1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Stimuli responsive microfiltration membranes and surfaces from copolymers with grafted functional side chains

235 583 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Cấu trúc

  • Chapter 1-yl.pdf

    • CHAPTER 1

Nội dung

STIMULI-RESPONSIVE MICROFILTRATION MEMBRANES AND SURFACES FROM COPOLYMERS WITH GRAFTED FUNCTIONAL SIDE CHAINS YING LEI NATIONAL UNIVERSITY OF SINGAPORE 2004 STIMULI-RESPONSIVE MICROFILTRATION MEMBRANES AND SURFACES FROM COPOLYMERS WITH GRAFTED FUNCTIONAL SIDE CHAINS YING LEI (M.Eng., BUCT) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMICAL AND BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2004 ACKNOWLEDGEMENT First of all, I would like to express my cordial gratitude to my supervisors, Prof. E. T. Kang and Prof. K. G. Neoh, for their invaluable guidance, suggestion and discussion throughout this work. Their enthusiasm and active research interests are a constant source of inspiration to me in carrying out this project. I have learnt invaluable knowledge from them on how to research work and how to enjoy doing research. I would like to thank Dr. Li Sheng for his help in XPS operation training and sample analysis. I am also grateful to all my colleagues for their kind help and support. In particular, thanks to Dr. Ling Qidan, Dr. Yang Guanghui, Mr. Yu Weihong, Mr. Wang Wencai, Mr. Zhao Luping and Miss Cen Lian for sharing with me the invaluable experience on the research field. In addition, special thanks go to Madam Chow Pek, Madam Liu Suxia, and other lab technologists of Department of Chemical and Biomolecular Engineering, for their assistance and help. The financial support provided by the National University of Singapore in the form of a research scholarship is gratefully acknowledged. Finally, but not least, I would like to thank my wife, Wan Xue, and my parents for their continuous love, support, and encouragement. i TABLE OF CONTENTS Page Acknowledgement i Table of Contents ii Summary iv Nomenclature vi Lists of Figures viii Lists of Tables xiv Chapter Introduction Chapter Literature Survey 2.1 Preparation of Microporous Membranes 10 2.2 Preparation of Stimuli-responsive Microporous Membranes 21 2.3 Smart Surface for Enzyme Immobilization and Cell Culture 35 Chapter Synthesis and Characterization of Acid/Base PolymerGrafted Poly(vinylidene fluoride) Copolymers and pHSensitive Microfiltration Membranes 44 3.1 Synthesis and Characterization of Poly(acrylic acid)-grafted Poly(vinylidene fluoride) Copolymers and pH-sensitive Microfiltration Membranes 45 3.1.1 Experimental Section 45 3.1.2 Results and Discussion 51 3.1.3 Conclusion 71 3.2 pH Effect of the Coagulation Bath on the Characteristics of Poly(acrylic acid)-grafted and Poly(4-vinylpyridine)-graftedPoly(vinylidene fluoride) Microfiltration Membranes 72 3.2.1 Experimental Section 72 3.2.2 Results and Discussion 74 3.2.3 Conclusion 90 ii Chapter Synthesis and Characterization of Poly(N-isopropylacrylamide)-grafted-Poly(vinylidene fluoride) Copolymers and Temperature-Sensitive Microfiltration Membranes 91 4.1 Experimental Section 92 4.2 Results and Discussion 95 4.3 Conclusion Chapter Preparation of Temperature- and pH-Sensitive Microfiltration Membranes from Blends of Poly(acrylic acid)Grafted-Poly(vinylidene fluoride) (PAAc-g-PVDF) with Poly(N-isopropylacrylamide) 119 120 5.1 Experimental Section 121 5.2 Results and Discussion 123 5.3 Conclusion 144 Chapter Preparation of Polymeric ‘Smart Surface’ for Enzyme Immobilization and Cell Culture 145 6.1 Covalent Immobilization of Glucose Oxidase on Microporous Membranes Prepared From Poly(vinylidene fluoride) with Grafted Poly(acrylic acid) Side Chains 146 6.1.1 Experimental Section 146 6.1.2 Results and Discussion 150 6.1.3 Conclusion 164 6.2 Immobilization of Galactose Ligands on Acrylic Acid GraftCopolymerized Poly(ethylene terephthalate) Film and Its Application to Hepatocyte Culture 165 6.2.1 Experimental Section 165 6.2.2 Results and Discussion 172 6.2.3 Conclusion 192 Chapter Conclusion 193 Chapter References 198 List of publications 219 iii SUMMARY In this work, molecular graft polymerization (bulk modification) was carried to synthesize stimuli-responsive polymeric materials. New graft copolymers, PAAc-gPVDF, P4VP-g-PVDF and PNIPAAM-g-PVDF, were successfully synthesized through the molecular graft copolymerization of acrylic acid (AAc), 4-vinylpyridine (4VP), N-isopropylacrylamide (NIPAAM) with the ozone-preactivated poly(vinylidene fluoride) (PVDF) backbone. The microporous membranes prepared from these stimuliresponsive polymeric materials by phase inversion technique exhibit strongly pH- or temperature-sensitive properties. For the pH-sensitive PAAc-g-PVDF microfiltration (MF) membranes, the flux of the aqueous solution through the membranes exhibited a strong and reversible dependence on solution pH in the pH range of to 6. The rate of permeation through the PAAc-gPVDF MF membranes changed reversibly in response to pH variation of the aqueous solution, with the most drastic change in permeation rate occurring between pH to 4. For the temperature-sensitive PNIPAAM-g-PVDF MF membranes cast below the lower critical solution temperature (LCST) of the NIPAAM polymer (~ 32°C), the rate of water permeation increased substantially at a permeate temperature above 32°C. A reverse permeate temperature dependence was observed for the flux of isopropanol through the membrane cast above the LCST of the NIPAAM polymer. For the PAAcg-PVDF/PNIPAAM MF blend membranes, on the other hand, XPS analyses of the blend membranes revealed a substantial surface enrichment of the grafted AAc polymer and blended PNIPAAM. The copolymer