Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 143 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
143
Dung lượng
10,8 MB
Nội dung
A PROTEOMIC APPROACH FOR THE IDENTIFICATION OF HCC SERUM BIOMARKERS LOW JIAYI (B.Sc. (Hons.), NUS A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF BIOCHEMISTRY NATIONAL UNIVERSITY OF SINGAPORE 2007 ACKNOWLEDGEMENTS I would like to thank everyone who has kindly assisted me in this project. This project would not have been possible without their support and encouragement. My deepest gratitude goes to my supervisor, A/P Maxey Chung Ching Ming. I would like to thank him for believing in me, for giving me the freedom to experiment and explore while providing me with appropriate and timely advice. His support and encouragement I could not have done without. I have benefited greatly under his supervision. I thank A/P Lim Seng Gee and Dr Aung Myat Oo for providing, and trusting, me with the tissue and serum samples. I am indebted to the big family in the Protein and Proteomics Centre. In particular, I wish to thank Sandra, Cynthia, Gek San, Teck Kwang, Hwee Tong, Aida, Lifang, Siaw Ling, Qinsong, Justin, and Jason. They taught me many things, engaged in thought-provoking discussions with me and at the same time, extended their friendship. I am thankful for the former, and grateful for the latter. They have all been terrific mentors and wonderful friends. I am fortunate indeed, to have so many mentors. I thank everybody for their selfless and unwavering support. i TABLE OF CONTENTS PAGE ACKNOWLEDGEMENTS i TABLE OF CONTENTS ii ABSTRACT vi LIST OF TABLES vii LIST OF FIGURES viii LIST OF ABBREVIATIONS ix 1. INTRODUCTION 1.1 HEPATOCELLULAR CARCINOMA 1.1.1. Hepatocellular Carcinoma 1.1.2. HCC Carcinogenesis 1.1.3. Staging 1.1.4. Aetiology 1.1.5. Chronic HBV Infection 1.1.5.1. Evidence of an Association between Chronic HBV Infection and HCC 1.1.5.2. HBV-induced Carcinogenesis 1.1.6. Liver Cirrhosis 1.1.6.1. Cirrhogenesis and Carcinogenesis 10 13 1.1.7. Diagnosis of HCC 14 1.1.8. Management of HBV-associated HCC 15 1.1.8.1. Prevention 15 1.1.8.2. Antiviral Therapy 16 1.1.8.3. Reversal of Cirrhosis 17 1.1.8.4. Treatment of HCC 17 1.1.8.5. Surveillance of Individuals at Risk 19 ii 1.1.9. Need for Biomarkers that allow Early Cancer Detection 1.1.9.1. The Search for New HCC Biomarkers 1.1.10. The Ideal Biomarker 1.2. TUMOUR IMMUNOLOGY 22 22 24 25 1.2.1. The Humoral Response to Cancer 25 1.2.2. Autoantibodies and Carcinogenesis 27 1.2.3. Anti-Tumour Effects of Autoantibodies 29 1.2.4. Autoantibodies as Biomarkers for Early Cancer Detection 30 1.2.5. Methods in Identifying Autoantibodies 32 1.2.5.1. Serological Identification of Antigens by Recombinant Expression Cloning (SEREX) 32 1.2.5.2. Phage Display 33 1.2.5.3. Protein Microarrays 34 1.2.5.4. SERPA (Serological Proteome Analysis) 36 1.2.6. The Importance of Studying the Proteome 1.3. AIMS OF PROJECT 2. MATERIALS AND METHODS 37 39 40 2.1. LIVER TISSUES, CELL LINES AND HUMAN SERA 40 2.2. SAMPLE PREPARATION 43 2.3. SERPA 43 2.3.1. Two-Dimensional Gel Electrophoresis (2-DE) 43 2.3.1.1. Isoelectric Focusing on IPG (Immobilized pH gradient) Strips 43 2.3.1.2. IPG Strip Equilibration 44 2.3.1.3. Second Dimension Sodium Dodecyl Sulphate – Polyacrylamide Gel Electrophoresis (SDS – PAGE) 45 2.3.2. Western Blot 45 iii 2.3.2.1. Electro-blotting 45 2.3.2.2. Immunodetection 46 2.3.2.3. Colloidal Silver Staining 47 2.3.3. Silver Staining 47 2.3.4. Tandem Mass Spectrometry 48 2.3.4.1. Enzymatic Digestion of Protein Spots 48 2.3.4.2 Matrix-assisted Laser Desorption/Ionization Tandem Time-of-Flight Mass Spectrometry (MALDI-TOF/TOF MS) 50 2.4. ANTIGEN VALIDATION WITH COMMERCIAL ANTIBODIES 51 2.5. PHOSPHOTYROSINE DETECTION 52 AND PHOSPHOSERINE 2.6. GLYCOPROTEIN STAINING 53 2.7. SDS PAGE 54 3. RESULTS 55 3.1. PRELIMINARY STUDIES 3.1.1. The Feasibility of Using a Single Liver Cancer Tissue as an Antigen Source 55 55 3.2. THE SEARCH FOR CIRRHOSIS- AND HCCASSOCIATED AUTOANTIBODIES 58 3.3. ANTIGEN VALIDATION WITH COMMERCIAL ANTIBODIES 77 3.4. THE SEARCH FOR POST-TRANSLATONAL MODIFICATIONS IN THE CIRRHOSIS- AND HCCASSOCIATED AUTOANTIGENS 82 3.4.1. The Search for Phosphorylated Autoantigens 82 3.4.2. The Search for Glycosylated Autoantigens 82 3.5. THE SEARCH FOR DIFFERENTIALLY-REGULATED AUTOANTIGENS 85 4. DISCUSSION 4.1. PRELIMINARY STUDIES 88 88 iv 4.1.1. A Single Liver Cancer Tissue as the Antigen Source 88 4.2. THE SEARCH FOR CIRRHOSIS- AND HCCASSOCIATED AUTOANTIBODIES 89 4.2.1. Reliability of Protein Identities 89 4.2.2. Cirrhosis- and HCC-associated Autoantibodies 90 4.2.2.1. The TAA Panel 90 4.2.2.2. The TAA Panel: Criteria for a Screening Test 92 4.2.2.3. The Autoantigens: Overlap with Other HCC Studies 93 4.2.2.4. Biological Properties of the Autoantigens 94 4.2.2.4.1. Proteins Involved in Signaling 96 4.2.2.4.2. Chaperones 98 4.2.2.4.3. Enzymes 100 4.2.2.4.4. Proteins with Other Functions 101 4.2.2.5. Non-Specific Autoantigens 103 4.2.2.6. Summary 104 4.3. ISSUES TO CONSIDER 105 4.3.1. Types of Sera Analyzed 105 4.3.2. Expression Levels of Autoantigens in Cirrhotic Tissues 107 4.4. FUTURE PROSPECTS 108 4.4.1. Validation of Results 108 4.4.2. Other Applications of Autoantibodies 109 4.4.3. Other Lines of Studies 110 5. CONCLUSION 111 6. REFERENCES 112 7. APPENDIX I v ABSTRACT Hepatocellular carcinoma (HCC), generally known as primary liver cancer, is the fifth most common malignancy in the world. It is also the third leading cause of cancerrelated deaths worldwide, with a mortality rate comparable to its incidence rate. This high mortality rate can be significantly lowered if diagnosis is made early and curative treatments are provided in time. Since 80% of HCCs arise from a cirrhotic background, the detection of cirrhosis can aid risk stratification for early HCC detection. Early biomarkers of cirrhosis and HCC are therefore urgently needed. In this work, we aim to identify cirrhosis- and HCC-associated autoantibodies that can serve as biomarkers in the early detection of HCC. Autoantibodies