Structures, properties, and applications of soluble polyazulene and azulene containing copolymers 4

128 277 0
Structures, properties, and applications of soluble polyazulene and azulene containing copolymers 4

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Chapter Novel polyradicals stabilized by the vertical and horizontal delocalization of the electrons Introduction Organic radicals are usually known as unstable, transient intermediates in organic reactions. However, some organic radicals, such as radical crystals of galvinoxyl and stericly hindered nitroxyl, are stable enough to remain unreact for several months at room temperature.1 In the past decade, stable organic radicals, based on crystals of small radicals (e.g., nitroxides) or charge transfer salts, have been prepared.2-4 Yet, despite extensive research, the experimental structures of only four types of stable organic radicals have been reported: (1) triarylmethyl radical, R1; (2) a per-pyridinium substituted allyl radical, R2; (3) cyclopentadienyl radical, R3; and (4) dodecamethylcarba-closo-dodecaboranyl radical (CB11-Me12•). From analysis of these stable radical structures, we can conclude that all of these radicals are strongly stabilized thermodynamically by effective delocalization of the unpaired electron, and kinetically by the bulky substituents.5,6 P+ X C +P P+ P+ P+ P+ = 4-Me2N-pyridine R1 R2 R3 Another strategy for preparing stable radicals is to use polymeric building blocks to construct a molecular based radical; polymers bearing a number of free radical groups are called polyradicals.7 In the past decade, there has been a very strong interest in the 220 synthesis and properties of conjugated polyradicals, based on the hope that such systems can eventually be utilized as components of designable magnetic materials. Numerous πconjugated polymer substitutes with pendant radicals have been synthesized and characterized.8-11 For example, Rajca et al. have created an elegant body of work on backbone-conjugated and dendritic polyradicals, based on triarylmethyl radicals.12,13 Dougherty and colleagues have also worked on the synthesis and characterization of doped plaronic conjugated materials with ferromagnetic (FM) and high spin-coupling.14,15 Various researchers have synthesized conjugated polymers employing pendant polynitroxide, polynitronylnitroxide, and polyphenoxyl types of spin-bearing units.16-18 However, most of the polyradicals are designed with the radical spin sites as pendant groups. It is often difficult in finding a suitable radical center that can be conjugated and linked to the polymer backbone. In Chapter 3, when we studied the electronic properties of our copolymers, we found that they formed highly stable cation radicals, either by iodine doping or TFA protonation. In the solid state, a protonated copolymer film showed no significant change in the EPR signal, even after weeks. Furthermore, the stability was also investigated in detail using the nitrogen and oxygen permeation test. The high stability was attributed to the stability of the azulenium ion and the delocalization of the electrons along the conjugated polymer backbone. These results tell us that azulene is possibly a suitable radical center that can be linked into the conjugated polymers to form new polyradical systems. This is because azulene displays many of the criteria essential for the formation of a stable cation radical. For one, it has an asymmetric charge distribution. It has a tendency to stabilize cations, as well as anions, due to its remarkable polarizability.19 Secondly, azulene and their 221 alkylated derivatives are quite unique in that the ongoing disruption of aromaticity from the neutral to the charged state is counterbalanced by the gain in resonance energy upon formation of azulenylium carbocation, a 6π-electron aromatic tropylium analogue (Figure 7-1).20 Thus, azulene appears to be an extremely novel and versatile system with regard to radical centers. Figure 7-1. Resonance forms of azulenium carbocation. When the azulene was inserted into the polymer backbone via 1,3-position, and after oxidation or protonation, the azulenium cation formed at the seven-membered ring and the radicals were formed on the five-membered ring that is linked to the conjugated polymer backbone. Thus the un-paired electron can be mediated in a vertical by the aromatic tropylium cation; what is more, the un-paired electrons can also be delocalized along the conjugated polymer backbone. This concept is illustrated clearly in Scheme 71. Conjugated Units Radical Center Radicals Direction of Delocalization of Electrons Scheme 7-1. Illustration of the design of the stable polyradicals. Based on this analysis, we designed a conjugated polymer system containing azulene in the polymer backbone, and used a 1,3-conjugation (Figure 7-2) to demonstrate the 222 concept. The aims of the present study were to prepare a highly stable polyradical system and study their interesting properties. R R R R R Ox R R [H+] R R R R R R = C8H17; OC8H17 Figure 7-2. The design of the high stable polyradical system based on the conjugated copolymers containing azulene moiety. Results and Discussion Monomer synthesis and characterization of the cation radical To understand better of the formation of the cation radicals, the model compound, 1,3diphenylazulene, was first prepared. 