blend membranes exhibited both pHdependent and temperature-sensitive permeability to the aqueous solutions, with the iv most drastic change in permeability being observed at permeate pH between to and temperature around 32°C. The present studies have shown that molecular functionalization by graft copolymerization prior to membrane fabrication is a relatively simple approach for the preparation of membranes with uniform surface (including the pore surfaces) properties. Furthermore, the smart polymer brushes (PAAc and PNIPAAM side chains) can be used as physicochemical gates to control the permeability through the porous PVDF membranes. The ‘smart membranes’ can be also used as a polymeric matrix for enzyme immobilization. It was also demonstrated that the PAAc-g-PVDF MF membrane could be further functionalized by covalent immobilization of an enzyme, glucose oxidase (GOD). The immobilized GOD exhibited good chemical resistance, thermal and storage stability in a phosphate buffer solution (pH 7.4), and still retained substantial activity. On the other hand, UV-induced surface graft copolymerization of the Ar plasmapretreated PET films with AAc was carried out to generate the PAAc-g-PET surfaces. Immobilization of the galactose ligand on the PAAc-g-PET surface gave rise to a hepatocyte-specific surface with a high surface concentration of the flexible galactose ligands. Surface modification of PET substrates with galactose ligands allows a good control of the hepatocyte attachment, the cell-substrate interactions, and the physiological functions of the attached hepatocytes. v NOMENCLATURE α XPS photoelectron take-off angle AAc Acrylic acid AAm Acrylamide AFM Atomic force microscopy AHG 1-O-(6’-aminohexyl)-D-galactopyranoside BE Binding energy BSA Bovine serum albumin DSC Differential scanning calorimetry EGF Epidermal growth factor FTIR Fourier transform infrared FWHM Full width at half maximum -g- -graft- GA Galactose ligands GOD Glucose oxidase Km Michaelis constant MES 2-(N-morpholino)-ethanesulfonic acid MF Microfiltration NaSS Na salt of styrenesulfonic acid NIPAAM N-isopropylacrylamide OD Optical density PBS Phosphate-buffered solution pKa The logarithmic scale of acidity PET Poly(ethylene terephthalate) PVDF Poly(vinylidene fluoride) vi Ra Average surface root-mean-square roughness RF Radio-frequency SEM Scanning electron microscopy sulfo-NHS N-hydroxysulfosuccinimide TBO Toluidine blue O TG Thermogravimetric TIPS Thermally-induced phase separation TMB 1-Step Turbo 3, 3, 5, 5-tetramethylbenzidine UF Ultrafiltration Vmax Maximum reaction velocity of the enzyme reaction 4VP 4-vinylpyridine WSC Water-soluble carbodiimide XPS X-ray photoelectron spectroscopy XRD X-ray diffraction vii LIST OF FIGURES Figure 2.1 Phase diagram of a ternary system showing a one-phase region and a two-phase region (shaded area). Figure 3.1 Schematic representation of the process of thermally-induced graft copolymerization of AAc with the ozone-preactivated PVDF backbone. Figure 3.2 FT-IR spectra of (a) the pristine PVDF film, and three thin films cast from the acetone solution of PAAc-g-PVDF copolymers prepared from [AAc] to [-CH2CF2-] feed (weight) ratios of (b) 3, (c) and (d) 6. Figure 3.3 XPS C1s core-level spectra of four MF membranes cast by phase inversion from 12 wt% NMP solutions of: (a) the pristine PVDF and the PAAc-g-PVDF copolymers prepared from [AAc] to [-CH2CF2-] feed (weight) ratios of: (b) 3, (c) and (d) 6. Figure 3.4 Effect of the [AAc] to [-CH2CF2-] feed (weight) ratio on the bulk graft concentration of the PAAc-g-PVDF copolymer. Figure 3.5 TG analysis curves of (1) the PVDF homopolymer; the PAAc-g-PVDF copolymers of graft concentrations of (2) [C]/[F]bulk=1.01 or 0.7 wt% AAc polymer, (3) [C]/[F]bulk=1.09 or 5.7 wt% AAc polymer, (4) [C]/[F]bulk=1.25 or 14.3 wt% AAc polymer, (5) [C]/[F]bulk=1.33 or 18 wt% AAc polymer; and (6) the AAc homopolymer. Figure 3.6 Effect of surface graft concentration on the water contact angle of the PAAc-g-PVDF film. Figure 3.7 SEM micrographs of the MF membranes cast with phase inversion from 12 wt% NMP solutions of (a) the pristine PVDF, and the PAAc-gPVDF copolymers of graft concentrations (([C]/[F])surface ratios) of (b) 1.20, (c) 2.03 , and (d) 2.46. Figure 3.8 Effect of the [AAc]/[-CH2CF2-] weight ratio in the feed on the surface graft concentration of the PAAc-g-PVDF copolymer membranes. Figure 3.9 Comparison between surface and bulk graft concentration of the MF membranes cast via the phase inversion from 12 wt% NMP solutions of the PAAc-g-PVDF copolymers of different graft concentrations. Figure 3.10 pH-dependent water permeability through the PAAc-g-PVDF and the pristine PVDF MF membranes. Curves and 2, and Curves and are obtained on two PAAc-g-PVDF MF membranes of different graft concentrations when subjected to pH cycling, while Curves and are the flux through the commercial PVDF membranes (std. pore size, d= 0.65 mm and d=0.45 mm, respectively) with characteristic pore-size distributions similar to those of the PAAc-g-PVDF copolymer membranes. viii Grinnell, F. Cellular Adhensiveness and Extracellular Substrate, Int. Rev. Cytol., 53, pp.65-144. 1978. Groboillot, A., D.K. Boadi, D. Poncelet, R.J. Neufeld. Immobilization of Cells for Application in the Food-Industry, Crit. Rev. Biotechnol., 14, pp.75-107. 1994. Guarnaccia, S.P. and R.L. Schnaar. Hepatocyte Adhesion to Immobilized Carbohydrates. I. Sugar Recognition is Followed by Energy-Dependent Strengthening, J. Biol. Chem., 257, pp.14288-14292. 1982. Gupta, B., C. Plummer, I. Bisson, P. Frey and J. Hilborn. Plasma-Induced Graft Polymerization of Acrylic Acid onto Poly(ethylene terephthalate) Films: Characterization and Human Smooth Muscle Cell Growth on Grafted Films, Biomaterials, 23, pp.863-871. 