against tumourassociated antigens have been detected in cancer patients’ sera. These autoantibodies are elicited during early carcinogenesis, and are possibly the earliest cancer biomarkers that can be detected in sera. Hence, they facilitate the development of non-invasive serological tests for early cancer detection. In this study, tumour proteins were separated by 2-DE before being transferred onto PVDF membranes and probed with patient or control sera. The immunoreactive profiles were compared and twelve cirrhosis- and HCC-associated antigenic spots were detected and identified by tandem mass spectrometry. In addition, their identities were independently verified by commercial antibodies. These autoantigens were also analyzed to determine if they were differentially regulated or post-translationally modified by either phosphorylation or glycosylation. Six of these autoantigens can potentially form a biomarker panel for the detection of cirrhosis and HCC. In conclusion, this study identified a distinct repertoire of cirrhosis- and HCC-associated autoantibodies that can potentially enable early HCC diagnosis. vi LIST OF TABLES TABLE PAGE 1.1 The TNM staging of HCC 1.2 Stage grouping of HCC 1.3 Child’s-Pugh grading of severity of liver disease 12 1.4 Diagnostic criteria for Hepatocellular carcinoma 15 2.1 Clinical characteristics of 15 patients with liver disease 41 2.2 Clinical characteristics of 12 patients with liver disease 42 3.1 MS/MS data of the 12 immunoreactive spots 70 3.2 Summary of the Autoantibodies against the listed autoantigens 72 3.3 General biological properties of the autoantigens 73 3.4 MS/MS data of proteins that reacted with normal and patient sera 76 4.1 Autoantigens that make up a TAA panel that enable early detection of HCC as well as risk stratification of HCC patients 92 4.2 Criteria for Screening Tests 93 vii LIST OF FIGURES FIG. PAGE 1.1 Development of HBV-associated HCC 1.2 BCLC staging and treatment strategy for HCC patients 19 1.3 Diagnostic algorithm for hepatic nodule detected in a cirrhotic liver by ultrasound 20 3.1 Outline of preliminary experiments 56 3.2 Preliminary Western blot results 57 3.3 Outline of the SERPA approach in identifying cirrhosis-and HCC-associated autoantibodies 60 3.4 Summary of the different types of sera analyzed by the SERPA approach 61 3.5 Western blot analysis of HCC tissue lysate probed against human serum 62 3.6 A comparison of the immunoreactivity of each autoantigen with patient and normal sera 66 3.7 Location of cirrhosis- and HCC-specific antigens on a silverstained 2-D gel 68 3.8 Moderately differentiated HCC tissue lysate probed only with secondary antibody (anti-human IgG) 69 3.9 Antigen validation with Western blot using commercial antibodies 78 3.10 HCC tissue lysate probed with anti-phosphoserine and antiphosphotyrosine antibodies respectively 83 3.11 2-D gels of HCC tissue lysate stained first with Pro-Q Emerald glycoprotein stain, then with Sypro Ruby total protein stain 84 3.12 Expression levels of Cirrhosis- and HCC-associated Autoantigens in Moderately differentiated HCC tissue lysates 86 viii LIST OF ABBREVIATIONS 2-DE Two-dimensional gel electrophoresis ACN Acetonitrile AFP Alpha fetoprotein CAPZ1 F-actin capping protein alpha-1 subunit cDNA Complementary DNA CHAPS 3-[(3-cholamidopropyl)dimethylaminonio]-1-propanesulphonate DCP des-γ-carboxy prothrombin DMEM Modified Eagle medium DTT Dithiothreitol ECL Enhanced Chemiluminescence EDTA Ethylenediaminetetraacetic acid ELISA Enzyme linked immunosorbent assay ES1 ES1 protein homolog FBS Fetal bovine serum FH Fumarate hydratase GPC-3 Glypican-3 HBc Hepatitis B core protein HBsAg Hepatitis B virus surface antigen HBV Hepatitis B virus HBx Hepatitis B virus protein X HCC Hepatocellular carcinoma HCV Hepatitis C virus HSC70 Heat shock cognate 71 kDa protein HSP60 Heat shock protein 60 IAA Iodoacetamide IgG Immunoglobulin G IPG Immobilized pH gradient IPI International Protein Index MALDI-TOF/TOF MS Matrix-assisted laser desorption/ionization tandem time-offlight mass spectrometry NH4HCO3 Ammonium bicarbonate PCBP1 Poly(rC)-binding protein ix Hanash, S. (2004). Building a foundation for the human proteome: the role of the human proteome organization. J Proteome Res 3, 197 – 199. Haupt, K., Roggendorf, M., and Mann, K. (2002). The potential of DNA vaccination against tumor-associated antigens for antitumor therapy. Exp Biol Med 227, 227 – 237. Heid, H.W., Moll, R., Schwetlick, I., Rackwitz, H., Keenan, T.W. (1998). Adipophilin is a specific marker of lipid accumulation in diverse cell types and diseases. Cell Tissue Res 294, 309 – 321. Ho, S., Cheng, P., Yuen, J., Chan, A., Leung, N., Yeo, W., Leung, T., Lau, W.Y., Li, A.K.C., and Johnson, P.J. (1996). Isoelectric focusing of alphafetoprotein in patients with hepatocellular carcinoma – frequency of specific banding patterns at ondiagnostic serum levels. Br J Cancer 73, 985 – 988. Hong, S., Misek, D.E., Wang, H., Puravs, E., Giordano, T.J., Greenson, J.K., Brenner, D.E., Simeone, D.M., Logsdon, C.D. and Hanash, S.M. (2004). An autoantibodymediated immune response to calreticulin isoforms in pancreatic cancer. Cancer Res 64, 5504 – 5510. Hoofnagle, J.H. (2004). Hepatocellular carcinoma: Summary and recommendations. Gastroenterology 127, S319 – S323. Houghton, A.N., Gold, J.S., and Blachere, N.E. (2001). Immunity against cancer: lessons learned from melanoma. Curr Opinion Immunol 13, 134 – 140. Huang, Y., Franklin, J., Gifford, K., Roberts, B.L., and Nicolette, C.A. (2004) A highthroughput proteo-genomics method to identify antibody targets associated with malignant disease. Clinical Immunology 111, 202 – 209. Hunter, T.C., Andon, N.L., Koller, A., Yates III, J.R. and Haynes, P.A. (2002). The functional proteomics toolbox: methods and applications. J Chromatogr B 782, 165 – 181. Huo, T.L., Wu, J.C., and Lee, S.D. (2005). Are alcohol, tobacco and obesity genuine risk factors for Hepatocellular carcinoma? J Hepatol 42, 941 – 942. Hutchings, N.J., Clarkson, N., Chalkley, R., Barclay, A.N., and Brown, M.H. (2003). Linking the T cell surface protein CD2 to the actin-capping protein CAPZ via CMS and CIN85. J Biol Chem 278, 22396 – 22403. Ilan, Y., Gabay, E., Amit, G., Feder, R., Galun, E., Adler, R., and Shouval, D. (1997). Suppression of human hepatoma in mice through adoptive transfer of immunity to the hepatitis B surface antigen. J Hepatol 27, 170 – 175. Imai, H., Nakano, Y., Kiyosawa, K., and Tan, E.M. (1993). Increasing titers and changing specificities of antinuclear antibodies in patients with chronic liver disease who develop Hepatocellular carcinoma. Cancer 71, 26 – 35. 