1,3-Diphenyl-azulene was synthesized following the general Grignard reaction (Scheme 7-1). One equiv of 1,3-dibromoazulene was reacted with 2.5 equiv. of Grignard reagent of bromobenzene in anhydrous ether, yielding the green oil product, which solidified after long-term storage. Br i MgBr Br ii/iii Br Scheme 7-1. The synthesis of 1,3-diphenyl-azulene. 223 The monomer 1,3-diphenylazulene was then characterized by NMR and FT-IR, then the formation of the azulenium cation radical was confirmed by respective HNMR and EPR spectrum. (a) (b) Figure 7-3. HNMR spectrum of 1,3-diphenyl-azulene (a) before and (b) after protonation with trifluoroacetic acid. Figure 7-3 is the HNMR spectra of 1,3-diphenyl-azulene before and after the addition of deuterated TFA. Before the addition of TFA, peaks at 8.58 (d), 8.16 (s), and 7.17 (t) were attributed to the protons, H4,8, H2, and H5,7 on the azulene ring. The H6 peak of azulene was overlapped by multiple peaks of the benzene ring. The pattern of these peaks indicated the formation as expected symmetrically structured compound. After addition of TFA, an important feature noted was the formation of new peaks in the low field. As shown in Figure 7-3b, two new peaks appeared at 9.08 ppm and 8.92 ppm, which were attributed to the protons 4,8 and 5,7 on the seven-membered ring of the azulenium 224 cation.22,23 We also found that the compound was partially protonated, as can be seen from the peaks at 8.7 ppm and 7.2 ppm that were attributed to the H4,8 and H5,7 of the neutral azulene. From from the integration, about 30% protonation was found. This conclusion was confirmed by further EPR and UV-vis studies. Additionally, the HNMR spectrum of the protnated 1,3-diphenyl-azulene also suggests that the protonation mainly occurred on the azulene ring, as there was little change in the peaks belonging to the benzene ring (Figure 7-3b). The UV-vis spectra of 1,3-diphenyl-azulene showed an maximum absorption wavelength (λmax) of 387 nm (in chloroform), suggesting a developed π-conjugation between the azulene and benzene rings. Upon addition of TFA to the solution, two new peaks appear around 466 nm and 353 nm suggesting the formation of the azulenium cations.24 On further protonation, the new bands had a gradual increase, accompanied with a decrement of the bands at 300 nm. The color of 1,3-diphenyl-azulene solution changed from yellowish-green to brown. Comparing the absorption intensity changes of the new peaks with the absorption band at 300 nm, we can conclude that the compound is partially protonated. This is in agreement with what we observed in the HNMR study. TFA concentration 40% 30% 20% 10% 5% 1% Absorption 400 600 Wavelength (nm) (a) 225 Time mins 10 mins 30 mins days Absorption days 2mins 400 600 800 Wavelength (nm) (b) Figure 7-4. Continuous change in UV-vis spectrum of 1,3-diphenylazulene (a), with different TFA concentration; (b) in 10% TFA concentration with different time. Figure 7-4a also displays that the protonation can be saturated with 20% TFA solution. This result may suggest that 1,3-diphenyl-azulene is easily protonated by TFA, even at low TFA concentrations. At higher TFA concentrations, there is little change of the spectrum. However, when we follow the UV-vis spectrum change of 1,3-diphenylazulene in 10% TFA concentration at different storage times, we found a kinetic behavior with the protonation process. With an increase in storage time of 10% TFA/1,3-diphenylazulene solution, an increasing amount of 1,3-diphenyl-azulene was protonated. However, the spectrum changed faster in the first 30 mins, whereas the protonation rate slowedafter 30 mins. It is also interesting to note that after days of storage at room temperature, there is no other change of the spectrum except in the increase of intensity of the longest wavelength absorption. This result indicates that the azulenium cation radical is very stable. 