2002. Hahn, B.R. and J.H. Wendorff. Piezo- and Pyroelectricity in Polymer Blends of Poly(vinylidene fluoride)/Poly(methyl methacrylate), Polymer, 26, pp.1611-1618. 1985. Hahn, M., E. Gornitz and H. Dautzenberg. Synthesis and Properties of Ionically Modified Polymers With LCST Behavior, Macromolecules, 31, pp.5616-5623. 1998. Henne, W., M. Pelger, K. Gerlach and J. Tretzel, in: Plasma Separation and Plasma Fractionation, ed by M.J. Lysaught and H.J. Gurland, pp. 164-166. Basel: S. Karger AG. 1983. Heskins, M., J.E. Guillet and E. James. Solution Properties of Poly(Nisopropylacrylamide), J. Macromol. Sci. Chem., A2, pp.1441-1455. 1968. Hester, J.F., P. Banerjee and A.M. Mayes. Preparation of Protein-Resistant Surfaces on Poly(vinylidene fluoride) Membranes via Surface Segregation, Macromolecules, 32, pp.1643-1650. 1999. Hirotsu, S., Y. Hirokawa and T. Tanaka. Volume-Phase Transitions of Ionized Nisopropylacrylamide Gels, J. Chem. Phys., 2, pp.1392-1395. 1987. Hoffman, A.S. Intelligent Polymers in Medicine and Biotechnology, Macromol. Symp., 98, pp.645-664. 1995. Howell, J.A., V. Sanchez and R.W. Field. (ed). Membranes in Bioprocessing: Theory and Applications, New York: Chapman & Hall. 1993. 204 Ikada, Y. Surface Modification of Polymers for Medical Applications, Biomaterials, 15, pp.725-736. 1994. Israels, R., D. Gersappe, M. Fasolka, V.A. Roberts and A. Balazs. pH-Controlled Gating in Polymer Brushes, Macromolecules, 27, pp.6679-6682. 1994. Ito, Y., S. Kotera, M. Inaba, K. Kono and Y. Imanishi. Control of Pore Size of Polycarbonate Membrane with Straight Pores by Poly(acrylic acid) Grafts, Polymer, 31, pp.2157-2161. 1990. Ito, Y., M. Inaba, D.J. Chung and Y. Imanishi. Control of Water Permeation by pH and Ionic Strength Through a Porous Membrane Having Poly(carboxylic acid) SurfaceGrafted, Macromolecules, 25, pp.7313-7316. 1992. Ito, Y., S.W. Nishi, Y.S. Park and Y. Imanishi. Oxidoreduction-Sensitive Control of Water Permeation Through a Polymer Brushes-Grafted Porous Membrane, Macromolecules, 30, pp.5856-5859. 1997c. Ito, Y., Y. Ochiai, Y.S. Park and Y. Imanishi. pH-Sensitive Gating by Conformational Change of a Polypeptide Brush Grafted onto a Porous Polymer Membrane, J. Am. Chem. Soc., 119, pp.1619-1623.1997a. Ito, Y., Y.S. Park and Y. Imanishi. Visualization of Critical pH-Controlled Gating of a Porous Membrane Grafted with Polyelectrolyte Brushes, J. Am. Chem. Soc., 119, pp.2739-2740.1997b. Itoyama, K., H. Tanibe, T. Hayashi and Y. Ikada. Spacer Effects on Enzymatic Activity of Papain Immobilized onto Porous Chitosan Beads, Biomaterials, 15, pp.107112. 1994. IUPAC Reporting Physisorption data. Pure Appl. Chem., 57, pp.603-620. 1985. Iwata, H. and T. Matsuda. Preparation and Properties of Novel Environment-Sensitive Membranes Prepared by Graft Polymerization onto a Porous Membrane, J. Membr. Sci., 38, pp.185-199. 1988. Iwata, H., I. Hirata and Y. Ikada. Atomic Force Microscopic Analysis of a Porous Membrane with pH-Sensitive Molecular Valves, Macromolecules, 31, pp.3671-3678. 1998. Iwata, H., I. Hirata and Y. Ikada. Atomic Force Microscopic Images of Solvated Polymer Brushes, Langmuir, 13, pp.3063-3066. 1997. 205 Iwata, H., M. Oodate, Y. Uyama, H. Amemiya and Y. Ikada. Preparation of Temperature-Sensitive Membranes by Graft Polymerization onto a Porous Membrane, J. Membr. Sci., 55, pp.119-130. 1991. Jacob, M.M.E., S.R.S. Prabaharan and S. Radhakrishna. Effect of PEO Addition on the Electrolytic and Thermal Properties of PVDF-LiClO4 Polymer Electrolytes, Solid State Ionics, 104, pp.267-276. 1997. Jaworek, T., D. Neher, G. Wegner, R.H. Wieringa and A.J. Schouten. Electromechanical Properties of an Ultrathin Layer of Directionally Aligned Helical Polypetides, Science, 279, pp.57-60. 1998. Ji, H. and P.G. de Gennes. Adhension via Connector Molecules: The Many-Stitch Problem, Macromolecules, 26, pp.520-525. 1993. Jian, K. and P.N. Pintauro. Integral Asymmetric Poly(vinylidene fluoride) (PVDF) Pervaporation Membranes, J. Membr. Sci., 85, pp.301-309. 1993. Joanny, J.F. Lubrication by Molten Polymer Brushes, Langmuir, 8, pp.989-995. 1992. Jolivalt, C., S. Brenon, E. Caminade, C. Mougin and M. Pontie. Immobilization of Laccase From Trametes Versicolor on a Modified PVDF Microfiltration Membrane: Characterization of the Grafted Support and Application in Removing a Phenylurea Pesticide in Wastewater, J. Membr. Sci., 180, pp.103-113. 2000. Jonsson, A.S., J. Lindau, R. Wimmerstedt, J. Brinck and B. Jonsson. Influence of the Concentration of a Low-Molecular Organic Solute on the Flux Reduction of a Polyethersulphone Ultrafiltration Membrane, J. Membr. Sci., 135, pp.117-128. 1997. Ju, H.H., S.Y. Kim and Y.M. lee. pH/Temperature-Responsive Behaviors of Semi-IPN and Comb-Type Graft Hydrogels Composed of Alginate and Poly(Nisopropylacrylamide), Polymer, 42, pp.6851-6857. 2001. Kang, E.T. and Y. Zhang. Surface Modification of Fluoropolymers via Molecular Design, Adv. Mater., 12, pp.1481-1494. 2000. Kang, E.T., K.G. Neoh and K.L. Tan. Surface Modification of Poly(3-alkylthiophene) Films by Graft Copolymerization, Macromolecules, 25, pp.6842-6848, 1992b Kang, E.T., K.G. Neoh and Y. Ikada. Grafting of Polymer Surfaces. Encyclopedia of Surface and Colloid Science, ed by A. Hubbard, pp.2320-2340, New York: Marcel Dekker. 2002. 206 Kang, E.T., K.G. Neoh, K.L. Tan, Y. Uyama, N. Morikawa and Y. Ikada. Surface Modification of Polyaniline Films by Graft Copolymerization, Macromolecules, 25, pp.1959-1965. 1992a. Kang, E.T., K.L. Tan, K. Kato, Y. Uyama and Y. Ikada. Surface Modification and Functionalization of Polytetrafluoroethylene Films, Macromolecules, 29, pp.68726879. 