117 Iredale, J.P. (2003). Cirrhosis: new research provides a basis for rational and targeted treatments. BMJ 327, 143 – 147. Janeway, C.A., Travers, P., Walport, M., and Shlomchik, M.J. (2005). Immunobiology: The immune system in health and disease. (USA: Garland Science Publishing). Jiang, D., Ying, W., Lu, Y., Wan, J., Zhai, Y., Liu, W., Zhu, Y., Qiu, Z., Qian, X., and He, F. (2003). Identification of metastasis-associated proteins by proteomic analysis and functional exploration of interleukin-18 in metastasis. Proteomics 3, 724 – 737. Johnson, P.J. (1994). Hepatitis B virus and primary liver cancer. In Primary liver cancer: Etiological and Progression Factors, Brechot, C, ed. (USA, CRC Press) p. 31 – 39. Johnson, P.J. (2002). The molecular biology of hepatitis B virus-associated Hepatocellular carcinoma. In Viruses and Liver Cancer, Tabor, E., ed. (The Netherlands, Elsevier Science B.V.) p. 101 – 111. Johnson, P.J., Leung, N., Cheng, P., Welby, C., Leung, W.T., Lau, W.Y., Yu, S., and Ho, S. (1997). ‘Hepatoma-specific’ alphafetoprotein may permit preclinical diagnosis of malignant change in patients with chronic liver disease. Br J Cancer 75, 236 – 240. Kersey, P.J., Duarte, J., Williams, A., Karavidopoulou, Y., Birney, E., and Apweiler, R. (2004). The International Protein Index: An integrated database for proteomics experiments. Proteomics 4, 1985 – 1988. Kim, J.W., Ye, Q., Forgues, M., Chen, Y., Budhu, A., Sime, J., Hofseth, L.J., Kaul, R., and Wang, X.W. (2004). Cancer-associated molecular signature in the tissue samples of patients with cirrhosis. Hepatol 39, 518 – 527. Kim, K.H., and Seong, B.K. (2003). Pro-apoptotic function of HBV X protein is mediated by interaction with c-FLIP and enhancement of death-inducing signal. EMBO J 22, 2104 – 2116. Klade, C.S., Voss, T., Krystek, E., Ahorn, H., Zatloukal, K., Pummer, K., and Adolf, G.R. (2001). Identification of tumor antigens in renal cell carcinoma by serological proteome analysis. Proteomics 1, 890 – 898. Koizol, J.A., Zhang, J.Y., Casiano, C.A., Peng, X.X., Shi, F.D., Feng, A.C., Chan, E.K.L., and Tan, E.M. (2003). Recursive partitioning as an approach to selection of immune markers for tumor diagnosis. Clin Cancer Res 9, 5120 – 5126. Kremsdorf, D., Soussan, P., Paterlini-Brechot, P., and Brechot, C. (2006). Hepatitis B virus-related hepatocellular carcinoma: paradigms for viral-related human carcinogenesis. Oncogene 25, 3823 – 3833. Kudo, M. (2006). What is the best staging system for hepatocellular carcinoma? J Gastroenterol 41, 290 – 291. 118 Kuntz, E. and Kuntz, H-D. (2006). Hepatology: Principles and practice. (Germany: Springer Medizin Verlag). Langer, T., Neupert, W. (1991). Heat shock proteins hsp60 and hsp70: their roles in folding, assembly and membrane translocation of proteins. Curr Top Microbiol Immunol 167, – 30. Le Naour, F., Brichory, F., Misek, D.E., Brechot, C., Hanash, S.M., and Beretta, L. (2002) A distinct repertoire of autoantibodies in hepatocellular carcinoma identified by proteomic analysis. Mol Cell Proteomics 1, 197 – 203. Le Naour, F., Misek, D.E., Krause, M.C., Deneux, L., Giordano, T.J., Scholl, S., and Hanash, S.M. (2001). Proteomics-based identification of RS/DJ-1 as a novel circulating tumor antigen in breast cancer. Clin Cancer Res 7, 3328 – 3335. Lee, I.N., Chen, C.H., Sheu, J.C., Lee, H.S., Huang, G.T., Yu, C.Y., Lu, F.J., and Chow, L.P. (2005). Identification of Hepatocellular carcinoma-related biomarkers by two-dimensional difference gel electrophoresis and mass spectrometry. J Proteome Res 4, 2062 – 2069. Lee, S.W., Lee, Y.M., Bae, S.K., Murakami, S., Yun, Y., and Kim, K.W. (2000). Human hepatitis B virus X protein is a possible mediator of hypoxia-induced angiogenesis in hepatocarcinogenesis. Biochem Biophys Res Commun 268, 456 – 461. Lee, Y.H., and Yun, Y. (1998). HBx protein of hepatitis B virus activates Jak1-STAT signaling. J Biol Chem 273, 25510 – 25515. Li, C., Tan, Y.X., Zhou, H., Ding, S.J., Li, S.J., Ma, D.J., Man, X.B., Hong, Y., Zhang, L., Li, L., Xia, Q.C., Wu, J.R., Wang, H.Y., and Zeng, R. (2005). Proteomic analysis of hepatitis B virus-associated Hepatocellular carcinoma: Identification of potential tumor markers. Proteomics 5, 1125 – 1139. Li, D., Mallory, T., and Satomura, S. (2001). AFP-L3: a new generation of tumor marker for hepatocellular carcinoma. Clin Chim Acta 313, 15 – 19. Li, L., Chen, S.H., Yu, C.H., Li, Y.M., and Wang, S.Q. (2008). Identification of hepatocellular-carcinoma-associated antigens and autoantibodies by serological proteome analysis combined with protein microarray. J Proteome Res 7, 611 – 620. Li, W.H., Zhao, J., Li, H.Y., Liu, H., Li, A.L., Wang, H.X., Wang, J., He, K., Liang, B., Yu, M., Shen, B.F., and Zhang, X.M. (2006). Proteomics-based identification of autoantibodies in the sera of healthy Chinese individuals from Beijing. Proteomics 6, 4781 – 4789. Li, Z. (2003). Role of heat shock protein in chaperoning tumor antigens and modulating anti-tumor immunity. In Tumor antigens recognized by T cells and antibodies, Stauss, H., Kawakami, Y., and Parmiani, G., ed. (New York: Taylor and Francis), p. 20 – 33. 