1981. 110. Shannon C. E. Bell Syst. Technol. J., 27, 379. 1948. 111. Corana A.; Marchesi, M., Martini, C., Ridella, S. ACM Trans. Math. Software, 13, 263. 1987. 112. D.A Skoog, F.J.Holler, T.A.Nieman, in Principles of Instrumental Analysis, Chapter 19, 446-491, 5th Edition, 1998. 113. J.M.Risley and R.L.V.Etten. J. Am. Chem. Soc. 1981, 103, 4389-4392. 114. M.P.Lane, T.T.Nakashima and J.C.Vederas. J. Am. Chem. Soc. 1982, 104, 913-915. 115. M.Peter Esnouf, M.R.Green, H.A.O.Hill, G.B.Irvine and S.J.Walter. Biochem. J. 1978, 174, 345-348. 116. John Flanagan, D.Philip Jones. William P. Griffith, Andrzej C. Skapski , and Anthony P. West. Chem. Comm. 1986, 1, 20-21. 131 References 117. L.J.Chen, C.J.Lin, J.Zuo, L.C.Song and C.M.Huang. J. Phys. Chem. 2004, 108, 7553-7556. 118. D.Philip Jones and William P. Griffith. Dalton Transactions. 1980, 25262532. 119. A. Adam and M.Mehta . Angew. Chem. Int. Ed. 1998, 110, 1457-1459. 120. A. Adam and M.Mehta. Angew. Chem. Int. Ed. 1998, 37, 10, 1387-1388. 121. B.S. Lane and K.Burgess. Chem. Rev., 2003, 103, 7, 2458-2473. 122. D.E.Richardson, H.Yao, K.M.Frank, D.A.Bennett. J. Am. Chem. Soc. 2000, 122, 1729-1739. 123. H.Yao, D.E.Richardson. J. Am. Chem. Soc. 2002, 125, 6211-6221. 124. K.Nakamoto, in Infrared and Raman Spectra of Inorganic and Coordination Compounds : Applications in Coordination, Organometallic, and Bioinorganic Chemistry, Wiley-Interscience,5th Edition, 1963. 125. J. P. Mathieu. J. Raman. Spectrosc. 1973, (1), 47-51. 132 References 126. Wang, F., Watcher, J.A., Antosz, F.J., and Berglund, K.A. Org. Process Res. Dev. 2000, (5), 391-395. 127. P.Sipos, L.Bolden, G.Hefter, P.M.May. Aust. J. Chem. 2000, 53, 887-890. 128. D.Watanabe, H.Hamaguchi. J. Chem. Phys. 2005, 123 (3), 034508 (1-7). 129. S.Simard, M.Odziemkowski, D.E.Irish, L.Brossard, H.Ménard. J. Appl. Electrochem. 2001, 31, 913-920. 130. W.W.Rudolph, G.Irmer, G.T.Hefter. Phys. Chem. Chem. Phys. 2003, 5, 5253-5261. 131. A.R.Davis and B.G.Oliver. J. Phys. Chem.1973, 77 (10), 1315-1316. 132. F.Rull, Ch.Balarew, J.LAlvarez, F.Sobron and A.Rodriguez. J.Raman Spectrosc.1994, 25 (12), 933-941. 133. C.C.Pye and W.W.Rudolph. J. Phys. Chem. A. 1998, 102, 9933-9943. 134. C.F.Windisch, J.L.Cox and E.N.Greenwell. Spectrochimica Acta A. 1997, 53, 1981-1993. 133 References 135. D.H. Smith, G.M. Begun, D.H. Smith. J. Am. Chem. Soc. Faraday Trans. 1981, 2, 77, 1399-1400. 136. G.E.Walrafen, D.E.Irish, T.F. Young. J. Chem. Phys.1962, 37, 662-671. 137. H.Ohtaki. Chem Rev.1993, 93, 1157-1204. 138. Marcus, Y. Chem Rev. 1988, 88, 1475-1498. 139. Shapovalov, I.M., Radchenko, I.V. J. Struct. Chem. 1971, 12 (5), 705-708. 140. W.Li, G.V.Gibbs, S.T.Oyama. J. Am. Chem. Soc. 1998, 120, 9041-9046. 141. Selig.H., Claassen, H.H. Israel. J. Chem. 1968 , , 499-500. 142. H.S.Kim and P.C.Stair. J. Phys. Chem. B. 2004, 108, 17019-17026. 143. D.N. Whiteman, W.F.Murphy, N.W.Walsh, K.D.Evans. Optics Letters, 1993, 18, 3, 247-249. 144. A.J.Berger, Y.Wang, D.M.Sammeth, I.Itzkan, K.Kneipp, M.S.Feld. Appl. Spectrosc. 1995, 49, 8, 1164-1169. 134 References 145. http://soils.stanford.edu/log/raman/RamanEnd.asp?ID=77. 146. R.Radhakrishnan, S.T.Oyama, J. Phys. Chem. B. 2001, 105, 4245-4253. 