1996. Kang, I.K., B.K. Kwon, J.H. Lee and H.B. Lee. Immobilization of Proteins on Poly(methyl methacrylate) Films, Biomaterials, 14, pp.787-792. 1993. Kesting, R., A. Murray, K. Jackson and J. Newman. Highly Anisotropic Cellulose Mixed-Ester Membranes for Microfiltration; In: Synthetic Membranes: Desalination, ed. by A.F. Turbak, pp. 199-221. Washington, D.C.: American Chemical Society, 1981. Kim, S.H., M. Goto and T. Akaike. Specific Binding of Glucose-Derivatized Polymers to the Asialoglycoprotein Receptor of Mouse Primary Hepatocytes, J. Biol. Chem., 276, pp.35312-35319. 2001. Kim, S.Y., S.M. Cho, Y.M. Lee and S.J. Kim. Thermo-and pH-Responsive Behaviors of Graft Copolymer and Blend Based on Chitosan and N-isopropylacrylamide, J. Appl. Polym. Sci., 78, pp.1381-1391. 2000. Kim, Y. J., I.K. Kang, M.W. Huh and S.C. Yoon. Surface Characterization and in vitro Blood Compatibility of Poly(ethylene terephthalate) Immobilized with Insulin and/or Heparin Using Plasma Glow Discharge, Biomaterials, 21, pp.121-130. 2000. Kitamura, T., K. Kurumada, M. Tanigaki, M. Ohshima and S. Kanazawa. Formation Mechanism of Porous Structure in Polytetrafluoroethylene (PTFE) Porous Membrane through Mechanical Operations, Polym. Eng. Sci., 39, pp.2256-2263. 1999. Klempner, D. Encyclopedia of Polymer Science and Engineering, Vol 8. pp.279-341, Chichester: John Wiley & Sons. 1985. Kobayashi, A., K. Kobayashi and T. Akaike. Control of Adhension and Detachment of Parenchymal Liver-Cells Using Lactose-Carrying Polystyrene As Substratum, J. Biomater. Sci. Polym. Ed., 3, pp.499-508. 1992. Koenhen, D.M., M.H.V. Mulder and C.A. Smolders Phase Separation Phenomena during the Formation of Asymmetric Membranes, J. Appl. Pol. Sci., 21, pp.199-215. 1977. 207 Koh, W.G., A. Revzin and M.V. Pishko. Poly(ethylene glycol) Hydrogel Microstructures Encapsulating Living Cells, Langmuir, 18, pp.2459-2462. 2002. Krantz, W.B., R.J. Ray, R.L. Sani and K.J. Gleason. Theoretical Study of the Transport Processes Occurring During the Evaporation Step in Asymmetric Membrane Casting, J. Membr. Sci., 29, PP.11-36. 1986. Kulik, E.A., K. Kato, M.I. Ivanchenko and Y. Ikada. Trypsin Immobilization onto Polymer Surface Through Grafted Layer and Its Reaction With Inhibitors, Biomaterials, 14, pp.763-769. 1993. Kurumada, K., T. Kitamura, N. Fukumoto, M. Oshima, M. Tanigaki and S. Kanazawa. Structure Generation in PTFE Porous Membranes Induced by the Uniaxial and Biaxial Stretching Operations, J. Membr. Sci., 149, pp.51-57. 1998. Labbez, C., P. Fievet, A. Szymczyk, A. Vidonne, A. Foissy and J. Pagetti. Retention of Mineral Salts by a Polyamide Nanofiltration Membrane, Sep. Purif. Technol., 30, pp.47-55. 2003. Landler, Y. and P. Lebel. Greffage Sur Polychlorure de Vinyle Par Préozonisation, J. Polym. Sci., 48, pp.477-489. 1960. Le, M.S., L.B. Spark and P.S. Ward. The Separation of Aryl Acylamidase by Cross flow Microfiltration and the Significance of Enzyme/Cell Debris Interaction, J. Membr. Sci., 21, pp.219-232. 1984. Lecluyse, E. L., P.L. Bullock and A. Parkinson. Strategies for Restoration and Maintenance of Normal Hepatic Structure and Function in Long-Term Cultures of Rat Hepatocytes, Adv. Drug. Deliv. Rev., 22, pp.133-186. 1996. Li, Z.F., E.T. Kang, K.G. Neoh and K.L. Tan. Covalent Immobilization of Glucose Oxidase on the Surface of Polyaniline Films Graft Copolymerized with Acrylic Acid, Biomaterials, 19, pp.45-53. 1998. Lin, D.J., C.L. Chang, T.C. Chen and L.P. Cheng. Microporous PVDF Membrane Formation by Immersion Precipitation from Water/TEP/PVDF System, Desalination, 145, pp.25-29. 2002. Liu, G. J. and J.F. Ding. Diblock Thin Films With Densely Hexagonally Packed Nanochannels, Adv. Mater., 10, pp.69-71. 1998. 208 Liu, G.J., J.F. Ding and S. Stewart. Preparation and Properties of Nanoporous Triblock Copolymer Membranes, Angew. Chem. Int. Edit, 38, pp.835-838. 1999b. Liu, G.J., J.F. Ding, A. Guo, M. Herfort and D. Bazett-Jones. Potential Skin Layers for Membranes With Tunable Nanochannels, Macromolecules, 30, pp. 1851-1853. 1997. Liu, G.J., J.F. Ding, T. Hashimoto, K. Kimishima, F.M. Winnik and S. Nigam. Thin Films With Densely, Regularly Packed Nanochannels: Preparation, Characterization, and Applications, Chem. Mater., 11, pp.2233-2240. 1999a. Liu, Y.C., X.H. Zhang, H.Y. Liu, T.Y. Yu and J.Q. Deng. Immobilization of Glucose Oxidase onto the Blend Membrane of Poly(vinyl alcohol) and Regenerated Silk Fibroin: Morphology and Application to Glucose Biosensor, J. Biotechnol., 46, pp.131-138. 1996. Lloyd, D.R., K.E. Kinzer and H.S. Tseng. Microporous Membrane Formation via Thermally Induced Phase Separation. I. Solid-Liquid Phase Separation, J. Membr. Sci., 52, pp.239-261. 1990. Lloyd, D.R., S.S. Kim and K.E. Kinzer. Microporous Membrane Formation via Thermally Induced Phase Separation. II Liquid-Liquid Phase Separation, J. Membr. Sci., 64, pp.13-29. 1991. Loeb, S. and S. Sourirajan. Seawater Determineralization by Means of an Osmotic Membrane, Adv. Chem. Ser., 38, pp.117-132. 1963. Loh, F.C., K.L. Tan, E.T. Kang, Y. Uyama and Y. Ikada. Structural Studies of Polyethylene, Poly(ethylene-terephthalate) and Polystyrene Films Modified by Near UV-Light Induced Surface Graft-Copolymerization, Polymer, 36, pp.21-27. 1995. Ma, H., R.H. Davis and C.N. Bowman. A Novel Sequential Photoinduced Living Graft Polymerization, Macromolecules, 33, pp.331-335. 2000. Mackor, E.L. and J.H. van der Waals. The Statistics of the Adsorption of Rod-shaped Molecules in Connection with the Stability of Certain Colloidal Dispersions, J. Colloid Sci., 7, pp.535-550. 1952. Maroudas, N.G. Polymer Exclusion, Cell Adhesion and Membrane Fusion, Nature, 254, pp.695-696. 1975. 