119 Liang, C.R.M.Y., Leow, C.K., Neo, J.C.H., Tan, G.S., Lo, S.L., Lim, J.W.E., Seow, T.K., Lai, P.B.S., and Chung, M.C.M. (2005). Proteome analysis of human Hepatocellular carcinoma tissues by two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics 5, 2258 – 2271. Lim, S.O., Park, S.G., Yoo, J.H., Park, Y.M., Kim, H.J., Jang, K.T., Cho, J.W., Yoo, B.C., Jung, G.H., and Park, C.K. (2005). Expression of heat shock proteins (HSP27, HSP60, HSP70, HSP90, GRP78, GRP94) in hepatitis B virus-related Hepatocellular carcinomas and dysplastic nodules. World J Gastroenterol 11, 2072 – 2079. Lim, S.O., Park, S.J., Kim, W., Park, S.G., Kim, H.J., Kim, Y.I., Sohn, T.S., Noh, J.H., and Jung, G. (2002). Proteome analysis of Hepatocellular carcinoma. Biochem Biophy Res Comm 291, 1031 – 1037. Liotta, L.A., and Petricoin, E.F. (2006). Serum peptidome for cancer detection: Spinning biologic trash into diagnostic gold. J Clin Invest 116, 26 – 30. Llovet, J.M., and Wurmbach, E. (2004). Gene expression profiles in hepatocellular carcinoma: not yet there. J Hepatol 41, 336 – 339. Llovet, J.M., Burroughs, A. and Bruix, J. (2003). Hepatocellular carcinoma. Lancet 362, 1907 – 1917. Lok, A.S.F. (2004). Prevention of hepatitis B virus-related Hepatocellular carcinoma. Gastroenterol 127, S303 – S309. Lollini, P., Cavallo, F., Nanni, P., and Forni, G. (2006). Vaccines for tumour prevention. Nat Rev Cancer 6, 204 – 216. Loo, J.A. (2003) The tools of proteomics. In Advances in Protein Chemistry, vol.65, Smith, R.D. and Veenstra, T.D., ed. (USA: Elsevier Science), p. 25 – 56. Lopez, J.B. (2005). Recent developments in the first detection of Hepatocellular carcinoma. Clin Biochem Rev 26, 65 – 79. Lu, M., Nakamura, R.M., Dent, E.D., Zhang, J.Y., Nielsen, F.C., Christiansen, J., Chan, E.K.L., and Tan, E.M. (2001). Aberrant expression of fetal RNA-binding protein p62 in liver cancer and liver cirrhosis. Am J Pathol 159, 945 – 953. Lucito, R., and Schneider, R, J. (1992). Hepatitis B virus X protein activates transcription factor NF-kappa B without a requirement for protein kinase C. J Virol 66, 983 – 991. Luk, J.M., Lam, C.T., Siu, A.F.M., Lam, B.Y., Ng, I.O.L., Hu, M.Y., Che, C.M., and Fan, S.T. (2006). Proteomic profiling of Hepatocellular carcinoma in Chinese cohort reveals heat-shock proteins (Hsp27, Hsp70, GRP78) up-regulation and their associated prognostic values. Proteomics 6, 1049 – 1057. 120 Lutomski, D., Joubert-Caron, R., Lefebure, C., Salama, J., Belin, C., Bladier, D., and Caron, M. (1997). Anti-galectin-1 autoantibodies in serum of patients with neurological diseases. Clinica Chimica Acta 262, 131 – 138. Madoz-Gurpide, J., Wang, H., Misek, D.E., Brichory, F., and Hanash, S. (2001) Protein based microarrays: a tool for probing the proteome of cancer cells and tissues. Proteomics 1, 1279 – 1287. Madrid, F.F. (2005). Autoantibodies in breast cancer sera: candidate biomarkers and reporters of tumorigenesis. Cancer Letters 230, 187 – 198. Madrid, F.F., Tang, N., Alansari, H., Karvonen, R.L., and Tomkiel, J.E. (2005). Improved approach to identify cancer-associated autoantigens. Autoimmun Rev 4, 230 – 235. Marques, J.T., and Williams, B.R.G. (2005). Activation of the mammalian immune system by siRNAs. Nat Biotechnol 23, 1399 – 1405. Marrero, J.A. (2006). Hepatocellular carcinoma. Curr Opin Gastroenterol 22, 248 – 253. Marrero, J.A., Fontana, R.J., Barrat, A., Askari, F., Conjeevaram, H.S., Su, G.L., and Lok, A.S. (2005b). Prognosis of Hepatocellular carcinoma: Comparison of staging systems in an American cohort. Hepatol 41, 707 – 716. Marrero, J.A., Fontana, R.J., Fu, S., Conjeevaram, H.S., Su, G.L., and Lok, A.S. (2005a). Alcohol, tobacco and obesity are synergistic risk factors for Hepatocellular carcinoma. J Hepatol 42, 218 – 224. Matsuo, K., Xiang, Y., Nakamura, H., Masuko, K., Yudoh, K., Noyori, K., Nishioka, K., Saito, T., and Kato, T. (2006). Identification of novel citrullinated autoantigens of synovium in rheumatoid arthritis using a proteomic approach. Arthritis Res Therapy 8, R175. McMahon, B.J., Bulkow, L., Harpster, A., Snowball, M., Lanier, A., Sacco, F., Dunaway, E., and Williams, J. (2000). Screening for Hepatocellular carcinoma in Alaska natives infected with chronic hepatitis B: a 16-year population-based study. Hepat 32, 842 – 846. Miao, J., Chen, G.G., Chun, S.Y., and Lai, P.P. (2006). Hepatitis B virus X protein induces apoptosis in hepatoma cells through inhibiting Bcl-xL expression. Cancer Lett 236, 115 – 124. Miles, A.K., Matharoo-Ball, B., Li, G., Ahmad, M., and Rees, R.C. (2006). The identification of human tumor antigens: current status and future developments. Cancer Immunol Immunother 55, 996 – 1003. 121 Mintz, P.J., Kim, J., Do, K., Wang, X., Zinner, R.G., Cristofanilli, M., Arap, M.A., Hong, W.K., Troncoso, P., Logothetis, C.J., Pasqualini, R. and Arap, W. (2003) Fingerprinting the circulating repertoire of antibodies from cancer patients. Nat Biotechnology 21, 57 – 63. Morrissey, D.V., Blanchard, K., Shaw, L., Jensen, K., Lockridge, J.A., Dickinson, B., McSwiggen, J.A., Vargeese, C., Bowman, K., Shaffer, C.S., Polisky, B.A., and Zinnen, S. (2005a). Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatol 41, 1349 – 1356. Morrissey, D.V., Lockridge, J.A., Shaw, L., Blanchard, K., Jensen, K., Breen, W., Hartsough, K., Machemer, L., Radka, S., Jadhav, V., Vaish, N., Zinnen, S., Vargeese, C., Bowman, K., Shaffer, C.S., Jeffs, L.B., Judge, A., MacLachlan, I., and Polisky, B. (2005b). Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 23, 1002 – 1007. Nakanishi, T., Takeuchi, T., Ueda, K., Murao, H., and Shimizu, A. (2006). Detection of eight antibodies in cancer patients’ sera against proteins derived from the adenocarcinoma A549 cell line using proteomics-based analysis. J Chromatogr B 838, 15 – 20. Nakatsura, T., Yoshitake, Y., Senju, S., Monji, M., Komori, H., Motomura, Y., Hosaka, S., Beppu, T., Ishiko, T., Kamohara, H., Ashihara, H., Katagiri, T., Furukawa, Y., Fujiyama, S., Ogawa, M., Nakamura, Y., and Nishimura, Y. (2003). Glypican-3, overexpressed specifically in human hepatocellular carcinoma, is a novel tumor marker. Biochem Biophys Res Commun 306, 16 – 25. Nomura, F., Ishijima, M., Horikoshi, A., Nakai, T., and Ohnishi, K. (1996). Determination of serum des-gamma-carboxy prothrombin levels in patients with small-sized hepatocellular carcinoma: comparison of the conventional enzyme immunoassay and two modified methods. Am J Gastroenterol 91, 1380 – 1383. Oka, H., Kurioka, N., Kim, K., Kanno, T., Kuroki, T., Mizoguchi, Y., and Kobayashi, K. (1990). Prospective study of early detection of Hepatocellular carcinoma in patients with cirrhosis. Hepat 12, 680 – 687. Omenn, G.S. (2006). Strategies for plasma proteomic profiling of cancers. Proteomics 6, 5662 – 5673. Oppenheim, J.J., Dong, H.F., Plotz, P., Caspi, R.R., Dykstra, M., Pierce, S., Martin, R., Carlos, C., Finn, O., Koul, O., and Howard, O.M.Z. (2005). Autoantigens act as tissue-specific chemoattractants. J Leukoc Biol 77, 854 – 861. Osborn, M.K., and Lok, A.S.F. (2006). Antiviral options for the treatment of chronic hepatitis B. J Antimicrob Chemother 57, 1030 – 1034. Pang, R.W., Joh, J.W., Johnson, P.J., Monden, M., Pawlik, T.M., and Poon, R.T. (2008). Biology of Hepatocellular carcinoma. Ann Surg Oncol 15, 962 – 971. 