226 The formation of the azulenium cation radical was further confirmed by EPR experiments. A solution of 1,3-diphenyl-azulene in 10% TFA solution (in chloroform) reveals a symmetrical singlet absorption with a g factor (2.0020) near to that of free electrons, having a line width of 3.2 G. The EPR signal intensity change of the compound in 10% TFA solution with time is similar to that which we observed in the UV-vis spectra study. The stability of the cation radical was measured by testing the EPR absorption intensity change after leaving the 1,3-diphenyl-azulene solution in 10% TFA, at atmosphere for days. The EPR spectrum showed an increase in the intensity of the EPR signal, without obvious g value change. These results are in good agreement with the UV-vis spectra study. Polymers synthesis and characterization The strategy for synthesis the desired polymers is outlined in Scheme 7-2. 1,4-Dibromo2,5-di-n-octylbenzene and 1,4-dibromo-2,5-n-octyloxybenzene were used as starting materials and synthesized according to a reference procedure.25 Here, 1,4-dibromo-2,5di-n-octylbenzene and 1,4-dibromo-2,5-n-octyloxybenzene were reacted with excess nbutylthium at a low temperature, subsequently quenched with trimethyl borate, and then hydrolyzed with hydrochloric acid to produce 2,5-dioctyloxybenzene-1,4-bis(boronic acid), or 2,5-dioctylbenzene-1,4-bis(boronic acid).26 The purity of the di-acid was checked by HNMR spectroscopy and CNMR spectroscopy. R R Br Br R i ii (HO)2B B(OH)2 R R iii Br Br iv n R PAzBzC8 R = C8H17 PAzBzOC8 R = OC8H17 Scheme 7-2. The synthesis of PAzBzC8 and PAzBzOC8 by Suzuki coupling. 227 Synthesis of the compolymers (Az-Bz) was carried out by a Suzuki coupling reaction, with Pd(0) catalysis.27-29 The polycondensation of equimolar quantities of the diboronic acid with 1,3-dibromoazulene was performed in a biphasic medium (toluene/aqueous sodium carbonate) solution at 800C, with catalytic amounts of tetrakis- (triphenylphosphine)palladium added. The polymers were precipitated by pouring into the organic solution into methanol. Purification was carried out by dissolveing the polymer in chloroform and re-precipitating in methanol. GPC analysis showed a number-average molecular weight of 6,900 and 8,100 for PAzBzC8 and PAzBzOC8 respectively. These corresponded to a chain lengths of about 32-34 aromatic rings, which is in agreement with published degrees of polymerization when using diboronic acid in the Suzuki polycondensation.30 The low molecular weight may be due to the impurities within the diboronic acids that easily condense spontaneously to boroxines to varying degrees.26 Figure 7-5. 1HNMR spectrum of polymer PAzBzOC8. These polymers were characterized by FT-IR, NMR, and elemental analyses. A representative 1HNMR spectrum of the polymer PAzBzOC8 is depicted in Figure 7-5. The chemical shifts of the azulene protons were manifested at δ 8.52, 8.35, 8.10, 7.62 228 ppm which are associated, respectively, with the protons of H4,8, H2, and H6 on the azulene. Phenyl protons appeared at δ 7.29 and 7.18 ppm. The remaining resonance at δ 3.91 ppm and 0.88-1.60 ppm corresponded to the n-octyloxy pendant chains. Due to the presence of both the head-to-head (HH) and head-to-tail (HT) units, the resonance peaks depicted both broad and multisignal response. Similar behavior has been reported in other copolymers systems.31 The FT-IR spectra of the polymers depicted strong C-H stretching (2920 and 2850 cm-1) of the alkyl, or alkoxyl, side group with weak stretching of azulene and benzene at 3018 cm-1. Peaks at 1570, 1200, and 736 cm-1 also confirmed the presence of the azulene moiety and benzene ring in our copolymers. Polymer PAzBzOC8, doped with iodine and protonared with TFA, is also illustrated in Figure 7-6. The increase in absorption in the region of 1400-700 cm-1 indicated the formation of cation radicals. Relative Intensity (a) (b) (c) 4000 3000 2000 1000 -1 Wavenumber (cm ) Figure 7-6. FT-IR spectrum of (a) neutral PAzBzOC8, (b), iodine doped PAzBzOC8, and (c), TFA protonated PAzBzOC8. Thermal properties. 229 N(4) 3179(5) 972(2) 3488(1) 68(1) C(21) 3503(4) -361(1) 1314(1) 33(1) C(22) 3441(4) -600(2) 1863(1) 35(1) C(23) 3447(4) -21(2) 2243(1) 37(1) C(24) 3545(4) 864(2) 2122(1) 36(1) C(25) 3663(4) 1103(2) 1578(1) 37(1) C(26) 3638(4) 516(2) 1193(1) 36(1) C(27) 3444(4) -972(1) 926(1) 35(1) C(28) 3417(4) -780(2) 374(1) 43(1) C(29) 3350(4) -1848(2) 1060(1) 41(1) C(30) 3509(4) 1451(2) 2525(1) 43(1) C(31) 3574(5) 2340(2) 2426(1) 49(1) C(32) 3339(5) 1199(2) 3065(1) 47(1) ________________________________________________________________________________ 332 Table 8. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 1c. ________________________________________________________________________________ x y z U(eq) ________________________________________________________________________________ Ru(1) 6694(1) 2504(1) 8855(1) 34(1) Ru(2) 5717(1) 866(1) 7908(1) 43(1) Ru(3) 6576(1) 2454(1) 7577(1) 41(1) Ru(4) 3967(1) 2114(1) 7986(1) 48(1) S(1) 6784(4) 326(2) 9519(2) 65(1) S(2) 9271(4) 4710(2) 8696(2) 69(1) C(1) 8426(10) 1770(6) 9250(4) 42(2) C(2) 8895(10) 2687(6) 9461(4) 43(2) C(3) 9145(10) 3068(6) 8972(4) 39(2) C(4) 8812(9) 2393(6) 8427(4) 37(2) C(5) 8357(9) 1566(6) 8596(4) 35(2) C(6) 8047(10) 673(6) 8222(5) 41(2) C(7) 7743(11) 465(6) 7603(4) 44(2) C(8) 7565(11) 1093(7) 7233(4) 47(2) C(9) 8537(11) 1893(7) 7295(5) 45(2) C(10) 9085(10) 2516(6) 7840(5) 41(2) C(11) 8279(11) 1164(6) 9635(4) 43(2) C(12) 9272(12) 1191(7) 10130(5) 53(3) C(13) 8735(18) 499(9) 10413(6) 72(4) C(14) 7464(18) 8(8) 10148(6) 71(4) C(15) 9929(11) 3974(6) 9065(5) 49(3) C(16) 11295(12) 4335(7) 9419(5) 55(3) C(17) 11770(15) 5194(8) 9401(6) 71(4) C(18) 10799(17) 5483(7) 9035(6) 72(4) C(19) 10665(16) 1783(9) 10348(6) 82(4) C(20) 12190(14) 3859(9) 9773(7) 85(4) C(21) 5149(13) 2107(7) 9239(6) 60(3) O(21) 4338(9) 1902(6) 9542(4) 70(2) C(22) 6004(11) 3570(7) 8980(5) 50(3) O(22) 5646(9) 4245(5) 9099(4) 73(2) C(23) 4595(15) 177(9) 8313(7) 75(4) O(23) 3803(11) -234(7) 8520(5) 107(4) C(24) 4470(15) 238(8) 7232(6) 74(4) 333 O(24) 3734(12) -174(7) 6796(6) 121(4) C(25) 5719(13) 2325(8) 6799(5) 63(3) O(25) 5212(12) 2250(7) 6307(5) 99(3) C(26) 6409(12) 3644(7) 7680(5) 52(3) O(26) 6207(11) 4334(6) 7721(4) 83(3) C(27) 2440(12) 1568(10) 8348(7) 77(4) O(27) 1553(11) 1238(8) 8562(6) 123(5) C(28) 2889(15) 1723(8) 7205(7) 73(4) O(28) 2155(13) 1472(8) 6751(5) 115(4) C(29) 3199(12) 3182(9) 8065(6) 68(3) O(29) 2666(10) 3788(6) 8075(5) 94(3) 334 Table 9. Selected bond lengths [Å] and angles [°] for 1c. Ru(1)-C(22) 1.856(10) C(2)-Ru(1)-C(4) 61.4(3) Ru(1)-C(21) 1.871(12) C(3)-Ru(1)-C(4) 36.6(3) Ru(1)-C(2) 2.244(10) C(22)-Ru(1)-C(1) 143.0(4) Ru(1)-C(3) 2.259(9) C(21)-Ru(1)-C(1) 95.8(4) Ru(1)-C(4) 2.287(8) C(2)-Ru(1)-C(1) 36.3(3) Ru(1)-C(1) 2.298(9) C(3)-Ru(1)-C(1) 61.5(3) Ru(1)-C(5) 2.300(8) C(4)-Ru(1)-C(1) 62.2(3) Ru(1)-Ru(4) 2.8964(11) C(22)-Ru(1)-C(5) 155.3(4) Ru(1)-Ru(3) 2.9163(11) C(21)-Ru(1)-C(5) 116.8(4) Ru(1)-Ru(2) 2.9445(11) C(2)-Ru(1)-C(5) 60.9(3) Ru(2)-C(24) 1.809(14) C(3)-Ru(1)-C(5) 61.4(3) Ru(2)-C(23) 1.877(13) C(4)-Ru(1)-C(5) 37.5(3) Ru(2)-C(7) 2.179(9) C(1)-Ru(1)-C(5) 37.0(3) Ru(2)-C(6) 2.243(9) C(22)-Ru(1)-Ru(4) 77.4(3) Ru(2)-C(8) 2.478(10) C(21)-Ru(1)-Ru(4) 73.1(4) Ru(2)-Ru(4) 2.6906(11) C(2)-Ru(1)-Ru(4) 173.7(2) Ru(2)-Ru(3) 2.8369(11) C(3)-Ru(1)-Ru(4) 141.4(2) Ru(3)-C(25) 1.817(12) C(4)-Ru(1)-Ru(4) 113.8(2) Ru(3)-C(26) 1.878(11) C(1)-Ru(1)-Ru(4) 138.8(2) Ru(3)-C(9) 2.205(9) C(5)-Ru(1)-Ru(4) 112.8(2) Ru(3)-C(10) 2.279(9) C(22)-Ru(1)-Ru(3) 90.0(4) Ru(3)-C(8) 2.454(10) C(21)-Ru(1)-Ru(3) 127.6(4) Ru(3)-Ru(4) 2.7030(11) C(2)-Ru(1)-Ru(3) 120.8(3) Ru(4)-C(28) 1.867(16) C(3)-Ru(1)-Ru(3) 86.9(2) Ru(4)-C(29) 1.898(13) C(4)-Ru(1)-Ru(3) 60.4(2) Ru(4)-C(27) 1.923(14) C(1)-Ru(1)-Ru(3) 115.8(2) S(1)-C(14) 1.711(13) C(5)-Ru(1)-Ru(3) 79.2(2) S(1)-C(11) 1.727(11) Ru(4)-Ru(1)-Ru(3) 55.42(3) S(2)-C(18) 1.707(13) C(22)-Ru(1)-Ru(2) 131.5(3) S(2)-C(15) 1.717(11) C(21)-Ru(1)-Ru(2) 86.4(4) C(1)-C(2) 1.416(13) C(2)-Ru(1)-Ru(2) 119.2(2) C(1)-C(11) 1.454(13) C(3)-Ru(1)-Ru(2) 115.0(2) C(1)-C(5) 1.458(13) C(4)-Ru(1)-Ru(2) 79.1(2) C(2)-C(3) 1.421(13) Ru(3)-Ru(1)-Ru(2) 57.90(3) C(3)-C(4) 1.426(13) C(24)-Ru(2)-C(23) 85.4(6) C(3)-C(15) 1.478(13) C(24)-Ru(2)-C(7) 95.2(5) C(4)-C(10) 1.455(13) C(23)-Ru(2)-C(7) 119.6(5) 335 C(4)-C(5) 1.475(12) C(24)-Ru(2)-C(6) 127.0(5) C(5)-C(6) 1.455(12) C(23)-Ru(2)-C(6) 101.2(5) C(6)-C(7) 1.372(14) C(7)-Ru(2)-C(6) 36.1(4) C(7)-C(8) 1.462(14) C(24)-Ru(2)-C(8) 86.3(5) C(8)-C(9) 1.420(14) C(23)-Ru(2)-C(8) 152.8(5) C(9)-C(10) 1.400(14) C(7)-Ru(2)-C(8) 35.9(3) C(11)-C(12) 1.353(15) C(6)-Ru(2)-C(8) 64.2(3) C(12)-C(19) 1.440(17) C(24)-Ru(2)-Ru(4) 88.8(4) C(12)-C(13) 1.460(16) C(23)-Ru(2)-Ru(4) 95.6(4) C(13)-C(14) 1.304(19) C(7)-Ru(2)-Ru(4) 144.8(3) C(15)-C(16) 1.378(15) C(6)-Ru(2)-Ru(4) 141.2(2) C(16)-C(17) 1.387(16) C(8)-Ru(2)-Ru(4) 110.1(2) C(16)-C(20) 1.474(18) C(24)-Ru(2)-Ru(3) 101.1(4) C(17)-C(18) 1.341(18) C(23)-Ru(2)-Ru(3) 152.7(4) C(21)-O(21) 1.144(12) C(7)-Ru(2)-Ru(3) 86.5(3) C(22)-O(22) 1.146(11) C(6)-Ru(2)-Ru(3) 95.9(2) C(23)-O(23) 1.131(14) C(8)-Ru(2)-Ru(3) 54.5(2) C(24)-O(24) 1.144(15) Ru(4)-Ru(2)-Ru(3) 58.48(3) C(25)-O(25) 1.144(13) C(24)-Ru(2)-Ru(1) 150.0(5) C(26)-O(26) 1.120(12) C(23)-Ru(2)-Ru(1) 101.3(5) C(27)-O(27) 1.131(15) C(7)-Ru(2)-Ru(1) 106.2(3) C(28)-O(28) 1.126(15) C(6)-Ru(2)-Ru(1) 80.7(2) C(29)-O(29) 1.130(14) C(8)-Ru(2)-Ru(1) 98.8(2) C(14)-S(1)-C(11) 92.4(6) Ru(4)-Ru(2)-Ru(1) 61.66(3) C(18)-S(2)-C(15) 91.0(6) Ru(3)-Ru(2)-Ru(1) 60.55(3) C(2)-C(1)-C(11) 124.7(9) C(9)-C(10)-Ru(3) 68.9(5) C(2)-C(1)-C(5) 106.5(8) C(4)-C(10)-Ru(3) 88.6(5) C(11)-C(1)-C(5) 128.2(8) C(12)-C(11)-C(1) 124.7(10) C(2)-C(1)-Ru(1) 69.8(5) C(12)-C(11)-S(1) 111.8(8) C(11)-C(1)-Ru(1) 130.3(7) C(1)-C(11)-S(1) 123.5(8) C(5)-C(1)-Ru(1) 71.6(5) C(11)-C(12)-C(19) 126.7(11) C(1)-C(2)-C(3) 110.4(9) C(11)-C(12)-C(13) 109.4(11) C(1)-C(2)-Ru(1) 