209 Mcneill, I.C. and S.M.T. Sadeghi. Thermal Stability and Degradation Mechanisms of Poly(acrylic acid) and Its Salts. Part 1- Poly(acrylic acid), Poly. Deg. Stab., 29, pp.233-246. 1990. Mei, L., D.S. Zhang and Q.R. Wang. Morphology Structure Study of Polypropylene Hollow Fiber Membrane made by the Blend-Spinning and Cold-Stretching Method, 84, pp.1390-1394. 2002. Milner, S.T. Polymer Brushes, Science, 251, pp.905-914.1991. Moghe, P. V., F. Berthiaume, R.M. Ezzell, M. Toner, R.G. Tompkins and M.L. Yarmush. Culture Matrix Configuration and Composition in the Maintenance of Hepatocyte Polarity and Function, Biomaterials, 17, pp.373-385. 1996. Mok, S., D.J. Worsfold, A. Fouda and T. Matsuura. Surface Modification of Polyethersulfone Hollow-Fiber Membranes by γ-ray Irradiation, J. Appl. Polym. Sci., 51, pp.193-199. 1994. Mozhaev, V.V., V.A. Shikshin, V.P. Torchilin and K. Martinek. Operational Stability of Copolymerized Enzymes at Elevated-temperatures, Biotechnol. and Bioeng., 25, pp.1937-1945. 1983. Muilenberg, G.E. Handbook of X-ray Photoelectron Spectroscopy. New York: PerkinElmer. 1977. Mulder, M.H.V. Basic Principle of Membrane Technology, pp.121-136, Dordrecht: Kluwer Academic Publishers. 1991. Munari, S., A. Bottino and G. Capannelli. Casting and Performance of Poly(vinylidene fluoride) based Membranes, , J. Membr. Sci., 16, pp.181-193. 1983. Naidja, A. and P.M. Huang. Deamination of Aspartic Acid by Aspartase–CaMontmorillonite Complex, J. Mol. Catal. A: Chem., 106, pp. 255–265. 1996. Nam, S.Y. and Y.M. Lee. Pervaporation and Properties of Chitosan-Poly(acrylic acid) Complex Membranes, J. Membr. Sci., 135, pp.161-171. 1997. Nonaka, T., S. Matsumura, T. Ogata and S. Kurihara. Synthesis of Amphoteric Polymer Membranes From Epithiopropyl Methacrylate-butylmethacrylate-N,Ndimethylaminopropyl Acrylamide-Methacrylic Acid Copolymers and the Permeation Behavior of Various Solutes through the Membranes, J. Membr. Sci., 212, pp.39-53. 2003. 210 Noshay, A. and J.E. McGrath. (ed). Block Copolymers, Overview and Critical Survey, New York: Academic Press. 1977. Nunes, S.P., M.L. Sforca and K.V. Peinemann. Dense Hydrophilic Composite Membranes for Ultrafiltration, J. Membr. Sci., 106, pp.49-56. 1995. Oda, H., K. Nozawa, Y. Hitomi and A. Kakinuma. Laminin-Rich Extracellular-Matrix Maintains High-Level of Hepatocyte Nuclear Factor-4 In Rat Hepatocyte Cultrue, Biochem. Biophys. Res. Commun., 212, pp.800-805. 1995. Odian G. (ed). Principles of Polymerization. pp.679-687, New York: WileyInterscience. 1981. Ogiwara, Y., M. Kanda, M. Takumi and H. Kubota. Photosensitized Grafting on Polyolefin Films in Vapor and Liquid Phases, J. Polym. Sci., Polym. Lett. Ed., 19, pp.457-462. 1981. Oka, J.A. and P.H. Weigel. Binding and Spreading of Hepatocytes on Synthetic Galactose Culture Surfaces Occur as Distinct and Separable Threshold Responses, J. Cell Biol., 103, pp.1055-1060. 1986. Okahata, Y., H. Noguchi and T. Seki. Functional Capsule Membrane. 23. Thermoselective Permeation from a Polymer-grafted Capsule Membrane, Macromolecules, 19, pp.493-494. 1986. Okano, T. and R. Yoshida. Intelligent Polymeric Materials for drug Delivery. In: Biomedical Applications of Polymeric Materials, ed by T. Tsuruta, T. Hayashi, K. Kataoka, K. Ishihara and Y. Kimura, pp.407-428. Boca Raton, FL: CRC Press. 1993. Okano, T., N. Yui, M. Yokoyama and R.Yoshida. Advances in Polymeric Systems for Drug Delivery. pp.195-230, Yverdon: Gordon & Breach. 1994. Olabisi, O., L.M. Robenson and T.M. Shaw. Polymer-Polymer Miscibility. pp.74-79. New York: Academic Press. 1979. Osada Y. and M. Hasebe. Electrically Activated Mechanochemical Devices Using Polyelectrolyte Gels, Chem. Lett., 9, pp.1285-1288. 1985. Palmer, T. Understanding enzymes. pp.120-122. London: Prentice-Hall/Ellis Horwood. 1995. 211 Pan, Y.V., R.A. Wesley, R. Luginbuhl, D.D. Denton and B.D. Ratner. Plasma Polymerized N-isopropylacrylamide: Synthesis and Characterization of a Smart Thermally Responsive Coating, Biomacromolecules, 2, pp.32-36. 2001. Park, Y.S., Y. Ito and Y. Imanishi. Permeation Control Through Porous Membranes Immobilized With Thermosensitive Polymer, Langmuir, 14, pp.910-914. 1998. Paul, D.R., J.W. Badow and H. Keskkula. Encyclopedia of Polymer Science and Technology, Vol 12. pp.399-402, New York: John wiley & Sons. 1986. Peeling, J. and D.T. Clark. Surface Ozonization and Photo Oxidation of Polyethylene Film, J. Polym. Sci. Polym. Chem. Ed., 21, pp.2047-2055. 1983. Peng, T. and Y.L. Cheng. pH-Responsive Permeability of PE-g-PMAA Membranes, J. Appl. Polym. Sci., 76, pp.778-786. 2000. Peng, T. and Y.L. Cheng. Temperature-Responsive Permeability of Porous PNIPAAM-g-PE Membranes, J. Appl. Polym. Sci., 70, pp.2133-2142. 1998. Peniche, C., W. Arguelles-Monal, N. Davidenko, R. Sastre, A. Gallardo and J.S. Roman. Self-Curing Membranes of Chitosan/PAA IPNs Obtained by Radical Polymerisation: Preparation, Characterization and Interpolymer Complexation, Biomaterials, 20, pp.1869-1879. 1999. Piacquadio, P., G. DeStefano, M. Sammartino and V. Sciancalepore. Phenol Removal From Apple Juice by Laccase Immobilized on Cu2+-Chelate Regenerable Carrier, Biotechnol. Tech., 11, pp. 515–517. 1997. Polednick, C., H. Widdecke, S. Bodrero, A. Revillon, and A. Guyot. New Pellicular Ion-Exchangers by Grafting onto Polypropylene Beads .1. Synthesis and Characterization, J. Polym. Sci. Part A, Polym. Chem., 28, pp.261-272. 1990. Powell, L.W. Microbial Enzymes and Biotechnology, 2nd Edition, ed by W.M. Fogarty and C.T. Kelly, pp.369-389. Essex: Elsevier Science Publishers.1990. Prucker, O. and J. Ruhe. Synthesis of Poly(styrene) Monolayers Attached to High Surface Area Silica Gels Through Self-Assembled Monolayers of Azo Initiators, Macromolecules, 31, pp.592-601. 