122 Parkin, D.M., Bray, F., Ferlay, J. and Pisani, P. (2001). Estimating the world cancer burden: Globocan 2000. Int J Cancer 94, 153- 156. Pascual, S., Zapater, P., Such, J., Garcia-Herola, A., Sempere, L., Irurzun, J., Palazon, J.M., Carnicer, F., and Perez-Mateo, M. (2006). Comparison of staging systems to predict survival in hepatocellular carcinoma. Liver Int 26, 673 – 679. Perz, J.F., Armstrong, G.L., Farrington, L.A., Hutin, Y.J.F., and Bell, B.P. (2006). The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 45, 529 – 538. Petricoin, E. and Liotta, L.A. (2003) The vision for a new diagnostic paradigm. Clin Chem 49, 1276 – 1278. Petricoin, E.F., Ardekani, A.M., Hitt, B.A., Levine, P.J., Fusaro, V.A., Steinberg, S.M., Mills, G.B., Simone, C., Fishman, D.A., Kohn, E.C., and Liotta, L.A. (2002). Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359, 572–577. Pfreundschuh, M., Preuss, K.D., Zwick, C., Bormann, C., and Neumann, F. (2003). Human tumor antigens recognized by antibodies (SEREX). In Tumor antigens recognized by T cells and antibodies, Stauss, H., Kawakami, Y., and Parmiani, G., ed. (New York: Taylor and Francis), p. 161 – 171. Philip, R., Murthy, S., Krakover, J., Sinnathamby, G., Zerfass, J., Keller, L., and Philip, M. (2007). Shared immunoproteome for ovarian cancer diagnostics and immunotherapy: Potential theranostic approach to cancer. J Proteome Res 6, 2509 – 2517. Pollak, M.N., and Foulkes, W.D. (2003). Challenges to cancer control by screening. Nat Rev Cancer 3, 297 – 303. Pollicino, T., Terradillos, O., Lecoeur, H., Gougeon, M. L, Buendia, M. A. (1998). Pro-apoptotic effect of the hepatitis B virus X gene. Biomed Pharmacother 52, 363 – 368. Poon, T.C.W., and Johnson, P.J. (2001). Proteome analysis and its impact on the discovery of serological tumor markers. Clin Chim Acta 313, 231 – 239. Preuss, K.D., Zwick, C., Bormann, C., Neumann, F., and Pfreundschuh, M. (2002). Analysis of the B-cell repertoire against antigens expressed by human neoplasms. Immunol Rev 188, 43 – 50. Qin, S., Qui, W., Ehrlich, J.R., Ferdinand, A.S., Richie, J.P., O’Leary, M.P., Lee, M.T., and Liu, B.C.S. (2006). Development of a “reverse capture” autoantibody microarray for studies of antigen-autoantibody profiling. Proteomics 6, 3199 – 3209. Qiu, J., Madoz-Gurpide, J., Misek, D.E., Kuick, R., Brenner, D.E., Michailidis, G., Haab, B.B., Omenn, G.S. and Hanash, S. (2004) Development of natural protein microarrays for diagnosing cancer based on an antibody response to tumor antigens. J Proteome Res 3, 261 – 267. 123 Rabe, C., and Cheng, B., and Caselmann, W.H. (2001). Molecular mechanisms of Hepatitis B virus-associated liver cancer. Dig Dis 19, 279 – 287. Rabilloud, T. (2002) Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics 2, – 10. Radvanyi, L. (2004). Discovery and immunologic validation of new antigens for therapeutic cancer vaccines. Int Arch Allergy Immunol 133, 179 – 197. Rae, F.K., Stephenson, S.A., Nicol, D.L., and Clements, J.A. (2000). Novel association of a diverse range of genes with renal cell carcinoma as identified by differential display. Int J Cancer 88, 726 – 732. Raedle, J., Oremek, G., Truschnowitsch, M., Lorenz, M., Roth, W.K., Caspary, W.F., and Zeuzem, S. (1998). Clinical evaluation of autoantibodies to p53 protein in patients with chronic liver disease and hepatocellular carcinoma. Eur J Cancer 34, 1198 – 1203. Ramachandran, N., Hainsworth, E., Bhullar, B., Eisenstein, S., Rosen, B., Lau, A.Y., Walter, J.C., and LaBaer, J. (2004). Self-assembling protein microarrays. Science 305, 86 – 90. Ritter, K., Uy, A., Ritter, S., and Thomssen, R. (1994). Hemolysis and autoantibodies to triosephosphate isomerase in a patient with acute hepatitis A virus infection. Scan J Infect Dis 26, 379 – 382. Rocken, C., and Carl-McGrath, S. (2001). Pathology and pathogenesis of hepatocellular carcinoma. Dig Dis 19, 269 – 278. Romano, P.R., McCallus, D.E., and Pachuk, C.J. (2006). RNA interference-mediated prevention and therapy for Hepatocellular carcinoma. Oncogene 25, 3857 – 3865. Romero, M.D., Muino, J.C., Bianco, G.A., Ferrero, M., Juarez, C.P., Luna, J.D., and Rabinovich, G.A. (2006). Circulating anti-galectin-1 antibodies are associated with the severity of ocular disease in autoimmune and infectious uveitis. Invest Ophthalmol Vis Sci 47, 1550 – 1556. Rosenberg, S.A. (2001). Progress in human tumor immunology and immunotherapy. Nature 411, 380 – 384. Safary, A. and Beck, J. (2000). Vaccination against hepatitis B: current challenges for Asian countries and future directions. J. Gastroenterol and Hepatol 15, 396 – 401. Sahin, U., Tureci, O., Schmitt, H., Cochlovius, B., Johannes, T., Schmits, R., Stenner, F., Luo, G., Schobert, I. and Pfreundschuh, M. (1995). Human neoplasms elicit multiple specific immune reponses in the autologous host. Proc natl acad sci 92, 1180 – 1183. 