73.9(5) C(19)-C(12)-C(13) 124.0(12) C(3)-C(2)-Ru(1) 72.2(6) C(14)-C(13)-C(12) 115.9(12) C(2)-C(3)-C(4) 108.6(8) C(13)-C(14)-S(1) 110.5(10) C(2)-C(3)-C(15) 122.4(9) C(16)-C(15)-C(3) 126.4(10) C(4)-C(3)-C(15) 127.8(9) C(16)-C(15)-S(2) 110.5(8) C(2)-C(3)-Ru(1) 71.0(5) C(3)-C(15)-S(2) 123.0(8) C(4)-C(3)-Ru(1) 72.8(5) C(15)-C(16)-C(17) 113.2(12) 336 C(15)-C(3)-Ru(1) 132.0(7) C(15)-C(16)-C(20) 124.0(10) C(3)-C(4)-C(10) 124.4(8) C(17)-C(16)-C(20) 122.8(12) C(3)-C(4)-C(5) 106.7(8) C(18)-C(17)-C(16) 112.5(12) C(10)-C(4)-C(5) 128.4(8) C(17)-C(18)-S(2) 112.9(9) C(3)-C(4)-Ru(1) 70.6(5) C(8)-C(7)-Ru(2) 83.3(5) C(10)-C(4)-Ru(1) 128.8(6) C(9)-C(8)-C(7) 126.1(9) C(5)-C(4)-Ru(1) 71.7(5) C(9)-C(8)-Ru(3) 62.9(5) C(6)-C(5)-C(1) 122.7(8) C(7)-C(8)-Ru(3) 122.8(6) C(6)-C(5)-C(4) 129.2(8) C(9)-C(8)-Ru(2) 124.4(7) C(1)-C(5)-C(4) 107.8(8) C(7)-C(8)-Ru(2) 60.9(5) C(6)-C(5)-Ru(1) 128.5(6) Ru(3)-C(8)-Ru(2) 70.2(2) C(1)-C(5)-Ru(1) 71.4(5) C(10)-C(9)-C(8) 125.1(9) C(4)-C(5)-Ru(1) 70.8(5) C(10)-C(9)-Ru(3) 74.7(5) C(7)-C(6)-C(5) 123.8(9) C(8)-C(9)-Ru(3) 82.1(6) C(7)-C(6)-Ru(2) 69.4(5) C(9)-C(10)-C(4) 123.8(8) C(5)-C(6)-Ru(2) 89.7(5) C(6)-C(7)-Ru(2) 74.5(5) C(6)-C(7)-C(8) 125.3(9) 337 Table 10. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 2c. ________________________________________________________________________________ x y z U(eq) ________________________________________________________________________________ Ru(1) 1507(1) 3597(1) 612(1) 21(1) Ru(2) 1113(1) 4691(1) 1655(1) 23(1) Ru(3) 1932(1) 2990(1) 1830(1) 27(1) Ru(4) 818(1) 2319(1) 1379(1) 25(1) C(1) 1037(2) 5034(4) 55(2) 25(1) C(2) 1118(2) 4092(4) -328(2) 29(1) C(3) 792(2) 3134(4) -161(2) 28(1) C(4) 493(2) 3454(4) 351(2) 28(1) C(5) 651(2) 4661(4) 489(2) 26(1) C(6) 425(2) 5422(4) 921(2) 28(1) C(7) 160(2) 5042(5) 1412(2) 31(1) C(8) 123(2) 3838(5) 1580(2) 32(1) C(9) -102(2) 2911(5) 1179(2) 34(1) 85(2) 2723(5) 624(2) 32(1) S(1) 1292(1) 7324(1) 451(1) 42(1) C(11) 1289(2) 6173(4) -34(2) 29(1) C(12) 1566(3) 6466(5) -543(2) 36(1) C(13) 1766(3) 7635(5) -495(3) 48(2) C(14) 1651(3) 8179(5) -2(3) 44(1) S(2) 1306(1) 1593(3) -841(2) 83(1) C(15) 739(3) 2021(6) -475(4) 18(2) C(16) 184(4) 1265(8) -615(4) 33(2) C(17) 403(4) 319(8) -979(4) 42(2) C(18) 951(4) 407(8) -1115(4) 43(2) S(2A) 395(7) 947(8) -426(4) 135(6) C(15A) 771(9) 2138(17) -623(9) 46(8) C(16A) 1063(7) 2061(12) -1175(6) 21 C(17A) 927(8) 812(14) -1317(9) 38(4) C(18A) 625(11) 157(17) -976(8) 45(5) C(10) C(19) 2209(2) 4452(5) 797(3) 39(1) O(19) 2618(2) 5031(4) 839(2) 61(1) C(20) 1977(3) 2265(5) 568(3) 36(1) O(20) 2254(2) 1492(4) 464(2) 49(1) 338 C(21) 1671(3) 5888(5) 1730(2) 39(1) O(21) 2018(2) 6592(5) 1812(2) 66(1) C(22) 1095(2) 4908(6) 2467(2) 39(1) O(22) 1070(2) 5064(5) 2970(2) 66(2) C(23) 2641(3) 3849(6) 2059(3) 51(2) O(23) 3060(2) 4359(6) 2219(3) 90(2) C(24) 1811(3) 2803(7) 2624(3) 49(2) O(24) 1741(3) 2673(7) 3114(2) 98(2) C(25) 2346(3) 1560(6) 1798(3) 48(2) O(25) 2587(3) 712(5) 1797(3) 86(2) C(26) 736(3) 1623(5) 2106(3) 43(1) O(26) 675(3) 1186(5) 2553(2) 73(2) C(27) 1044(3) 879(5) 1120(3) 45(1) O(27) 1183(3) -8(4) 970(3) 77(2) 8835(15) 2368(17) 168(13) C(1S) 105(16) Cl(1) -364(3) 7556(6) 2667(3) 123(2) Cl(2) 604(3) 8017(6) 2002(3) 108(2) 339 Table 11. Selected bond lengths [Å] and angles [°] for 2c. Ru(1)-C(19) 1.874(6) C(19)-Ru(1)-C(20) 88.6(2) Ru(1)-C(20) 1.887(6) C(19)-Ru(1)-C(2) 106.8(2) Ru(1)-C(2) 2.243(5) C(20)-Ru(1)-C(2) 108.4(2) Ru(1)-C(1) 2.260(5) C(19)-Ru(1)-C(1) 93.2(2) Ru(1)-C(3) 2.272(5) C(20)-Ru(1)-C(1) 143.4(2) Ru(1)-C(5) 2.283(5) C(2)-Ru(1)-C(1) Ru(1)-C(4) 2.299(5) C(19)-Ru(1)-C(3) 142.4(2) Ru(1)-Ru(3) 2.8526(5) C(20)-Ru(1)-C(3) 96.7(2) Ru(1)-Ru(4) 2.8739(5) C(2)-Ru(1)-C(3) 36.44(18) Ru(1)-Ru(2) 2.8932(5) C(1)-Ru(1)-C(3) 61.24(18) Ru(2)-C(22) 1.837(5) C(19)-Ru(1)-C(5) 115.0(2) Ru(2)-C(21) 1.870(6) C(20)-Ru(1)-C(5) 155.8(2) Ru(2)-C(7) 2.193(5) C(2)-Ru(1)-C(5) 61.72(17) Ru(2)-C(6) 2.273(5) C(1)-Ru(1)-C(5) 37.34(17) Ru(2)-C(8) 2.437(5) C(3)-Ru(1)-C(5) 61.78(17) Ru(2)-Ru(3) 2.7002(6) C(19)-Ru(1)-C(4) 152.2(2) Ru(2)-Ru(4) 2.8793(6) C(20)-Ru(1)-C(4) 118.6(2) Ru(3)-C(24) 1.842(6) C(2)-Ru(1)-C(4) 61.60(18) Ru(3)-C(23) 1.902(7) C(1)-Ru(1)-C(4) 62.07(18) Ru(3)-C(25) 1.912(6) C(3)-Ru(1)-C(4) 37.01(17) Ru(3)-Ru(4) 2.7047(6) C(5)-Ru(1)-C(4) 37.35(17) Ru(4)-C(26) 1.846(6) C(19)-Ru(1)-Ru(3) 75.52(19) Ru(4)-C(27) 1.860(6) C(20)-Ru(1)-Ru(3) 74.05(17) Ru(4)-C(9) 2.185(5) C(2)-Ru(1)-Ru(3) 176.55(13) Ru(4)-C(10) 2.255(5) C(1)-Ru(1)-Ru(3) 141.52(12) Ru(4)-C(8) 2.443(5) C(3)-Ru(1)-Ru(3) 141.68(13) C(1)-C(2) 1.414(7) C(5)-Ru(1)-Ru(3) 115.05(12) C(1)-C(5) 1.455(7) C(4)-Ru(1)-Ru(3) 115.18(12) C(1)-C(11) 1.463(7) C(19)-Ru(1)-Ru(4) 130.76(19) C(2)-C(3) 1.412(7) C(20)-Ru(1)-Ru(4) 87.86(16) C(3)-C(4) 1.451(7) C(2)-Ru(1)-Ru(4) 120.86(13) C(3)-C(15) 1.466(9) C(1)-Ru(1)-Ru(4) 117.12(13) C(3)-C(15A) 1.55(2) C(3)-Ru(1)-Ru(4) 86.72(13) C(4)-C(10) 1.449(7) C(5)-Ru(1)-Ru(4) 80.35(12) C(4)-C(5) 1.467(7) C(4)-Ru(1)-Ru(4) 60.84(12) C(5)-C(6) 1.450(7) Ru(3)-Ru(1)-Ru(4) 56.368(14) 36.59(17) 340 C(6)-C(7) 1.388(7) C(19)-Ru(1)-Ru(2) 86.14(18) C(7)-C(8) 1.453(8) C(20)-Ru(1)-Ru(2) 129.54(17) C(8)-C(9) 1.449(8) C(2)-Ru(1)-Ru(2) 121.14(13) C(9)-C(10) 1.378(7) C(1)-Ru(1)-Ru(2) 87.02(12) S(1)-C(14) 1.698(6) C(3)-Ru(1)-Ru(2) 116.88(13) S(1)-C(11) 1.718(5) C(5)-Ru(1)-Ru(2) 60.94(12) C(11)-C(12) 1.411(7) C(4)-Ru(1)-Ru(2) 80.44(12) C(12)-C(13) 1.429(8) Ru(3)-Ru(1)-Ru(2) 56.056(13) C(13)-C(14) 1.326(9) Ru(4)-Ru(1)-Ru(2) 59.901(13) S(2)-C(18) 1.669(9) C(22)-Ru(2)-C(21) 85.0(2) S(2)-C(15) 1.684(8) C(22)-Ru(2)-C(7) 94.0(2) C(15)-C(16) 1.532(11) C(21)-Ru(2)-C(7) 121.0(2) C(16)-C(17) 1.490(12) C(22)-Ru(2)-C(6) 123.9(2) C(17)-C(18) 1.319(12) C(21)-Ru(2)-C(6) 100.3(2) C(19)-O(19) 1.138(7) C(7)-Ru(2)-C(6) 36.15(18) C(20)-O(20) 1.136(7) C(22)-Ru(2)-C(8) 89.0(2) C(21)-O(21) 1.132(7) C(21)-Ru(2)-C(8) 155.9(2) C(22)-O(22) 1.147(7) C(7)-Ru(2)-C(8) 36.09(19) C(23)-O(23) 1.135(8) C(6)-Ru(2)-C(8) 64.17(18) C(24)-O(24) 1.136(7) C(22)-Ru(2)-Ru(3) 93.5(2) C(25)-O(25) 1.126(8) C(21)-Ru(2)-Ru(3) 95.00(19) C(26)-O(26) 1.143(7) C(7)-Ru(2)-Ru(3) 143.71(14) C(27)-O(27) 1.141(7) C(6)-Ru(2)-Ru(3) 140.36(12) C(1S)-Cl(2) 1.757(10) C(8)-Ru(2)-Ru(3) 108.73(13) C(1S)-Cl(1) 1.99(2) C(22)-Ru(2)-Ru(4) 108.0(2) O(19)-C(19)-Ru(1) 171.3(6) C(21)-Ru(2)-Ru(4) 149.77(19) O(20)-C(20)-Ru(1) 171.1(5) C(7)-Ru(2)-Ru(4) 86.06(14) O(21)-C(21)-Ru(2) 175.6(5) C(6)-Ru(2)-Ru(4) 94.82(13) O(22)-C(22)-Ru(2) 178.2(6) C(8)-Ru(2)-Ru(4) 53.95(13) O(23)-C(23)-Ru(3) 177.2(7) Ru(3)-Ru(2)-Ru(4) 57.887(15) O(24)-C(24)-Ru(3) 179.0(7) C(22)-Ru(2)-Ru(1) O(25)-C(25)-Ru(3) 177.9(6) C(21)-Ru(2)-Ru(1) 97.00(18) O(26)-C(26)-Ru(4) 178.7(6) C(7)-Ru(2)-Ru(1) 106.19(14) O(27)-C(27)-Ru(4) 179.0(6) C(6)-Ru(2)-Ru(1) 80.65(12) C(9)-C(8)-Ru(2) 126.2(4) C(8)-Ru(2)-Ru(1) 98.31(12) C(7)-C(8)-Ru(2) 62.8(3) Ru(3)-Ru(2)-Ru(1) 61.211(13) C(9)-C(8)-Ru(4) 62.2(3) Ru(4)-Ru(2)-Ru(1) 59.717(13) C(7)-C(8)-Ru(4) 125.8(3) C(24)-Ru(3)-C(23) 91.7(3) C(24)-Ru(3)-C(25) 94.0(3) Ru(2)-C(8)-Ru(4) 72.31(14) 154.7(2) 341 C(10)-C(9)-C(8) 123.3(5) C(23)-Ru(3)-C(25) 93.6(3) C(10)-C(9)-Ru(4) 74.7(3) C(24)-Ru(3)-Ru(2) 92.3(2) C(8)-C(9)-Ru(4) 81.8(3) C(23)-Ru(3)-Ru(2) 101.3(2) C(9)-C(10)-C(4) 125.1(5) C(25)-Ru(3)-Ru(2) 163.7(2) C(9)-C(10)-Ru(4) 69.2(3) C(24)-Ru(3)-Ru(4) 94.4(2) C(4)-C(10)-Ru(4) 89.3(3) C(23)-Ru(3)-Ru(4) 164.6(2) C(14)-S(1)-C(11) 92.4(3) C(25)-Ru(3)-Ru(4) 100.1(2) C(12)-C(11)-C(1) 123.3(4) Ru(2)-Ru(3)-Ru(4) C(12)-C(11)-S(1) 110.8(4) C(24)-Ru(3)-Ru(1) 150.82(19) C(1)-C(11)-S(1) 125.9(4) C(23)-Ru(3)-Ru(1) 107.1(2) C(11)-C(12)-C(13) 109.8(5) C(25)-Ru(3)-Ru(1) 106.55(17) C(14)-C(13)-C(12) 114.8(5) Ru(2)-Ru(3)-Ru(1) 62.732(13) C(13)-C(14)-S(1) 112.2(5) Ru(4)-Ru(3)-Ru(1) 62.214(14) C(18)-S(2)-C(15) 93.4(4) C(26)-Ru(4)-C(27) 86.8(3) C(3)-C(15)-C(16) 128.0(6) C(26)-Ru(4)-C(9) 96.5(2) C(3)-C(15)-S(2) 118.1(5) C(27)-Ru(4)-C(9) 120.8(3) C(16)-C(15)-S(2) 112.9(6) C(26)-Ru(4)-C(10) 126.8(2) C(17)-C(16)-C(15) 102.1(7) C(27)-Ru(4)-C(10) 99.2(3) C(18)-C(17)-C(16) 117.3(8) C(9)-Ru(4)-C(10) 36.1(2) C(17)-C(18)-S(2) 113.7(7) C(26)-Ru(4)-C(8) 90.6(2) C(3)-C(2)-C(1) 109.6(4) C(27)-Ru(4)-C(8) 156.1(2) C(3)-C(2)-Ru(1) 72.9(3) C(9)-Ru(4)-C(8) 35.94(19) C(1)-C(2)-Ru(1) 72.4(3) C(10)-Ru(4)-C(8) 63.80(18) C(2)-C(3)-C(4) 108.7(4) C(26)-Ru(4)-Ru(3) 89.7(2) C(2)-C(3)-C(15) 125.5(5) C(27)-Ru(4)-Ru(3) 95.4(2) C(4)-C(3)-C(15) 125.8(5) C(9)-Ru(4)-Ru(3) 143.48(14) C(2)-C(3)-Ru(1) 70.7(3) C(10)-Ru(4)-Ru(3) 141.12(13) C(4)-C(3)-Ru(1) 72.5(3) C(8)-Ru(4)-Ru(3) 108.38(13) C(15)-C(3)-Ru(1) 125.2(4) C(26)-Ru(4)-Ru(1) 151.1(2) C(10)-C(4)-C(3) 124.9(5) C(27)-Ru(4)-Ru(1) 94.94(17) C(10)-C(4)-C(5) 128.4(5) C(9)-Ru(4)-Ru(1) 107.10(14) C(3)-C(4)-C(5) 106.5(4) C(10)-Ru(4)-Ru(1) 81.49(13) C(10)-C(4)-Ru(1) 127.4(3) C(8)-Ru(4)-Ru(1) 98.67(13) C(3)-C(4)-Ru(1) 70.5(3) Ru(3)-Ru(4)-Ru(1) 61.418(14) C(5)-C(4)-Ru(1) 70.8(3) C(26)-Ru(4)-Ru(2) 106.0(2) C(6)-C(5)-C(1) 123.9(4) C(27)-Ru(4)-Ru(2) 149.20(19) C(6)-C(5)-C(4) 128.6(5) C(9)-Ru(4)-Ru(2) 86.08(14) C(1)-C(5)-C(4) 107.1(4) C(10)-Ru(4)-Ru(2) 95.11(14) C(6)-C(5)-Ru(1) 128.1(3) C(8)-Ru(4)-Ru(2) 53.73(13) 64.378(15) 342 C(1)-C(5)-Ru(1) 70.5(3) Ru(3)-Ru(4)-Ru(2) 57.735(14) C(4)-C(5)-Ru(1) 71.9(3) Ru(1)-Ru(4)-Ru(2) 60.382(13) C(7)-C(6)-C(5) 124.0(5) C(2)-C(1)-C(5) 108.1(4) C(7)-C(6)-Ru(2) 68.8(3) C(2)-C(1)-C(11) 122.2(4) C(5)-C(6)-Ru(2) 89.1(3) C(5)-C(1)-C(11) 129.7(4) C(6)-C(7)-C(8) 123.8(5) C(2)-C(1)-Ru(1) 71.1(3) C(6)-C(7)-Ru(2) 75.0(3) C(5)-C(1)-Ru(1) 72.2(3) C(8)-C(7)-Ru(2) 81.1(3) C(11)-C(1)-Ru(1) 125.3(3) C(9)-C(8)-C(7) 125.5(5) 343 Table 12. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for M26A. _______________________________________________________________________________ x y z U(eq) ________________________________________________________________________________ O(1) 3773(3) 4425(2) 2008(2) 69(1) O(2) 1621(3) 4381(2) 1557(1) 59(1) O(3) 275(3) 9047(2) 1618(1) 58(1) O(4) -1442(3) 7914(2) 1522(1) 56(1) C(1) 2179(4) 5873(2) 1916(1) 38(1) C(2) 907(3) 6410(2) 1687(1) 36(1) C(3) 999(4) 7391(2) 1820(1) 38(1) C(4) 2286(4) 7484(2) 2155(1) 36(1) C(5) 3036(4) 6511(2) 2219(1) 36(1) C(6) 4309(4) 6256(2) 2537(2) 44(1) C(7) 5164(4) 6824(2) 2860(2) 46(1) C(8) 5003(4) 7815(2) 2965(2) 42(1) C(9) 3878(4) 8473(2) 2756(2) 48(1) C(10) 2694(4) 8327(2) 2404(2) 45(1) S(1) -185(5) 5994(4) 634(2) 88(1) C(11) -315(7) 6006(4) 1401(3) 36(2) C(12) -1767(12) 5590(8) 1665(5) 43(3) C(13) -2707(7) 5250(4) 1234(3) 52(2) C(14) -1914(7) 5446(4) 633(3) 44(2) S(2) 7654(1) 8910(1) 3012(1) 67(1) C(15) 6130(4) 8194(2) 3342(2) 48(1) C(16) 6180(5) 8057(3) 3955(2) 62(1) C(17) 7467(5) 8552(4) 4138(2) 74(1) C(18) 8334(5) 9034(3) 3688(2) 73(1) C(19) 2617(4) 4836(2) 1840(2) 41(1) C(20) 1959(5) 3358(2) 1461(2) 57(1) C(21) 775(6) 3033(3) 1094(2) 75(1) C(22) -53(4) 8205(2) 1644(2) 42(1) C(23) -2561(5) 8624(3) 1312(2) 65(1) C(24) -3766(6) 8110(3) 1058(3) 83(2) C(25) 4966(7) 7574(4) 4378(2) 88(2) C(26) 3476(7) 8326(4) 4605(2) 86(1) C(27) 2227(9) 7910(5) 5047(3) 112(2) 344 C(28) 901(9) 8645(6) 5244(3) 122(2) Table 13. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for M26B. ________________________________________________________________________________ x y z U(eq) ________________________________________________________________________________ S(2) 120(1) 2312(1) 62(1) 49(1) O(1) 1986(2) 5426(3) 5180(2) 82(1) O(2) 2224(2) 5635(3) 4191(2) 83(1) O(3) 1386(1) 1092(2) 5083(2) 69(1) O(4) 606(1) 959(2) 3918(2) 56(1) C(1) 1718(1) 4041(3) 4235(2) 42(1) C(2) 1612(1) 3243(3) 4690(2) 41(1) C(3) 1233(1) 2468(3) 4156(2) 40(1) C(4) 1101(1) 2777(3) 3364(2) 38(1) C(5) 739(2) 2242(3) 2663(2) 45(1) C(6) 599(2) 2472(3) 1877(2) 48(1) C(7) 786(2) 3306(3) 1530(2) 44(1) C(8) 1179(2) 4117(3) 1967(2) 50(1) C(9) 1452(2) 4319(3) 2774(2) 47(1) C(10) 1432(1) 3769(3) 3418(2) 41(1) C(11) 1872(1) 3218(3) 5567(2) 46(1) S(1) 1481(1) 3173(1) 6092(1) 90(1) C(12) 2513(1) 3293(3) 6093(2) 47(1) C(13) 2572(2) 3222(5) 6944(3) 79(2) C(14) 2032(2) 3188(4) 6964(3) 77(2) C(15) 545(2) 3346(3) 654(2) 47(1) C(16) 594(2) 4136(3) 174(2) 52(1) C(17) 303(2) 3930(3) -658(2) 47(1) C(18) 25(2) 2953(3) -816(2) 44(1) C(19) 336(2) 4697(4) -1266(2) 61(1) C(20) -331(5) 2462(7) -1587(5) 41(4) C(21) -221(8) 1390(9) -1697(6) 56(4) C(22) -536(10) 891(9) -2434(8) 82(5) C(23) -960(7) 1465(11) -3060(6) 82(5) C(24) -1070(6) 2538(11) -2950(7) 76(6) 345 C(25) -755(7) 3036(8) -2213(8) 45(3) C(20A) -346(5) 2332(14) -1587(6) 53(6) C(21A) -399(8) 1212(13) -1607(6) 59(4) C(22A) -763(10) 696(12) -2315(8) 74(5) C(23A) -1075(7) 1300(15) -3004(6) 80(5) C(24A) -1023(7) 2419(15) -2984(7) 57(5) C(25A) -658(8) 2935(14) -2275(8) 44(4) C(26) 2014(2) 5095(3) 4527(2) 54(1) C(29) 1033(2) 1443(3) 4360(2) 44(1) C(30) 1204(3) 112(4) 5359(3) 86(2) C(31) 1565(3) -14(6) 6204(4) 111(2) C(27) 2234(11) 6554(17) 5446(14) 63(5) C(28) 2328(18) 6440(40) 6320(17) 180(20) C(27) 2364(14) 6230(20) 5678(17) 106(7) C(28) 2080(17) 6990(20) 5870(30) 200(20) ________________________________________________________________________________ 346 Table 14. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for DPTA1. ________________________________________________________________________________ x y z U(eq) ________________________________________________________________________________ S(1) 260(1) 7333(1) 10088(1) 51(1) C(1) 11392(3) 7500 53(1) C(2) 507(2) 10844(2) 8385(2) 51(1) C(3) 589(1) 9591(2) 8629(1) 43(1) C(4) 240(1) 8571(2) 8033(1) 35(1) C(5) 347(1) 7319(2) 8323(1) 35(1) C(6) 6577(2) 7500 37(1) C(7) 737(1) 6827(2) 9299(1) 37(1) C(8) 1397(1) 5869(2) 9687(1) 38(1) C(9) 1505(2) 5569(2) 10626(1) 49(1) C(10) 947(2) 6276(2) 10931(1) 55(1) C(11) 1929(1) 5222(2) 9191(1) 38(1) C(12) 2410(2) 5883(2) 8725(1) 48(1) C(13) 2902(2) 5251(3) 8264(2) 58(1) C(14) 2927(2) 3974(3) 8263(2) 60(1) C(15) 2461(2) 3318(2) 8723(2) 59(1) C(16) 1971(2) 3937(2) 9188(1) 48(1) ________________________________________________________________________________ 347 [...]... Perspective view and atom labeling of the crystal structure of M26A and M26B 0 98 1.3 1 .4 0 6 S 1 .4 03 2 1.3 69 9 1 .40 16 1 ,4 S 0 1 .4 Ph CO2Et 1.3 9 1 1.37 1 .4 1 1 Me CO2Et (a) 250 1.3 47 5 1 .41 1 .48 4 38 1 1 .42 3 3 1.391 88 1 3 1 1.390 38 5 15 1 .4 1.375 1.3 8 53 1.3 1 .42 8 2 1.37 3 1 4 1 1 7 40 73 S 70 40 3 1 .46 5 1 8 09 S 35 1 .46 1 1 7 1 5 (b) Figure 8-7 Comparison of the bond distance in (a), M26B and (b), Monob... all the reported polyazulene were synthesized by linkage of the 1,3-position of azulene In the present work, the design and synthesis of the novel conjugated polymers containing azulene in the polymer backbone via coupling the 2,6-positions of the azulene will be described Effective conjugation of 1,3 -azulene based and 2,6 -azulene based copolymers will be compared To further understand the conjugation... interaction of the highest occupied molecular orbital of the donor and the lowest occupied molecular orbital of the 239 acceptor, and hence resulting in reduction of the band gap in these materials Following this strategy, a number of low-band gap materials have been synthesized.13, 14 Theoretical calculations have confirmed the band gap of polyarylenes was a strong function of molecular geometry.15 Often,... nearly vertical to the azulene ring The 248 torsion angle of the seven-membered ring of azulene and the other thiophene ring is about 85 .40 (S2-C15-C8-C9), indicating the second thiophene ring is placed vertical to the azulene ring This is due to the steric effect of ester group Compared the single crystal structure and UV-vis spectrum of the 1,3-coupling monomers (e.g Monob )and the 2,6coupling model... (4. 2 kcal/mol)36 compared to benzene ( 20.0 kcal/mol), thiophene (16.1 kcal/mol), and naphthalene (30.5 kcal/mol) This strongly suggests azulene can be potential candidate to be conjugated bridge Thus the electrons will easily delocalized along the dipolar direction (2,6-direction) of azulene because of the large dipole moment and large hyperpolarizability of azulene This is why a large red-shift of. .. model compounds of this series polymers were prepared and studied 240 R Ar R Ar Ar R (a) Ar R (b) Figure 8-1 The resonance structure and quinoid structure of azulene On the other hand, the properties of conjugated polymers such as polythiophenes (PTs) are intimately connected with the coplanarity and conjugation of the arylene ring systems In the straight-chain, unsubstituted oligothiophene and polythiophenes,... crystal structures of Monob, the bond length difference in the seven-membered ring is about 0.008 Å, while in 2,6coupling compound, the bond length difference was found to about 0. 042 Å in M26B And we found the longest baond on the seven-membered ring of azulene are the C6-C7 249 and C7-C8, the shorest bonds are the C5-C6 and C8-C9, which is characterization of the quinoid structure of azulene (a) (b)... appeared at 9 .4 ppm and 7.8 ppm with a large split constant of 11.2 Hz For compound M26B, these two peaks appeared at 9 .4 ppm and 8.0 ppm The large split constant and low field shift indicate large bond alternation of the azulene ring, and a tendency to form the quinoid structure The thiophene presence was confirmed by signals in the region of 7.5-7.0 ppm As expected, for compound M26A, one set AB and ABC... C31H26O4S2 fw 49 2.26 526. 64. 45 T (K) 223(2) 223(2) radiation wavelength, Å 0.71073 0.71073 crystal system Triclinic Monoclinic space group P-1 C2/c a, Å 8 .41 96 (4) (13) 25.8679(13) b, Å 13.8521(6) 12.3659(7) c, Å 22.0 644 (10) 18.5939(10) α, deg 88.3 140 (10) 90 β, deg 81.3370(10) 116.2680(10) γ, deg 86.7370(10) 90 vol, Å3 2539.3(2) 3169 .4( 2) 4 8 1.289 1.312 abs coeff, mm 0. 242 0.235 F(000) 1 040 2208 θ range (deg)... P26A P26B Scheme 8-3 Synthesis of the 2,6-conjugated type polymers Reagents and conditions: (i), LiCl/AsPh3, Pd(PPh3 )4, (ii), FeCl3/CHCl3 The structures of the our polymers were confirmed by NMR spectrum Figure 8-9 is the HNMR spectrum of aromatic resonance of P26A Because the no-symmetric structure of the monomers and different possibility of the arrange of the 2,6-coupled azulene in the resulting polymers . 1,3-diphenyl -azulene before and after the addition of deuterated TFA. Before the addition of TFA, peaks at 8.58 (d), 8.16 (s), and 7.17 (t) were attributed to the protons, H4,8, H2, and H5,7 on the azulene. with weak stretching of azulene and benzene at 3018 cm -1 . Peaks at 1570, 1200, and 736 cm -1 also confirmed the presence of the azulene moiety and benzene ring in our copolymers. Polymer. 7-2. The design of the high stable polyradical system based on the conjugated copolymers containing azulene moiety. Results and Discussion Monomer synthesis and characterization of the cation

Ngày đăng: 17/09/2015, 17:19

Từ khóa liên quan

Mục lục

  • Z

  • Z

    • Chapter 9

    • Experiment Section

    • General procedure for preparation of the monomers

    • A mixture of monomer (1.0mmol) and [Ru3(CO)12] (1.0mmol) were dissolved in freshly distilled xylene (20ml) and the mixture was heated reflex for 2 hours. Under argon protection, the mixture was cool to room temperature and concentrated, the resid

    • 200mg polymer was dissolved in 15ml xylene under argon protection. To this solution, added 200mg (or 400mg) of Ru3(CO)12 and heat to reflux for 6hrs. After cooling down to room temperature, the solution was poured in a hot methanol. The obtained powd

Tài liệu cùng người dùng

Tài liệu liên quan