1998. Raphael, E., P.G. de Gennes. Rubber-Rubber Adhension With Connecter Molecules, J. Phys. Chem., 96, pp.4002-4007. 1992. 212 Reference Manual of Coulter® Porometer II, Coulter Electronics Limited, Luton, Beds., UK. 1996. Reuvers, A.J. and C.A. Smolders. Formation of Membranes by means of Immersion Precipitation, Part II. The Mechanism of Formation of Membranes From the System CA/Acetone/Water, J. Membr. Sci., 34, pp.67-86. 1987. Sano, S., K. Kato and Y. Ikada. Introduction of Functional-Groups onto the Surface of Polyethylene for Protein Immobilization, Biomaterials, 14, pp.817-822. 1993. Sarraf, T., B. Boutevin, Y. Pietrasanta and M. Taha. Synthesis of Graft Copolymers From Polyethylene-I., Eur. Polym. J., 20, pp.1131-1135. 1984. Schneider K. and T.J. van Gassel, Membrane Distillation, Chem.-Ing.-Tech., 56, pp.514-521. 1984. Schneider, K. and W. Klein. The Concentration of Suspensions by Cross-flow Microfiltration, Desalination, 41, pp.263-275. 1982. Scnnaar, R.L., P.H. Weigel, M.S. Kuhlenschmidt, E. Schmell, R.T. Lee, Y.C. Lee and S. Roseman. Adhesion of Chicken Hepatocytes to Polyacrylamide Gels Derivatized with N-acetylglucosamine, J. Biol. Chem., 253, pp.7940-7951. 1978. Seiler, D. A. and J. Scheirs. (ed). Modern Fluoropolymers. pp. 487-490, Chichester: Wiley. 1998. Shim, J.K., Y.B. Lee and Y.M. Lee. pH-Dependent Permeation Through Polysulfone Ultrafiltration Membranes Prepared by Ultraviolet Polymerization Technique, J. Appl. Polym. Sci., 74, pp.75-82. 1999. Sidorenko, A., S. Minko, K. Schenk-Meuser, H. Duschner and M. Stamm. Switching of Polymer Brushes, Langmuir, 15, pp.8349-8355. 1999. Sigma Technical Bulletin No. 510, The Enzymatic Colorimetric Determination of Glucose, Sigma Chemical Co., St. Louis, Mo, USA, 1983. Sperling, C., U. Konig, G. Hermel, C. Werner, M. Muller, F. Simon, K. Grundke, H.J. Jacobasch, V.N. Vasilets and Y. Ikada. Immobilization of Human Thrombomodulin onto PTFE, J. Mater. Sci-Mater. M., 8, pp.789-791. 1997. 213 Stevens, M.P. (ed). Polymer Chemistry: An Introduction. pp. 168-170, New York: Oxford University Press. 1999. Strathmann, H. and K. Kock. The Formation Mechanism of Phase Inversion Membranes, Desalination, 21, pp.241-255. 1977. Strathmann, H., K. Kock, P. Amar and R.W. Baker. The Formation Mechanism of Asymmetric Membranes, Desalination, 16, pp.179-203. 1975. Strathmann, H., P. Scheible and R.W. Baker. A Rationale for the Preparation of LoebSourirajan-type Cellulose Acetate Membranes, J. Appl. Pol. Sci., 15, pp.811-828. 1971. Suzuki, M., A. Kisida, H. Iwata and Y. Ikada. Graft Copolymerization of Acrylamide onto a Polyethylene Surface Preated with a Glow Discharge, Macromolecules, 19, pp.1804-1808. 1986. Tadokoro, H. Structure and Properties of Crystalline Polymers, Polymer, 25, pp.147164. 1984. Takano, N., T. Kawakami, Y. Kawa, M. Asano, H. Watabe, M. Ito, Y. Soma, Y. Kubota and M. Mizoguchi. Fibronectin Combined With Stem Cell Factor Plays an Important Role in Melanocyte Proliferation, Differentiation and Migration in Cultured Mouse Neural Crest Cells, Pigm. Cell Res., 5, pp.192-200. 2002. Tan, K.L., L.L. Woon, H.K. Wong, E.T. Kang and K.G. Neoh. Surface Modification of Plasma Treated Poly(tetrafluoroethylene) Films by Graft Copolymerization, Macromolecules, 26, pp.2832-2836. 1993. Teixeira, M.R. and M.J. Rosa. pH Adjustment for Seasonal Control of UF Fouling by Natural Waters, Desalination, 151, pp.165-175. 2003. Tischer, W. and F. Wedekind. Immobilized Enzymes: Methods and Applications, Top. Curr. Chem., 200, pp.95-126. 1999. Tonge, S.R. and B.J. Tighe. Responsive Hydrophobically Associating Polymers: A Review of Structure and Properties, Adv. Drug Delivery Rev., 53, pp.109-122. 2001. Trevan, M.D. Immobilized enzymes. pp.35-36. New York: Wiley-Interscience. 1981. 214 Tu, Y.F., X.H. Wan, D. Zhang, Q.F. Zhou and C. Wu. Self-Assembled Nanostructure of a Novel Coil-Rod Diblock Copolymer in Dilute Solution, J. Am. Chem. Soc., 122, pp.10201-10205. 2000. Uchida, E., Y. Uyama and Y. Ikada. Grafting of Water-Soluble Chains onto a Polymer Surface, Langmuir, 10, pp.481-485. 1994. Uchida, E., Y. Uyama and Y. Ikada. Sorption of Low-Molecular-Weight Anions into Thin Polycation Layers Grafted onto a Film, Langmuir, 9, pp.1121-1124. 1993. Ulbricht, M. and A. Oechel. Photo-Bromination and Photo-Induced Graft Polymerization as a Two-Step Approach for Surface Modification of Polyacrylonitrile Ultrafiltration Membranes, Eur. Polym. J., 9, pp.1045-1054. 1996. Underwood P.A. and F.A. Bennett. A Comparison of the Biological Activities of the Cell-Adhesive Proteins Vitronectin and Fibronectin, J. Cell Sci., 93, pp.641-649. 1989. Uyama, Y., K. Kato and Y. Ikada. Surface Modification of Polymers by Grafting, Adv. Polym. Sci., 137, pp.1-39. 1998. van den Boomgaard, Th., R.M. Boom and C.A. Smolders. Diffusion and Phase Separation in Polymer Solutions During Asymmetric Membrane Formation, Makromol. Chem., Macromol. Symp., 39, pp.271 – 281. 1990. van der Waarden, M. Stabilization of Carbon-Black Dispersions in Hydrocarbons, J Colloid Sci., 5, pp.317-325. 1950. van Zanten, J.H. Terminally Anchored Chain Interphases: Their Chromatographic Properties, Macromolecules, 27, pp.6797-6807. 1994. Vaussenat, F., B. Canaud, J.Y. Bosc, M. Leblanc, H. Leray-Moragues and L.J. Garred. Intradialytic Glucose Infusion Increases Polysulphone Membrane Permeability and Post-Dilutional Haemodiafiltration Performances, Nephrol. Dial. Transpl., 15, pp.511516. 2000. Vitzthum, G.H and M.A. Davis. 0.1 Micron Rated Polypropylene Membranes and Method for Its Preparation, U.S. Patent 4,490,431, Dec. 25, 1984. Walton, H. F. Principles & Methods of Chemical Analysis. pp.175-176. New Jersey: Prentice-Hall. 1964. 