147. R.Radhakrishnan, S.T.Oyama, J. Phys. Chem. B. 2001, 105, 9067-9070. 148. C.M.Julien, M.Massot. Mat. Sci. Eng. 2003, B97, 217-230. 149. Y.J.Wei, L.Y.Yan, C.Z.Wang, X.G.Xu, F.Wu, abd G.Chen, J. Phy. Chem. B. 2004, 108, 18547-18551. 150. M.Ferrandon, J.Carnö, S.Järås, E. Björnbom. Appl. Cat. A : General. 1999, 180, 141-151. 151. F.Kapteijn, A.D.V.Langeveld, J.A.Moulijn, A.Andreїni, M.A.Vuurman, A.M.Turek, J.Jehng, I.E.Wachs. J. Catal. 1994, 150, 94-104. 152. S.T.Oyama, W.Zhang . J. Am. Chem. Soc. 1996, 118, 7173-7177. 153. G.V.Chertihin and L.Andrews. J. Phys. Chem. A. 1997, 101, 8547-8553. 154. A.Cua, D.H.Stewart, M.J.Reifler, G.W.Brudvig, D.F.Bocian. J. Am. Chem. Soc. 2000, 122, 2069-2077. 135 References 155. R.Makino, T.Uno, Y.Nishimura, T.Iizuka, M.Tsuboi and Y.Ishimura. J. Biol. Chem. 1986, 261, 18, 8376-8382. 156. X.Yang, Y.Makita, Z.Liu, K.Sakane, K.Ooi. Chem. Mater. 2004, 16, 55815588. 157. H.Furutachi, K.Hashimoto, S.Nagatomo, T.Endo, S.Fujinami, Y.Watanabe, T.Kitagawa and M.Suzuki. Angew. Chem. Int. Ed. 2002, 41 (7), 1202-1204. 158. H.Furutachi, K.Hashimoto, S.Nagatomo, T.Endo, S.Fujinami, Y.Watanabe, T.Kitagawa and M.Suzuki. J. Am. Chem. Soc. 2005, 127, 4550-4551. 159. K.Haller, J.H.Lunsford and J.Laane. J. Phys. Chem. 1996,100,551-555. 160. D.E.Root, M.Mahroot-Tahir, K.D.Karlin, E.I.Solomon. Inorg. Chem, 1998, 37, 4838- 4848. 161. K.L.Dorris, J.E.Boggs, A.Danti and L.L. Altpeter. J. Chem. Phys. 1967, 46 (3), 1191-1193. 162. J.R.Durig, J.W.Clark and J.M.Casper. J. Mol. Struct. 1970, 5, 67-85. 136 References 163. J.Durig, G.L.Coulter and D.W.Wertz. J. Mol. Spectrosc. 1968, 27 (1-4), 285-295. 164. R.A.Pethrick and A.D.Wilson. Spectrochimica Acta. 1974, 30A, 10731080. 165. M.Tlili, M.Ben Amor,C.Gabrielli, S.Joiret, G.Maurin and P.Rousseau. J. Raman Spectrosc. 2001, 33, 10-16. 166. Dickens B, Brown WE. Inorg. Chem. 1970, 9, 480-486. 167. M.H.Brooker and J.Wang. Spectrochimica Acta. 1992, 48A, 7, 999-1008. 168. N.Wen, M.H.Brooker. J. Phys. Chem. 1995, 99, 359-368. 169. H.Falcke and S.H.Eberle. Wat. Res. 1990, 24, 6, 685-688. 170. N.Koura, S.Kohara, J.Takeuchi, S.Takahashi, L.A.Curtiss, M.Grimsditch and M.L.Saboungi. J. Mol. Struct. 1996, 382, 163-169. 171. J.D.Frantz. Chem. Geo. 1998,152, 211-225. 172. Y.Ohminami and K.Ashakura. J. Phys. Chem. B. 2001, 105, 9067-9070. 137 References 173. J.S.Yoo, S.H.Jhung, K.H.Lee and Y.S.Park. Appl. Catal. A. 2002, 223, 239-251. 174. M.Yamashita, K.Goto, and T.Kawashima. J. Am. Chem. Soc. 2005, 127, 7294-7295. 175. M.Aresta, I.Tommasi, E.Quaranta, C.Fragale, J.Mascetti, M.Tranquille, F.Galan and M.Fouassier. Inorg. Chem. 1996, 35, 4254-4260. 176. M.Aresta, A.Dibenedetto , I.Tommasi. Eur. J. Inorg. Chem. 2001, 18011806. 177. P.J.Hayward, D.M.Blake, G.Wilkinson , and C.J.Nyman. J. Am. Chem. Soc. 1970, 92, 2, 5873-5878. 178. C.D.Bugno, M.Pasquali. Inorganica Chimica Acta.1998, 149, 19-20. 179. M. Aresta, I.Tommasi, A.Dibenedetto, M.Fouassier, J.Mascetti . Inorganica Chimica Acta. 2002, 330, 63-71. 180. C.A.d.S.Queiroz, M.E,d.Vasconcellos, S.M.R.d.Rocha, J.A.Seneda, W.R.Pedreira,J.d.R.Matos and A.Abrao. J. Alloys and Compounds. 2004, 374, 401-404. 138 References 181. Y. Wakatsuki, M.Maniwa and H. Yamazaki. Inorg. Chem. 1990, 29, 42024208. 182. Boucher, L.J. Coord. Chem. Rev. 1972, 7, 289-329. 183. F. Albert Cotton and Geoffrey Wilkinson, in Advanced Inorganic Chemistry, New York: Wiley, 5th Ed, c1988. 184. J.A. Dean, Ed., in Lange’s Handbook of Chemistry, 14th Ed., McGraw-Hill, New York, 1992. 185. K.S.Suslick, F.V.Acholla, and B.R.Cook. J. Am. Chem. Soc, 1987, 109, 2818-2819. 186. S.R. Chowdhury, K. K. Mukherjea and R. Bhattacharyya. Transition Met. Chem. 2005, 30(5), 601 – 604. 187. K.Fujiwara and H. Watarai. Anal. Sci. 2001, 17, 1249-1252. 188. Donna.G.Blackmond, Thorsten Rosner, and A.Pfaltz. Org. Process Res. Dev. 1999, 3, 275-280. 139 References 189. Crevatin, F. Mascarello, B.Leuthe, B. Minder, I.kikic. Ind. Eng. Chem. Res 1999, 38, 4629-4633. 190. M.Fidaleo, R.Lavecchia. Thermochimica Acta. 2003, 402, 19-26. 191. L.D.Hansen, Ind. Eng. Chem. Res. 2000, 39, 3541-3549. 192. C.F.P.M. e. Silva and J.F.C.da Silva. Org. Process Res. Dev. 2002, 6, 829832. 193. Nomen R., Sempere J., Papadaki M. Lugano. RC1 User Forum Paper, Europe 1997. 194. David J., Pamela J.C., David M.D., Charles S., Steven J. B. Org Process Res. Dev. 1999, 3, 319-329. 195. Valerio C., Luigi P., Federica B. Ind. Eng. Chem. Res. 2000, 39, 855 -863. 196. M.Bundschuh, H. During, U.J.Steinbach, RXE User Forum , 2001,1-4. 197. H.Hua, M.A.Dubé ., J. Poly. Sci. A. 2001, 39 (11), 1860-1876. 140 References 198. M. Allmendinger , R. Eberhardt , G. A. Luinstra, B. Rieger. Macromol. Chem. Phys. 2003, 204 (4), 564 -569. 199. Octave Levenspiel in Chemical Reaction Engineering, 3rd Edition, Wiley , 3rd Edition, 1999. 200. Octave Levenspiel in The Chemical Reactor Omnibook, 6th Version, OSU Book Stores, 2002. 201. Charles D. Holland, Rayford G. Anthony in Fundamentals of Chemical Reaction Engineering, 2nd Edition, Prentice-Hall International Edition, 8-9, 1989. 141 [...]... reactant as function of time due to reaction Initial reaction volume xvi List of Symbols ν TON Vr NA FAO n xA -rA k’ ki k Dosing rate of buffer solution Turnover number as indicator of reaction efficiency, hr -1 Volume of reactor Number of moles of reactant A Inlet molar flow rate of reactant A Order of reaction Conversion of reactant A Reaction rate with respect to reactant A Overall reaction rate constant... reaction rate constant Individual reaction rate constants Pseudo overall reaction rate constant xvii Chapter 1 – Introduction Manganese Catalyzed Epoxidation 1.1 Introduction to Epoxidation Epoxidation is an unique reaction involving partial oxidation which has long been studied by scientists It is basically a chemical reaction in which an oxygen atom is joined to an olefinically unsaturated molecule to... orbital of transition metal Pi orbital of d-block elements Maximum absorbance values in UV-Vis spectrum Ligand to metal charge transfer for coordinated metallic complexes Reaction temperature in the mixture Jacket temperature Reaction time Reactant concentration as function of time due to reaction Reactant concentration as function of time due to reaction and dosing Reacting number of moles of reactant... epoxidation using imidazole and (c) N-alkyl imidazole and benzoic acid Certain additives such as imidazole carboxylic acids 24-27 20-23 or combination of imidazole and have been found to enhance the reactivities of the porphyrins In Figures 7(b) and (c), cyclooctene oxide was produced in 91% yield in 45 min using only imidazole under the original conditions, and a comparable yield was obtained in only... concentrations and special additives are required to obtain good yields In this work, investigation of reaction mechanism and kinetic studies on the catalytic epoxidation will be carried using styrene as model substrate With electron rich styrene, the use of H2O2 will be minimal and no additives are required which may complicate the analysis of the reaction in Scheme 1-2 Various analytical techniques (Raman, ... Modified TACN as epoxidation catalysts with H2O2 oxidant In summary, TACN complexes demonstrate considerable activity towards epoxidation but the synthesis of such ligands can be difficult and time-consuming 2.2.3 Metalloporphyrins- Iron and Manganese Porphyrin Complexes Porphyrins have been known to act as ligands to stabilize transitional metals with respect to undesirable decomposition pathways and tune... amazingly exciting as complete epoxidation can be achieved successfully within 1 hr in DMF In this work, the Mn-bicarbonate-H2O2 system will be studied in detail given its numerous advantages over other classical “non-green” processes using organic peroxides oxidants Advantages of Mn-Bicarbonate-H2O2 Oxidation: - 1 Cost and Availability: Manganese salts are relatively cheap and available 2 Toxicity: Manganese. .. date, salen complexes are the best catalysts for asymmetric epoxidation of alkenes using H2O2 but catalyst deactivation still poses a problem due to radical formation via homolytic cleavage of the weak O-O peroxide bond Moreover, another obvious disadvantage is that quite a large mol % of salen catalysts are required for reaction carried out in chlorinated solvents and additives 2.2.2 1,4,7-Triazacyclononane... reaction mixture, Tr and reactor wall temperature, Ta , (c) Gas generation and (d) pH Figure 3-36 2nd step reaction profile during epoxidation of styrene - (a) Temperature, (b) pH, (c) Gas generation and (d) Conversion – Selectivity Figure 3-37 One-pot reaction profile during epoxidation of styrene - (a) Temperature, (b) pH, (c) Gas generation and (d) Conversion – Selectivity Figure 3-38 (a) Experimental... Mn-mediated epoxidaton Scheme 1-2 Mn -catalyzed epoxidation of styrene with bicarbonate-H2O2 solution Scheme 2-1 Catalytic cycle in MTO mediated epoxidations with H2O2 Scheme 3-1 Formation of manganese- peroxocarbonate complex in DMF Scheme 3-2 Mn-based epoxidation of styrene Scheme 3-3 Proposed reaction for (a) HCO3- and H2O2 to form HCO4-, (b) 1st step monodentate coordination of HCO4- with Mn2+(aq) in . A STUDY ON MANGANESE CATALYZED EPOXIDATION OF STYRENE USING ONLINE RAMAN AND IN- SITU FTIR MONITORING TECHNIQUES QUAH CHEE WEE NATIONAL. UNIVERSITY OF SINGAPORE 2006 A STUDY ON MANGANESE CATALYZED EPOXIDATION OF STYRENE USING ONLINE RAMAN AND IN- SITU FTIR MONITORING TECHNIQUES QUAH CHEE. method. The active epoxidizing agent (manganese peroxocarbonate complex) was effectively elucidated from the array of online Raman data using BTEM. The characteristic Raman vibration modes of this