124 Salazar, L., and Disis, M.L. (2003). Antibodies to human tumor oncoproteins in cancer patients. In Tumor antigens recognized by T cells and antibodies, Stauss, H., Kawakami, Y., and Parmiani, G., ed. (New York: Taylor and Francis), p. 172 – 190. Sasaki, T., and Takai, Y. (1998). The Rho small G protein family-Rho GDI system as a temporal and spatial determinant for cytoskeletal control. Biochem Biophys Res Commun 245, 641 – 645. Scanlan, M.J., Gout, I., Gordon, C.M., Williamson, B., Stockert, E., Gure, A.O., Jäger, D., Chen, Y., Mackay, A., O'Hare, M.J., and Old L.J. (2001) Humoral immunity to human breast cancer: antigen definition and quantitative analysis of mRNA expression. Cancer Immunity 1, – 20. Schmidt, S.M., Schag, K., Muller, M.R., Weinschenk, T., Appel, S., Schoor, O., Weck, M.M., Grunebach, F., Kanz, L., Stevanovic, S., Rammensee, H.G., and Brossart, P. (2004). Induction of adipophilin-specific cytotoxic T lymphocytes using a novel HLA-A2-binding peptide that mediates tumor cell lysis. Cancer Res 64, 1164 – 1170. Seeff, L.B., and Hoofnagle, J.H. (2006). Epidemiology of hepatocellular carcinoma in areas of low hepatitis B and hepatitis C endemicity. Oncogene 25, 3771 – 3777. Selby, P.J. (2000) Proteomics: new perspectives, new biomedical opportunities. The Lancet 356, 1749 – 1756. Seliger, B. and Kellner, R. (2002). Design of proteome-based studies in combination with serology for the identification of biomarkers and novel targets. Proteomics 2, 1641 – 1651. Shetty, K., Aziz, K., and Wu, G.Y. (2002). Screening for Hepatocellular carcinoma. In Cancer Screening: A Practical Guide for Physicians, Aziz, K., and Wu, G.Y., ed. (New Jersey: Humana Press Inc), p. 111 – 128. Shi, Q., Dong, Z., and Wei, H. (2007). The involvement of heat shock proteins in murine liver regeneration. Cellular Molecular Immunol 4, 53 – 57. Shin, B.K., Wang, H. and Hanash, S. (2003) Proteomics approaches to uncover the repertoire of circulating biomarkers for breast cancer. J. Mammary Gland Biology and Neoplasia. 7, 407 – 413. Shin, J., Weitzdoerfer, R., Fountoulakis, M., and Lubec, G. (2004). Expression of cystathionine β-synthase, pyridoxal kinase, and ES1 protein homolog (mitochondrial precursor) in fetal Down syndrome brain. Neurochem Int 45, 73 – 79. Shingai, R., Maeda, T., Onishi, S., and Yamamoto, Y. (1995). Autoantibody against 70kD heat shock protein in patients with autoimmune liver diseases. J Hepatol 23, 382 – 390. 125 Shirakata, Y., and Koike, K. (2003). Hepatitis B virus X protein induces cell death by causing loss of mitochondrial membrane potential. J Biol Chem 278, 22071 – 22078. Sim, H.G., and Ooi, L.L. (2003). Results of resections for hepatocellular carcinoma in a new hepatobiliary unit. ANZ J Surg 73, – 13. Soussi, T. (2000) p53 antibodies in the sera of patients with various types of cancer: A Review. Cancer Res 60, 1777 – 1788. Srinivas, P.R., Srivastava, S., Hanash, S., and Wright Jr, G.L. (2001) Proteomics in early detection of cancer. Clinical Chemistry 47, 1901 – 1911. Stenner-Liewen, F., Luo, G., Sahin, U., Tureci, O., Koslovski, M., Kautz, I., Liewen H., and Pfreundschuh, M. (2000) Definition of tumor-associated antigens in hepatocellular carcinoma. Cancer Epidemiol. Biomarkers Prev 9, 285 – 290. Stockert, E., Jager, E., Chen, Y.T., Scanlan, M.J., Gout, I., Karbach, J., Arand. M., Knuth, A., and Old, L.J. (1998). A survey of the humoral immune response of cancer patients to a panel of human tumor antigens. J Exp Med 187, 1349 – 1354. Sun, W., Xing, B., Sun, Y., Du, X., Lu, M., Hao, C., Lu, Z., Mi, W., Wu, S., Wei, H., Gao, X., Zhu, Y., Jiang, Y., Qian, X., and He, F. (2007). Proteome analysis of Hepatocellular carcinoma by two-dimensional difference gel electrophoresis: Novel protein markers in hepatocellular carcinoma tissues. Mol Cell Proteomics In press Takashima, M., Kuramitsu, Y., Yokoyama, Y., Lizuka, N., Harada, T., Fujimoto, M., Sakaida, I., Okita, K., Oka, M., and Nakamura, K. (2006). Proteomic analysis of autoantibodies in patients with Hepatocellular carcinoma. Proteomics 6, 3894 – 3900. Takashima, M., Kuramitsu, Y., Yokoyama, Y., Lizuka, N., Toda, T., Sakaida, I., Okita, K., Oka, M., and Nakamura, K. (2003). Proteomic profiling of heat shock protein 70 family members as biomarkers for hepatitis C virus-related Hepatocellular carcinoma. Proteomics 3, 2487 – 2493. Tan, E.M. (2001). Autoantibodies as reporters identifying aberrant cellular mechanisms in tumorigenesis. J Clin Invest 108, 1411 – 1415. Tanaka, Y., Kanai, F., Ichimura, T., Tateishi, K., Asaoka, Y., Guleng, B., Jazag, A., Ohta, M., Imamura, J., Ikenoue, T., Ijichi, H., Kawabe, T., Isobe, T., and Omata, M. (2006). The hepatitis B virus X protein enhances AP-1 activation through interaction with Jab1. Oncogene 25, 633 – 642. Tannapfel, A., and Wittekind, C. (2002). Genes involved in hepatocellular carcinoma: deregulation in cell cycling and apoptosis. Virchows Arch 440, 345 – 352. Teo, E.K. and Fock, K.M. (2001). Hepatocellular carcinoma: An Asian perspective. Dig. Dis. 19, 263 – 268. Thomas, M.B., and Zhu, A.X. (2005). Hepatocellular carcinoma: The need for progress. J Clin Oncol 23, 2892 – 2899. 126 Thorgeirsson, S., Lee, J., Grisham, J.W. (2006). Molecular prognostication of liver cancer: End of the beginning. J Hepat 44, 798 – 805. Thorgeirsson, S.S., and Grisham, J.W. (2002). Molecular pathogenesis of human hepatocellular carcinoma. Nat genet 31, 339 – 346. Tong, M.J., Blatt, L.M., and Kao, V.W. (2001). Surveillance for hepatocellular carcinoma in patients with chronic viral hepatitis in the United States of America. J Gastroenterol Hepatol 16, 715 – 717. Trevisani, F., Cantarini, M.C., Labate, A.M.M., De Notariis, S., Rapaccini, G., Farinati, F., Poggio, P.D., Nolfo, M.A.D., Benvegnu, L., Zoli, M., Borzio, F., and Bernardi, M. (2004). Surveillance for Hepatocellular carcinoma in elderly Italian patients with cirrhosis: Effects on cancer staging and patient survival. Am J Gastroenterol 99, 1470 – 1476. Tureci, O., Usener, D., Schneider, S., and Sahin, U. (2005). Identification of tumorassociated autoantigens with SEREX. Methods Mol Med 109, 137 – 154. Twu, J.S., Lai, M.Y., Chen, D.S, and Robinson, W.S. (1993). Activation of protooncogene c-jun by the X protein of hepatitis B virus. Virology 192, 346 – 350. Uemura, M., Nouso, K., Kobayashi, Y., Tanaka, H., Nakamura, S., Higashi, T., Ono, T., Nakayama, E., Hanafusa, T., and Shiratori, Y. (2003) Identification of the antigens predominantly reacted with serum from patients with hepatocellular carcinoma. Cancer 97, 2474 – 2479. Usatoff, V. and Habib, N.A. (2002). Hepatocellular carcinoma: The clinical problem. In Methods in Molecular Medicine: Hepatocellular Carcinoma Methods and Protocols, vol 45, Habib, N.A., ed.(New Jersey: Humana Press) p. – 20. Utz, P.J., and Anderson, P. (1998). Posttranslational protein modifications, apoptosis and the bypass of tolerance to autoantigens. Arthritis & Rheumatism 41, 1152 – 1160. Vettermann, C., Jack, H. and Mielenz, D. (2002). A colloidal silver staining– destaining method for precise assignment of immunoreactive spots in twodimensional protein patterns. Anal Biochem 308, 381 – 387. Vidal, C.I., Mintz, P.J., Lu, K., Ellis, L.M., Manenti, L., Giavazzi, R., Gershenson, D.M., Broaddus, R., Liu, J., Arap, W., and Pasqualini, R. (2004). An HSP90-mimic peptide revealed by fingerprinting the pool of antibodies from ovarian cancer patients. Oncogene 23, 8859 – 8867. Villanueva, J., Shaffer, D.R., Philip, J., Chaparro, C.A., Erdjument-Bromage, H., Olshen, A.B., Fleisher, M., Lilja, H., Brogi, E., Boyd, J., Sanchez-Carbayo, M., Holland, E.C., Cordon-Cardo, C., Scher, H.I., and Tempst, P. (2006). Differential exoprotease activities confer tumor-specific serum peptidome patterns. J Clin Invest 116, 271 – 284. 127 Vitzthum, F., Behrens, F., Anderson, N.L., and Shaw, J.H. (2005). Proteomics: From basic research to diagnostic application. A review of requirements and needs. J Proteome Res 4, 1086 – 1097. Wagner, P.D., Verma, M., and Srivastava, S. (2004) Challenges for biomarkers in cancer detection. Ann. N.Y. Acad. Sci. 1022, – 16. Wang, X., Yu, J., Sreekumar, A., Varambally, S., Shen, R., Giacherio, D., Mehra, R., Montie, J.E., Pienta, K.J., Sanda, M.G., Kantoff, P.W., Rubin, M.A., Wei, J.T., Ghosh, D., and Chinnaiyan, A.M. (2005). Autoantibody signatures in prostate cancer. N Engl J Med 353, 1224 – 1235. Wang, Y., Han, K., Pang, X., Vaughan, H.A., Qu, W., Dong, X., Peng, J., Zhao, H., Rui, J., Leng, X., Cebon, J., Burgess, A.W., and Chen, W. (2002). Large scale identification of human hepatocellular carcinoma-associated antigens by autoantibodies. J Immunology 169, 1102 – 1109. Watanabe, H., Seino, T., and Sato, Y. (2004). Antibodies to triosephosphate isomerase inpatients with neuropsychiatric lupus. Biochem Biophy Res Comm 321, 949 – 953. Weitz, I.C., and Liebman, H.A. (1993). Dex-gamma-carboxy (abnormal) prothrombin and hepatocellular carcinoma. Hepatol 18, 990 – 997. Wilkins, M.R., Sanchez, J.C., Williams, K.L. and Hochstrasser, D.F. (1996) Current challenges and future applications for protein maps and post-translational vector maps in proteome projects. Electrophoresis 17, 830 – 838. Wong, S.N., and Lok, A.S.F. (2006). Update on viral hepatitis: 2005. Curr Opin Gastroenterol 22, 241 – 247. Wright, L.M., Kreikemeier, J.T., and Fimmel, C.J. (2007). A concise review of serum markers for hepatocellular cancer. Cancer Detect Prev 31, 35 – 44. Wulfkuhle, J.D., Liotta, L.A., and Petricoin, E.F. (2003) Proteomics applications for the early detection of cancer. Nat Rev Cancer 3, 267 – 275. Xia, Q., Kong, X.T., Zhang, G.A., Hou, X.J., Qiang, H., Zhong, R.Q. (2005). Proteomics-based identification of DEAD-box protein 48 as a novel autoantigen, a prospective serum marker for pancreatic cancer. Biochem Biophy Res Comm 330, 526 – 532. Xiang, Y., Sekine, T., Nakamura, H., Imajoh-Ohmi, S., Fukuda, H., Nishioka, K., and Kato, T. (2004). Proteomic surveillance of autoimmunity in osteoarthritis: Identification of triosephosphate isomerase as an autoantigen in patients with osteoarthritis. Arthritis Rheumatism 50, 1511 – 1521. 128 Yang, F., Xiao, Z.Q., Zhang, X.Z., Li, C., Zhang, P.F., Li, M.Y., Chen, Y., Zhu, G.Q., Sun, Y., Liu, Y.F., and Chen, Z.C. (2007). Identification of Tumour Antigens in Human Lung Squamous Carcinoma by Serological Proteome Analysis. J Proteome Res 6, 751 – 758. Yao, M., Huang, Y., Shioi, K., Hattori, K., Murakami, T., Nakaigawa, N., Kishida, T., Nagashima, Y., and Kubota, Y. (2007). Expression of adipose differentiation-related protein: A predictor of cancer-specific survival in clear cell renal carcinoma. Clin Cancer Res 13, 152 – 160. Yu, F.L., Liu, H.J., Lee, J.W., Liao, M.H., and Shih, W.L. (2005). Hepatitis B virus X protein promotes cell migration by inducing matrix metalloproteinase-3. J Hepatol 42, 520 – 527. Yuen, M.F., Cheng, C.C., Lauder, I.J., Lam, S.K., Ooi, C.G.C., and Lai, C.L. (2000). Early detection of Hepatocellular carcinoma increases the chance of treatment: Hong Kong experience. Hepat 31, 330 – 335. Zhang, B.H., Yang, B.H., and Tang, Z.Y. (2004). Randomized controlled trial of screening for Hepatocellular carcinoma. J Cancer Res Clin Oncol 130, 417 – 422. Zhang, J.Y. (2004) Tumor-associated antigen arrays to enhance antibody detection for cancer diagnosis. Cancer Detection and Prevention 28, 114 – 118. Zhang, J.Y., and Chan, E.K.L. (2002). Autoantibodies to IGF-II mRNA binding protein p62 and overexpression of p62 in human hepatocellular carcinoma. Autoimmunity Reviews 1, 146 – 153. Zhang, J.Y., Megliorino, R., Peng, X.X., Tan, E.M., Chen, Y., and Chan, E.K.L. (2007). Antibody detection using tumor-associated antigen mini-array in immunodiagnosing human Hepatocellular carcinoma. J Hepatol 46, 107 – 114. Zhang, J.Y., Zhu, H., Imai, H., Kiyosawa, K., Chan, E.K.L., and Tan, E.M. (2001). De-novo humoral immune responses to cancer-associated autoantigens during transition from chronic liver disease to Hepatocellular carcinoma. Clin Exp Immunol 125, – 9. Zhang, S.M., Sun, D.C., Lou, S., Bo, X.C., Lu, Z., Qian, X.H., and Wang, S.Q. (2005a). HBx protein of hepatitis B virus (HBV) can form complex with mitochondrial HSP60 and HSP70. Arch Virol 150, 1579 – 1590. Zhang, X., Dong, N., Yin, L., Cai, N., Ma, H., You, J., Zhang, H., Wang, H., He, R., and Ye, L. (2005b). Hepatitis B virus X protein up-regulates survivin expression in hepatoma tissues. J Med Virol 77, 374 – 381. Zhang, X., Zhang, H., and Ye, L. (2006). Effects of hepatitis B virus X protein on the development of liver cancer. J Lab Clin Med 147, 58 – 66. Zhou, L., Liu, J., and Luo, F. (2006). Serum tumor markers for detection of Hepatocellular carcinoma. World J Gastroenterol 12, 1175 – 1181. 129 Zhou, S.F., Xie, X.X., Bin, Y.H., Lan, L., Chen, F., Luo, G.R. (2005). Identification of HCC-22-5 tumor-associated antigen and antibody response in patients. Clinica Chimica Acta 366, 274 – 280. Zolg, W. (2006). The proteomic search for diagnostic biomarkers. Mol Cell Proteomics 5, 1720 – 1726. Zoli, M., Magalotti, D., Bianchi, G., Gueli, C., Marchesini, G., and Pisi, E. (1996). Efficacy of a surveillance program for early detection of hepatocellular carcinoma. Cancer 78, 977 – 985. Zou, L., Wu, Y., Pei, L., Zhong, D., Gen, M., Zhao, T., Wu, J., Ni, B., Mou, Z., Han, J., Chen, Y., and Zhi, Y. (2005). Identification of leukemia-associated antigens in chronic myeloid leukemia by proteomic analysis. Leukemia Res 29, 1387 – 1391. 130 7. APPENDIX Poster presented during the Joint Third AOHUPO and Fourth Structural Biology and Functional Genomics Conference, – 7th December 2006, Singapore. I Poster presented during the VII European Symposium of the Protein Society, 12 to 16th May 2007, Stockholm, Sweden. II [...]... of HCC One is the late presentation of HCC, where the dearth of symptoms at the early stage of the disease results in detection of cancer only when at an advanced stage (Usatoff and Habib, 2002) Another is the paucity of curative treatments for late-stage HCC Consequently, 1 in most cases, by the time diagnosis is made, no curative treatment is available (Hoofnagle, 2004) 1.1.2 HCC Carcinogenesis HCC. .. that can justify its replacement (Brown and Scharschmidt, 1999; Lopez, 2005) In light of this, there is an impetus to find new biomarkers that are more sensitive and specific for HCC and that can detect HCC early 1.1.9.1 The Search for New HCC Biomarkers In light of the limitations of AFP as a HCC biomarker, researchers have been actively searching for alternative biomarkers A plethora of potential biomarkers. .. that could code for HCC- associated antigens Uemura et al (2003) uncovered 27 TAAs Le Naour et al (2002) identified 8 TAAs, but only 1 (autoantibody against a novel truncated form of calreticulin) is commonly induced in HCC Zhou et al (2005) identified HCC- 22-5 as a TAA Takashima et al (2006) identified 4 TAAs Li et al (2008) identified 6 TAAs These TAAs remain to be validated 1.1.10 The Ideal Biomarker... tumour-associated autoantibodies can also serve as biomarkers for diagnosing HCC Two of the more established HCC- associated TAAs are p53 (Raedle et al, 1998; Soussi, 2000) and p62 (Lu et al, 2001; Zhang and Chan, 2002) Many other TAAs have been discovered For 23 instance, Stenner-Liewen et al (2000) found 19 distinct antigens associated to HCC, of which 3 are novel Wang et al (2002) identified 55 cDNA sequences... (Pang et al., 2008) Aside from the four more established new HCC serum biomarkers discussed above, many other serum biomarkers have been found Some examples are gamma-glutamyl transferase, alpha-l-fucosidase, transforming growth factor-beta-1, insulin-like growth factor-II and golgi protein 73 (Pang et al., 2008; Wright et al., 2007; Zhou et al., 2006) Tumour-associated autoantigens (TAAs) and their corresponding... implementation of the HBV vaccination program in Taiwan 1.1.8.2 Antiviral Therapy Once chronic HBV infection is established, treatment efforts should focus on preventing the progression to cirrhosis There are several antiviral therapy options available, utilizing interferon-α and the nucleoside analogs lamivudine and adefovir dipivoxil However, these antiviral therapies are not suitable for every patient... disease-specific mortality was measured instead of all-cause mortality so the impact of the surveillance program may not be completely represented Various cohort and meta-studies have concluded that screening for HCC can identify tumours at an early stage, resulting in more patients having a higher chance of receiving curative treatment, thereby prolonging survival rates (McMahon et al., 2000; Oka et al.,... DNA damage characterized by gene amplification, deletion or mutation hastens the rate of carcinogenesis and contributes to the formation of dysplastic hepatocytes, and eventually, dysplastic nodules, resulting in the emergence of HCC Despite efforts to elucidate the molecular pathology leading to HCC development, no genetic predisposition for HCC has been found In fact, the molecular profile of HCC. .. increases the specificity and sensitivity for diagnosing HCC (Pang et al., 2008) Glypican-3 (GPC-3) is another serum biomarker that has been widely studied It can be detected in 40 – 53 % of HCC patients and is not detectable in healthy individuals (Capurro et al., 2003; Nakatsura et al., 2003; Pang et al., 2008) Combination testing of both GPC-3 and AFP can increase sensitivity for diagnosing HCC (Pang... 1.1.8 Management of HBV-associated HCC 1.1.8.1 Prevention The best ‘treatment’ for HBV-associated HCC is prevention If chronic HBV infection is not established, HBV-associated HCC would be a non-issue (Lok, 2004) Fortunately, a vaccine for HBV is available, and the implementation of universal HBV vaccination programs has reduced HBsAg carrier rates and HCC incidence 15 significantly This is irrefutably . Tanaka et al., 2006; Twu et al., 1993) ; and upregulating amongst other signaling pathways, the Ras-Raf-MAPK signal transduction pathway, the JAK/STAT pathway and the protein kinase B pathway. symptoms at the early stage of the disease results in detection of cancer only when at an advanced stage (Usatoff and Habib, 2002). Another is the paucity of curative treatments for late-stage HCC. . Summary of the different types of sera analyzed by the SERPA approach 61 3.5 Western blot analysis of HCC tissue lysate probed against human serum 62 3.6 A comparison of the immunoreactivity