215 Wang, C.C. and G.H. Hsiue. Glucose Oxidase Immobilization onto a Plasma Induced Graft Copolymerized Polymeric Membrane Modified by Poly(ethylene oxide) as a Spacer, J. Appl. Polym. Sci., 50, pp.1141-1149. 1993. Wang, D.A., J. Ji, C.Y. Gao, G.H. Yu and L.X. Feng. Surface Coating of Stearyl Poly(ethylene oxide) Coupling-Polymer on Polyurethane Guiding Catheters With Poly(ether urethane) Film-Building Additive for Biomedical Applications, Biomaterials, 22, pp.1549-1562. 2001. Wang, P., K.L. Tan, E.T. Kang and K.G. Neoh. Synthesis, Characterization and AntiFouling Properties of Poly(ethylene glycol) Grafted Poly(vinylidene fluoride) Copolymer Membranes, J. Mater. Chem., 11, pp.783 –789. 2001. Wang, T., E.T. Kang, K.G. Neoh, K.L. Tan and D.J. Liaw. Surface Modification of Low-Density Polyethylene Films by UV-Induced Graft Copolymerization and Its Relevance to Photolamination, Langmuir, 14, pp.921-927. 1998. Wang, Y.X., X. Zhong and S.H. Wang. Pressure Cycling to Enhance an Immobilized Enzymic Reaction by Enzyme Entrapment in a Pressure-Sensitive Gel, J. Chem. Technol. Biot., 67, pp.243-247.1996. Washburn, E.W. A Method of Determining the Distribution of Pore Sizes in a Porous Material, Proc. Natl. Acad. Sci. USA, 7, pp.115-116. 1921. Weigel, P. H. Rat Hepatocytes Bind to Synthetic Galactoside Surface via a Patch of Asialoglycoprotein Receptors, J. Cell Biol., 87(3 pt 1), pp.855-861. 1980. Weigel, P.H., M. Naoi, S. Roseman and Y.C. Lee. Preparation of 6-Aminohexyl DAldopyranosides, Carbohyd. Res., 70, pp.83-91. 1979b. Weigel, P.H., R.L. Scnnaar, M.S. Kuhlenschmidt, E. Schmell, R.T. Lee, Y.C. Lee and S. Roseman. Adhesion of Hepatocytes to Immobilized Sugars. A Threshold Phenomenon, J. Biol. Chem., 254, pp.10830-10838. 1979a. Weisz O.A. and R.L. Schnaar. Hepatocyte Adhension to Carbohydrate-Derivatized Surfaces II. Regulation of Cytoskeletal Organization and Cell Morphology, J. Cell Biol., 115, pp.495-504. 1991. Wijmans, J.G., J.P.B. Baaij and C.A. Smolders. The Mechanism of Formation of Microporous or Skinned Membranes Produced by Immersion Precipitation, J. Membr. Sci., 14, pp.263-274. 1983. 216 Wrasidlo, W. and F. Hofmann. Highly Asymmetric Polysulfone Membranes, SA Filtration, Suppl. Chemsa and Energy, 11, pp. 8-12.1984. Wright A.N. Surface Photopolymerization of Vinyl and Diene Monomers, Nature, 215, pp.953-955. 1967. Yamada, K., M. Kamihira, R. Hamamoto and S. Iijima. Efficient Induction of Hepatocyte Spheroids in a Suspension Culture Using a Water-Soluble Synthetic Polymer as an Artificial Matrix, J. Biochem., 123, pp.1017-1023. 1998. Yamaguchi, T., T. Ito, T. Sato, T. Shinbo and S. Nakao. Development of a Fast Response Molecular Recognition Ion Gating Membrane, J. Am. Chem. Soc., 121, pp.4078-4079. 1999. Yamakawa, S. Surface Modification of Polyethylene by Radiation Induced Grafting for Adhensive Bonding, J. Appl. Polym. Sci., 20, pp.3057-3072. 1976. Yang, J., M. Goto, H. Ise, C.S. Cho and T. Akaike. Galactosylated Alginate As a Scaffold for Hepatocytes Entrapment, Biomaterials, 23, pp.471-479. 2002. Yang, T.H., H. Miyoshi and N. Ohshima. Novel Cell Immobilization Method Utilizing Centrifugal Force to Achieve High-Density Hepatocyte Culture in Porous Scaffold, J. Biomed. Mater. Res., 55, pp.379-386. 2001. Yasuda, H.K., Y.S. Yeh and S. Fusselman. A Growth-Mechanism for the Vacuum Deposition of Polymeric Materials, Pure Appl. Chem., 62, pp.1689-1698. 1990. Yasui, M., T. Shiroya, K. Fujimoto and H. Kawaguchi. Activity of Enzymes Immobilized on Microspheres With Themosensitive Hairs, Colloids and Surfaces B: Biointerfaces, 8, pp.311-319. 1997. Zeng, X. and E. Ruckenstein. Supported Chitosan-Dye Affinity Membranes and Their Protein Adsorption, J. Membr. Sci., 117, pp.271-278. 1996. Zhai, G.Q., L. Ying, E.T. Kang and K.G. Neoh. Poly(vinylidene fluoride) With Grafted 4-Vinylpyridine Polymer Side Chains for pH-Sensitive Microfiltration Membranes, J. Mater. Chem., 12, pp.3508-3515. 2002. Zhang, P.Y. and B. Ranby. Surface Modification by Continuous Graft Copolymerization. I. Photoinitiated Graft Copolymerization onto Polyethylene Tape Film Surface, J. Appl. Polym. Sci., 40, pp.1647-1661. 1990. 217 Zhao, B. and W.J. Brittain. Polymer Brushes: Surface-Immobilized Macromolecules, Prog. Polym. Sci., 25, pp.677-710. 2000. Zhili, X. and A. Chapiro. Grafting of Vinylimidazole into Air Irradiated Polymer Films, Europ. Polym. J., 29, pp.301-303. 1993. Zsigmondy, R. and W. Bachmann. Ueber Neue Filter, Z. Anorg. Alg. Chem., 103, pp.119-28. 1918. 218 PUBLICATIONS Journal Papers: (1). Ying L., G.Q. Zhai, A.Y. Winata, E.T. Kang and K.G. Neoh. Preparation of Temperature- and pH-Sensitive Microfiltration Membranes From Blends of Poly(acrylic acid)-graft-Poly(vinylidene fluoride) with Poly(N-isopropylacrylamide), J. Membr. Sci., 224 (1-2): 93-106 Oct 2003. (2). Ying L., E.T. Kang, and K.G. Neoh. pH Effect of Coagulation Bath on the Characteristics of Poly(acrylic acid)-grafted and Poly(4-vinylpyridine)-grafted Poly(vinylidene fluoride) Microfiltration Membranes, J. Colloid Interf. Sci., 265 (2): 396-403 Sep 2003. (3). Ying L., E.T. Kang, K.G. Neoh, K. Kato and H. Iwata. Novel Poly(Nisopropylacrylamide)-graft-Poly(vinylidene fluoride) Copolymers for TemperatureSensitive Microfiltration Membranes, Macromol. Mater. Eng., 288 (1): 11-16 Jan 31 2003. (4). Ying L., C. Yin, R.X. Zhuo, K.W. Leong, H.Q. Mao, E.T. Kang and K.G. Neoh. Immobilization of Galactose Ligands on Acrylic Acid Graft-Copolymerized Poly(ethylene terephthalate) Film and Its Application to Hepatocyte Culture, Biomacromolecules, 4(1): 157-165 Jan-Feb 2003. (5). Zhai, G.Q., L. Ying, E.T. Kang and K.G. Neoh. Synthesis and Characterization of Poly(vinylidene fluoride) with Grafted Acid/Base Polymer Side Chains, Macromolecules, 35 (26): 9653-9656 Dec 17 2002. (6). Zhai, G.Q., L. Ying, E.T. Kang and K.G. Neoh. Poly(vinylidene fluoride) with Grafted 4-vinylpyridine Polymer Side Chains for pH-Sensitive Microfiltration Membranes, J. Mat. Chem., 12 (12): 3508-3515 Nov 29 2002. (7). Ying L., E.T. Kang and K.G. Neoh. Covalent Immobilization of Glucose Oxidase on Microporous Membranes Prepared From Poly(vinylidene fluoride) with Grafted Poly(acrylic acid) Side Chains, J. Membr. Sci., 208 (1-2): 361-374 Oct 2002. (8). Ying L., E.T. Kang and K.G. Neoh. Synthesis and Characterization of Poly(Nisopropylacrylamide)-graft-Poly(vinylidene fluoride) Copolymers and TemperatureSensitive Membranes, Langmuir, 18 (16): 6416-6423 Aug 2002. (9). Ying L., P. Wang, E.T. Kang and K.G. Neoh. Synthesis and Characterization of Poly(acrylic acid)-graft-Poly(vinylidene fluoride) Copolymers and pH-Sensitive Membranes, Macromolecules, 35 (3): 673-679 Jan 29 2002. 219 [...]... membrane fabrication The membranes prepared from the new functional polymeric materials by phase inversion exhibit stimuli- responsive properties The work in this thesis is an attempt to prepare ‘smart membranes and ‘smart surfaces via surface and molecular grafting techniques 3 The applications of the ‘smart membranes and ‘smart surfaces on controlled permeation, enzyme immobilization and cell culture... literature It starts with the definition and the preparation methods of microporous membranes It then goes into the preparation of stimuli- responsive membranes (smart membranes) Finally, it focuses on the applications of smart membranes and smart surfaces In Chapter 3, molecular modification of ozone-pretreated poly(vinylidene fluoride) (PVDF) via thermally-induced graft copolymerization with acrylic acid... PAAc-g-PET film with surface carboxyl group concentrations of (c) 0.03 µmol/cm2, (d) 0.56 µmol/cm2, and (e) the GA-PAAc-g-PET film with a surface galactose ligand concentration of 0.51 µmol/cm2 Figure 6.15 Hepatocyte attachment on different surfaces: (1) the pristine PET surface; the PAAc-g-PET surfaces with a COOH concentration of (2) 0.03 µmol/cm2 and (3) 0.56 µmol/cm2; the GA-PAAc-g-PET surfaces with galactose... and temperature-sensitive microfiltration (MF) membranes from blends of the PAAc-g-PVDF copolymer and poly(N-isopropylacrylamide) (PNIPAAM) in NMP solution were prepared by phase inversion in water at 25°C The bulk and surface compositions of the membranes were obtained by elemental analysis and XPS, respectively XPS analyses of the blend membranes revealed a substantial surface enrichment of the grafted. .. well known from reverse 11 osmosis and ultrafiltration membranes; for example higher flux values and lower rate of flux decay are obtained generally Highly asymmetric microfiltration membranes have become available since 1980s (Kesting et al., 1981; Wrasidlo and Hofmann, 1984; Le et al., 1984) As new applications began to emerge, the need for membranes with improved chemical resistance and heat stability... GA-PAAc-g-PET surfaces with galactose ligand concentrations of (1) 0.47×10-3 µmol/cm2, (2) 0.02 µmol/cm2, (3) 0.51 µmol/cm2, and on (4) the collagen-coated PET film xiii LIST OF TABLES Table 2.1 A Survey of Materials for Commercial Polymer Membranes Table 2.2 Preparation Techniques for Microfiltration Membranes Table 3.1 Peroxides Content, Intrinsic Viscosity and Water Contact Angle of Pristine and Ozone-treated... spectroscopy, elemental analysis, and thermogravimetric (TG) analysis In general, the graft concentration increased with the NIPAAM monomer concentration used for graft copolymerization Microfiltration (MF) membranes were prepared from the PNIPAAM-g-PVDF copolymers by the phase inversion method The bulk and surface graft concentrations of the membranes were obtained by elemental analysis and XPS, respectively... liquid) and inorganic (ceramic, metal, etc.) membranes Here the synthetic polymeric membranes are emphasized Secondly, membranes can be distinguished by their morphology Roughly, two types of membrane structures can be distinguished: ⎯ porous membrane ⎯ non-porous membrane In porous membranes, fixed pores are present Microfiltration, ultrafiltration and nanofiltration membranes are all porous membranes. .. (([-AAc-]/[CH2CF2-])surface) of 0.97, and the PAAc-g-PVDF/PNIPAAM blend membranes with ([-NIPAAM-]/[-CH2CF2-])surface blend (mole) ratios of (c) 4.88, (d) 2.57, (e) 2.47, and (f) 2.11 Figure 5.7 pH- and temperature-dependent permeability of aqueous solutions of pH 1-6 and temperature 4-55°C through the PAAc-g-PVDF/PNIPAAM blend membranes with ([-NIPAAM-]/[-CH2CF2-])surface blend (mole) ratios of (a) 2.11, (b) 2.57, and (c) 4.63... above its melting point) and by cooling demixing will take place (Lloyd et al., 1990; Lloyd et al., 1991) TIPS has been used to form microporous polymeric membranes of controlled pore characteristics from a variety of crystalline and thermoplastic polymers, including polyolefins, condensation and oxidation polymers, copolymers, and blends (Vitzthum and Davis, 1984; Caneba and Soong, 1985) Commercially . STIMULI- RESPONSIVE MICROFILTRATION MEMBRANES AND SURFACES FROM COPOLYMERS WITH GRAFTED FUNCTIONAL SIDE CHAINS YING LEI . NATIONAL UNIVERSITY OF SINGAPORE 2004 STIMULI- RESPONSIVE MICROFILTRATION MEMBRANES AND SURFACES FROM COPOLYMERS WITH GRAFTED FUNCTIONAL SIDE CHAINS YING LEI (M.Eng., BUCT). Polymer- Grafted Poly(vinylidene fluoride) Copolymers and pH- Sensitive Microfiltration Membranes 44 3.1 Synthesis and Characterization of Poly(acrylic acid) -grafted Poly(vinylidene fluoride) Copolymers

Ngày đăng: 17/09/2015, 17:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN