Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 186 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
186
Dung lượng
2,37 MB
Nội dung
TRANSITION METAL AND RARE EARTH DOPED STOICHIOMETRIC LITHIUM NIOBATE CRYSTALS FOR HOLOGRAPHIC RECORDING SANJEEV SOLANKI NATIONAL UNIVERSITY OF SINGAPORE 2004 TRANSITION METAL AND RARE EARTH DOPED STOICHIOMETRIC LITHIUM NIOBATE CRYSTALS FOR HOLOGRAPHIC RECORDING SANJEEV SOLANKI (M.Tech) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2004 Acknowledgements First and foremost, I would like to thank my Ph.D. supervisors Prof. Chong Tow Chong (Department of Electrical and Computer Engineering, National university of Singapore & Data Storage Institute, Singapore) and Dr Xu XueWu (Data Storage Institute, Singapore), whose breadth of knowledge, outstanding communication skills and organizational ability assured this project’s clarity and completeness. In particular, thanks to Dr Xu Xuewu, who first introduced me to the holographic recording material growth methods and constant wake my interest in the fundamental research. In these years, their brilliance and wise counsel; their unique insights and perspectives and noteworthy talents and dedication, accompany me throughout the program. I would like to thank a number of people: Dr Liang Xinan for constant discussions and also for crystal sample etching and provide the single domain data for as grown crystals. My Yongsoon Tay for polishing crystal samples and Dr Xuwei on providing vertical temperature gradient data of growth furnace. Thanks are also due to Mr Yuan Shaoning for his contribution in developing various experimental setups. Finally, I would like to convey deep appreciation for my wife for her endless support for all these years. She has been a constant support and encouragement. I dedicate this thesis to her and all my teachers. i Summary We used TSSG (top seeded solution growth method) to grow undoped and doped SLN crystal samples at very low vertical temperature gradient. We thoroughly studied the effect of coherent laser beams on doped SLN crystals and finally performed high speed and high density holographic recording. Developed low vertical temperature gradient flux growth method to grow high quality undoped and doped stoichiometric lithium niobate crystals. Growth was performed mainly along two directions. One was the normal to the facet (012), (1-12), or (-102). The other one was perpendicular to both the normal to the facet and X axis Crystal samples of 300 mm in height and 18 mm in diameter were obtained by this method. Optical characterization method was used to confirm the stoichiometric composition of undoped as well as doped (Fe,Mn,Tb) SLN crystals. The shift in OH-1 vibration peak supported the stoichiometric composition of doped crystals. Furthermore the non existence of a Raman peak at 740 cm-1 confirmed the non- existence of antisite intrinsic defect even in highly doped SLN crystals. Beam fanning in doped SLN crystals was found to be deterministic compared to doped CLN crystals, which showed random beam fanning. The backward fanning in Z – cut crystals was relatively weak in Tb containing SLN crystals and the transmitted beam spot always preserved its shape. But for doped CLN crystal the transmitted beam spot was highly distorted. Further Z – cut SLN crystals were able to sustain very high incident power density of ~150kW/cm2. ii Plane wave hologram recording with increasing power densities was performed in doped SLN crystals. Total recording time ~1sec was obtained at total recording power density of 70W/cm2. Ultra high speed image recording was performed at total recording power density of ~81kW/cm2 and the image was successfully retrieved for recording time of ~1msec, which was 2-3 order faster than previously reported hologram recording time. For example Burr et al. reported average recording time per hologram of ~0.34 sec [86] and Mok et. al. ~1 sec [24,33]. Shift –multiplexing method was implemented using focused signal beam and diverging reference beam to store matrix of X holograms. Holograms were recorded with in-plane shift of 100 µm and out-of plane shift of 300 µm, which is similar to the results reported for recording with diverging/converging signal beam [120]. At the IR (778 nm) recording and UV (365 nm) gating, SLN crystal samples with low Tb doping concentration showed better performance from non-volatility point of view, i.e. readout of recorded hologram resulted in slow erasing of recorded hologram. The erasing time constant of recorded hologram was ~5 times slower in SLN crystal with ppm Tb than in SLN with 140 ppm Tb. iii Contents Acknowledgements i Summary ii Contents iv List of Tables viii List of Figures . ix 1. INTRODUCTION 1.1. Photorefractive (PR) effect 1.2. Theory – PR in crystals . 1.3. Applications . 1.4. Media for holographic recording 1.5. Stoichiometric lithium niobate 1.6. Thesis overview . 2. Crystal Growth 11 2.1 Introduction . 11 2.2 Growth of undoped and doped SLN crystals 12 2.2.1 Stoichiometric undoped . 12 2.2.2 Stoichiometric doped . 19 2.2.3 Stoichiometric doubly doped 20 2.2.3 Stoichiometric triply doped . 20 iv 2.3 Morphology . 21 2.3.1 Crystal structure and effect of growth direction 21 2.4 XRD Analysis 26 2.4.1 Powder XRD 26 2.3.2 Crystal Orientation . 28 2.3.3 Summary . 31 Appendix2.1 . 32 3. Optical Characterization 34 3.1 Introduction . 34 3.2 Absorption spectra 35 3.2.1 Absorption edge 35 3.2.2 Effect of doping and annealing on absorption edge . 40 3.2.3 Effect of doping and annealing on Optical Spectra 41 3.3 OH-1 spectra . 45 3.3.1 Stoichiometric composition 45 3.3.2 Effect of doping 46 3.4 Raman spectra . 48 3.4.1 Theory . 48 3.4.2 Effect of stoichiometry . 49 3.4.3 Summary . 54 4. Beam Fanning . 55 4.1 Introduction . 55 v 4.2 Backward Beam Fanning – Two-wave mixing 56 4.2.1 Theory – (dynamic & steady state) 56 4.2.2 Experiments and results – Z- Cut Fe:SLN . 62 4.2.3 Experiments and results – Z- Cut Fe:Tb:SLN 70 4.3 Transverse Beam Fanning 78 4.3.1 Theory – (steady state) 78 4.3.2 Experiments and results – X- Cut Fe:SLN . 79 4.3.3 Experiments and results – X- Cut Fe:Tb:SLN 85 4.3.4 Summary . 87 5. One – Color Holographic Recording 89 5.1. Introduction . 89 5.2. One – color theory . 91 5.3. Effect of Non-Reciprocal energy Transfer on diffraction efficiency 94 5.4. Experiments and results 103 5.4.1. Hologram recording with green light (~1W/cm2) 103 5.4.2. Sensitivity and M/# 106 5.4.3. Hologram recording with IR light 109 5.5. High speed recording 110 5.5.1. Plane – wave Recording 110 5.5.2. Image Recording . 120 5.5.3. Shift Multiplexing . 123 5.5.4. Summary . 129 vi 6. Two – Color Holographic Recording 130 6.1. Introduction . 130 6.2. Two – color theory . 131 6.3. Experiments and results 135 6.3.1. Hologram recording UV gating and green recording light 135 6.3.2. Hologram recording UV gating and IR recording light . 141 6.3.3. Summary . 148 7. Conclusion 149 Bibliography . 152 Journal papers . 168 International Conference papers 169 vii List of Tables Table 2.1. Interplanner angles between crystallographic planes. Table 2.2. X Ray Diffraction angle from X,Y,Z and facet planes. Table.2.3. The dnh,nk,nl calculated with the above cell parameters and extinction condition are listed. Table 3.1. Comparison of fundamental absorption edge and raman mode linewidth of CLN and SLN crystals. Also shown the effect of doping and annealing conditions on absorption edge. Table4.1 Transmitted light intensity of different Z-cut crystal samples at different incident laser power density Table.4.2 Threshold power density (Ith ≡ W/cm2) of X-cut crystal samples Table 5.1. Measured sensitivity and M/# for one – color recording in reflection geometry at λ = 532nm . Table 5.2. Results of experiments performed with Fe:Tb:SLN-1 crystal sample. viii 18. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin and V. L. Vinetskii, “Holographic storage in electrooptic crystals. 1. Steady state”, Ferroelectrics, 22, 949-960 (1979). 19. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin and V. L. Vinetskii, “Holographic storage in electrooptic crystals. 2. Beam coupling – light amplification”, Ferroelectrics, 22, 961-964 (1979). 20. V. L. Vinetskii, N. V. Kukhtarev, S. G. Odulov and M. S. Soskin, “Dynamic self-diffraction of coherent light beams”, Sov. Phys. Usp., 22, 742-756 (1979). 21. M. G. Moharam, T. K. Gaylord and R. Magnusson, “Holographic grating formation in photorefractive crystals with arbitrary electron transport lengths”, J. Appl. Phys., 50, 5642-5651 (1979). 22. J. M. Heaton, P. A. Mills, E. G. S. Paige, L. Solymer and T. Wilson, “Diffraction efficiency and angular selectivity of volume phase holograms recorded in photorefractive materials”, Optica Acta. 31, 885-901 (1984). 23. T. J. Hall, R. Jaura, L. M. Connors and D. Foote, “The photorefractive effect – a review”, Prog. Quant. Elect., 10, 77-146 (1985). 24. F. H. Mok, M. C. Tackitt and H. M. Stoll, “Storage of 500 high resolution holograms in LiNbO3 crystal”, Opt. Lett., 16, 605-607 (1991). 25. E. S. Maniloff and K. M. Johnson, “Maximized photorefractive holographic storage”, J. Appl. Phys., 70, 4702-4707 (1991). 26. G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed holograms”, Optt. Lett., 17, 1471-1473 (1992). 154 27. G. I. Malovichko, V. G. Grachev, L. P. Yurchenko, V. Ya. Proshko, E. P. Kokanyan, V. T. Gabrielyan, "Improvement of LiNbO3 microstructure by crystal growth with potassium", Phys. Stat. Sol. (a) , 133 , K29 – K32, 1992. 28. K. Rastani, “Storage capacity and cross talk in angularly multiplexed holograms”, Appl. Opt., 18, 1001-1003 (1993) 29. L. Hesselink and M. C. Bashaw, “Optical memories implemented with photorefractive media”, Opt. Quant. Elect., 25, S611-S661 (1993). 30. H. Zhou, F. Zhao and F. T. S. Yu, “Angle-dependent diffraction efficiency in a thick photorefractive hologram”, Appl. Opt., 34, 1303-1309 (1995). 31. S. Campbell and P. Yeh, “Sparse-wavelength angle-dependent volume holographic memory system: analysis and advances”, Appl. Opt., 35, 23802388 (1996). 32. A. Kling, J. G. Correia, J. G. Marques, J. C. Soares, M. F. Da Silva, E. Diéguez and F. Agulló-López, “Study of structural differences between stoichiometric and congruent lithium niobate”, Nucl. Instrum. Methods Phys. Res., B 113, 293 (1996). 33. F. H. Mok, G. W. Burr, and D. Psaltis, “A system metric for holographic memory systems”, Opt. Lett., 21, 896-899 (1996). 34. G. W. Burr and D. Psaltis, “Effect of oxidation state of LiNbO3:Fe on the diffraction efficiency of multiple holograms”, Opt. Lett., 21, 893-895 (1996). 35. M. Wohlecke, G. Corradi, K. Betzler, "Optical methods to characterize the composition and homogeneity of lithium niobate single crystals", Appl. Phys. B, 63 , 323 – 330 , June 1996. 155 36. V Bermúdez, P S Dutta, M D Serrano and E Diéguez, “The effect of native defects on the domain structures of LiNbO3:Fe - a case study by means of the addition of MgO and to the congruent melt” J. Phys.:Condens. Matter, 9, 6097 (1997) 37. K. Polgár, L. Kovács, G. Corradi, Zs. Szaller and Á. Péter, “Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method”, J. Cryst. Growth, 177, 211 (1997). 38. K. Kitamura, Y. Furukawa, Y.Ji, M.Zgonik, C.Medrano, G.Montemezzani, P.Guenter, “Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control” J.Appl. Phys., 82, 1006 (1997). 39. L. Kovács, G. Ruschhaupt, K. Polgár, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate”, Appl. Phys. Lett. 70, 2801 (1997). 40. L. Paraschis, M. C. Bashaw, A. Liu, L. Hesselink, “ Resonant two-photon processes for nonvolatile holography in photorefractive crystals under continuous-wave illumination.”, J. Opt. Soc. Am. B, 14 (10), October 1997. 41. Y. Furukawa, K. Kitamura, and Y. Ji, "Photorefractive properties of iron doped stoichiometric lithium niobate", Optics Lett., 22 (8), 501-503, 1997. 42. C. Denz, K. O. Müller, T. Heimann and T. Tschudi, “Volume holographic storage demonstrator based on phase-coded multiplexing”, IEEE J. Selec. Top. Quant. Elec., 4, 832 (1998). 43. T. Kume, K. Nonaka, M. Yamamoto and S. Yagi, “Wavelength-multiplexed holographic data storage by use of reflection geometry with cerium-doped 156 strontium barium niobate single-crystal structure and a tunable laser diodes”, Appl. Opt., 37, 334-339 (1998). 44. K. Buse, A. Abidi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals”, Nature 393 , 665 – 668, 18 June 1998. 45. L. hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile Volume Holographic Data Storage”, Science 282, November (1998)]. 46. V.Gopalan, T.E.Mitchell, Y.Furukawa, K.Kitamura, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals” Appl. Phys.Lett., 72, 1981 (1998). 47. F. Abdi, M. Aillerie, P. Bourson, M.D. Fontana, K. Polgar, “Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition” J. Appl. Phys., 84, 2251 (1998). 48. F.Lhomme, P.Bourson, M.D.Fontana, Kokanyan, “Luminescence of G.Malovichko, M.Aillerie, E. Cr+ in lithium niobate: influence of the chromium concentration and crystal composition” J. Phys.: Condensed Matter, 10, 1137-46 (1998). 49. H. Guenter, R. Macfarlane, Y. Furukawa, K. Kitamura, R. Neurgaonkar, “Two-Color Holography in Reduced Near-Stoichiometric Lithium Niobate” Appl. Optics, 37, 7611 (1998). 50. L. Hesselink, S. S. Orlov, Alice Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “ Photorefractive Materials for Nonvolatile Volume Holographic Data Storage.” Science, 282, 1089-1094, November 1998. 157 51. Y. Furukawa, K. Kitamura, S. Takekawa, K. Niwa, H. Hatano, "Stoichiometric Mg:LiNbO3 as an effective material for nonlinear optics", Opt. Lett. 23 (24), 1892 – 1894, December 15 1998. 52. G.Malovichko, V.Grachev, O.Schirmer, “Interrelation of intrinsic and extrinsic defects - congruent, stoichiometric, and regularly ordered lithium niobate” Appl. Phys. B 68, 785 (1999). 53. Ali Adibi, Karsten, Demetri Psaltis, “Theoretical analysis of two-step holographic recording with high – intensity pulses.”.,Physical Review A, 63, 023813-(1-17), 17 Jan. 2001. 54. U. Van Stevendal, K. Buse, H. Malz, H. Veenhuis, and E. Krätzig, “ Reduction of light-induced refractive-index changes by decreased modulation of light patterns in photorefractive crystals.”, J. Opt. Soc. Am. B, 15 (12), 2868-2876, December 1998. 55. A. Adibi, K. Buse, D. Psaltis, “ The role of carrier mobility in holographic recording in LiNbO3”, Appl. Phys. B, 72, 653-659, 27 April 2001. 56. K. Peithmann, A. Wiebrock, K. Buse, “ Photorefractive properties of highlydoped lithium niobate crystals in the visible and near- infrared”, Appl. Phys. B , 68, 777-784, April 1999. 57. Y. Furukawa, K. Kitamura, E.Suzuki, K.Niwa, “Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply” J.Cryst. Growth, 197, 889 (1999). 58. G.Malovichko, V.Grachev, E.Kokanyan, O.Schirmer, “Axial and lowsymmetry centers of trivalent impurities in lithium niobate: Chromium in congruent and stoichiometric crystals” Phys. Rev., B59, 9113 (1999). 158 59. F.Lhommé, P.Bourson, G.Boulon, Y.Guyot, R.Burlot-Loison, M.D.Fontana, M.Aillerie, G.Malovichko, “New spectroscopic investigation of Cr3+ centres in LiNbO3 crystals”, J. Lumines., 83-84, 441 (1999). 60. H. Veenhius, K. Buse, E. Krätzig, N. Korneev, D. Mayorga, “ Non-steadystate photoelectromotive force in reduced lithium niobate crystals.”, J. App. Phys. , 86 (05), 2389-2392, September 1999. 61. H. Hatano, T. Yamaji, S. Tanaka, Y. Furukawa, K. Kitamura, "Investigation of the Oxidation state of Fe in stoichiometric Fe:LiNbO3 for digital holographic recording", Jpn. J. Appl. Phys., 38, 1820 – 1825, 1999. 62. M.D.Serrano, V.Bermudez, L.Arizmendi, E.Dieguez, “Determination of the Li/Nb ratio in LiNbO3 crystals grown by Czochralski method with K2O added to the melt” J. Cryst. Growth., 210(4), 670 (2000). 63. K.Polgar, A.Peter, I.Foldvari, Z.Szaller, “Structural defects in flux-grown stoichiometric LiNbO3 single crystals” J. Crystal Growth, 218, 327 (2000). 64. G.M. Salley, S.A.Basun, A.A.Kaplyanskii, R.S.Meltzer, K.Polgar, U.Happek, “Chromium centers in stoichiometric LiNbO3” J. Lumines., 87-9, 1133 (2000). 65. V.Dierolf, A.B.Kutsenko, C.Sandmann, T.Troster, G.Corradi, “High- resolution site selective optical spectroscopy of rare earth and transition metal defects in insulators” J. Lumines., 87-89, 989 (2000). 66. A. Adibi, K. Buse, D. psaltis, “ Sensitivity improvement in two-centre holographic recording”, Opt. Lett. 25 (08), 539-541, April 2000. 159 67. D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, Th. Woike, “ Lifetime of small polarons in iron-doped lithium-niobate crystals”, J. App. Phys. , 87 (03), 1034-1041, February 2000. 68. K. Peithman, N. Korneev, M. Flaspöhler, K. Buse, E. Krätzig, “ Investigation of small polarons in reduced iron-doped lithium niobate crystals by nonsteady-state photocurrent techniques”, Phys. Stat. Sol. (a), 178 , R1 2000. 69. M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, "Angle-multiplexed hologram storage in LiNbO3:Tb:Fe", Opt. Lett. Vol. 25, No. 18, September 15, 2000, pp. 1337 – 1339. 70. M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, "Quassinondestructive Holographic Recording in Photochromic LiNbO3", Phy. Rev. Lett., Vol. 84, No. 5, 31 January 2000, pp. 875 – 878. 71. M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, "Photoinduced charge transfer in near-stoichiometric LiNbO3", J. Appl. Phys. Vol. 87, No. 3, February 2000, pp. 1291 – 1294. 72. M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, S. Tanaka, "Nonvolatile two-color holographic recording in Tb-doped LiNbO3", Appl. Phys. Vol. 76, No. 13, 27 March 2000, pp. 1653 – 1655. 73. M. Lee, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, H. Hatano, S. Tanaka, "Photochromic effect in near-stoichiometric LiNbO3 and two-color holographic recording", J. Appl. Phys. 88, (8), 15 October 2000, pp. 4476 – 4485. 160 74. I. Nee, M. Muller, K. Buse, E. Kratzig, “Role of iron in lithium niobatecrystals for the dark-storage time of holograms”, J. Appl. Phys. 88 (7), October 2000. 75. Y. Kondo, T. Fukuda, Y. Yamashita, K. Yokoyama, K. Arita, M. Watanabe, Y. Furukawa, K. Kitamura, H. Nakajima, "An increase of more than 30% in the electrooptic coefficients of Fe-doped and Ce-doped stoichiometric LiNbO3 crystals", Jpn. J, Appl. Phys., Vol. 39, (2000), pp. 1477 – 1480. 76. K. Niwa, Y. Furukawa, S. Takekawa, K. Kitamura, "Growth and characterization of MgO doped near stoichiometric LiNbO3 crystals as a new nonlinear optical material", J. Cryst. Growth, Vol. 208 (2000), pp. 493 – 500. 77. G. M. Salley, S. A. Basun, A.A. Kaplyanskii, R.S. Meltzer, K. Polgar, U. Happek, "Chromium centers in stoichiometric LiNbO3", J. Luminescence, 87-89 (2000), pp. 1133 – 1135. 78. Y. Furukawa, K. Kitamura, S. Takekawa, K. Niwa, Y. Yajima, N. Iyi, I. Mnushkina, P. Guggenheim, J.M. Martin, "The correlation of MgO-doped near-stoichiometric LiNbO3 composition to the defect structure", J. Cryst. Growth, Vol. 211 (2000), pp. 230 – 236. 79. I.G. Kim, M. Lee, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, L. Galambos, L. Hesselink, "Volume holographic data storage in nearstoichiometric LiNbO3:Ce,Mn", Jpn. J. Appl. Phys., Vol. 39 (2000), pp. L1094 – L1096. 80. A. Adibi, K. Buse, D. Psaltis, ” Two-center holographic recording”, J. Opt. Soc. Am. B, 18 (5), 584-601, May 2001. 161 81. M. Lee, I.G. Kim, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, H. Hatano, "Electron paramagnetic resonance investigation of the photochromic effect in near-stoichiometric LiNbO3 with applications to holographic storage", J. Appl. Phys. Vol. 89, No. 10, 5311 – 5317, 15 May 2001. 82. X. Chen, B. Li, J. Xu, D. Zhu, S. Pan, Z. Wu, “Photorefractive properties of near-stoichiometric LiNbO3 grown from congruent melt containing K2O”, J. Appl. Phys., 90 (3), 1516 – 1520, August 2001. 83. A. Adibi, K. Buse, D. Psaltis, “ System measure for persistence in holographic recording and application to singly-doped and doubly-doped lithium niobate”, App. Opt. , 40 (29), 5175-5182, 10 October 2001. 84. G. Zhang, S. Sunarno, M. Hoshi, Y. Tomita, C. Yang, W. Xu, “Characterization of two-color holography performance in reduce LiNbO3:In.”, App. Opt., 40 (29), 5248-5252, 10 October 2001. 85. C. Moser, D. Psaltis, “Holographic memory with localized recording”, App. Opt. , 40 (23), 3909-3914, 10 August 2001. 86. G. W. Burr, C. M. Jefferson, H. Coufal, M. Jurich, J. A. Hoffnagle, R. M. Macfarlane, R. M. Shelby, “ Volume holographic data storage at an areal density of 250 gigapixels/ in.2”, Opt. Lett. , 26 (07), 444-446, April 2001. 87. L. Galambos, S.S. Orlov, L. Hesselink, Y. Furukawa, K. Kitamura, S. Takekawa, "Doubly doped stoichiometric and congruent lithium niobate for holographic data storage", J. Cryst. Growth, 229, 228 – 232, (2001). 162 88. M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, "Nonvolatile and quassi-nonvolatile holographic recording in near-stoichiometric lithium niobate doubly doped with Tb and Fe", Opt. Materials, 18, 53 – 56, (2001). 89. L. Huang, D. Hui, D.J. Bamford, S.J.Field, I. Mnushkina, L.E. Myers, J.V. Kayer, "Periodic poling of magnetsm-oxide-doped stoichiometric lithium niobate grown by top-seeded solution method", Appl. Phys. B 72, 301 – 306, 2001. 90. K. S. Lim, S. J. Tak, S. K. Lee, S. J. Chung, C. W. Son, K. H. Choi, Y. M. Yu, “Grating formation and decay in photochromic Mn, Ce : LiNbO3”, J. Lumin., 94-95, 73 – 78, December 2001. 91. V. Marinova, M. L.Hsieh, S. H. Lin, K. Y. Hsu, “Effect of ruthenium doping on the optical and photorefractive properties of Bi12TiO20 single crystals”, Opt. Comm., 203, 377 – 384, 15 March 2002. 92. R. Wang, Y. Wei, B. Wang, “Photorefractive effect of Ce:Fe:LiNbO3 crystal”, J. Non. Opt. Phys. & Mat., 11 (2), 179 – 183, March 2002. 93. G. Zhang, Y. Tomita, “Broadband absorption changes and sensitization of near-infrared photorefractivity induced by ultraviolet light in LiNbO3:Mg”, J. Appl. Phys., 91 (7), 4177 – 4180, April 2002. 94. A. Winnacker, R. M. Macfarlane, Y. Furukawa, and K. Kitamura, “Two-color photorefractive effect in Mg-doped lithium niobate”, Appl. Opt., 41 (23), 4891 – 4896, 10 August 2002. 95. R. Fujimura, “Photorefractive E. Kubota, and O. Matoba, photochromic T. Shimura, properties of K. Kuroda, Ru doped Sr0.61Ba0.39Nb2O6 crystal”, Opt. Comm., 213, 373 – 378, 18 October 2002. 163 96. D. Liu, L. Liu, C. Liu, L. Ren, G. Li, “Bleaching effect and nonvolatile holographic storage in doubly doped LiNbO3:Fe:Cu crystals”, Chine. Sci. Bull., 47 (20), October 2002. 97. Y. Liu, K. kitamura, S. Takekawa, G. Ravi, M. Nakamura, H. Hatano and T. Yamaji, “Nonvolatile two-color holography in Mn-doped near-stoichiometric lithium niobate”, Appl. Phys. Lett., 81 (15), 2686 – 2688, October 2002. 98. D. Liu, L. Liu, C. Liu, L. Ren, G. Li, “Nonvolatile holograms in LiNbO3:Fe:Cu by use of the bleaching effect”, Appl. Opt., 41 (32), 6809 – 6814, 10 November 2002. 99. M. Lee, H. Hatano, S. Tanaka, T. Yamaji, K. Kitamura, S. Takekawa, “Twocolor hologram multiplexing from the colored state in stoichiometric LiNbO3:Tb,Fe”, Appl. Phys. Lett., 81 (24), 4511 – 4513, December 2002. 100. S. Solanki, T.C. Chong, and Xuewu Xu, “Flux growth and morphology study of stoichiometric lithium niobate crystals,” J. Cryst. Growth. 250, 134138 (2003). 101. U. Schlarb , K. Betzler, J. Appl. Phys. 73 (1993) 3472. 102. Y. Furukawa, M. Sato, K. Kitamura, Y. Yajima, J. Appl. Phys. 72 (1992) 3250. 103. Y.L. Chen, J.J. Xu, X.Z. Zhang, Y.F. Kong, X.J. Chen, G.Y. Zhang, Appl. Phys. A 74 (2002) 187. 104. G.I. Malovichko, V.G. Grachev, E.P. Kokanyan, O.F. Schirmer, K. Betzler, B.Gather, F. Jermann, S. Klauer, U. Schlarb, M.Wöhlecke, Appl. Phys. A 56 (1993) 103. 164 105. K. Kitamura, J.K. Yamamoto, N. Iyi, S. Kimura, T. Hayashi, J. Crystal Growth 116 (1992) 327. 106. K. Polgar, A. Peter, I. Foldvari, Opt. Mater. 19 (2002) 7. 107. Y.S. Kuzminov. Lithium niobate crytsals. Pp. 18 -19, Cambridge International Science Publishing. 1999. 108. Y. Kong, J. Xu, X. Chen, C. Zhang, W. Zhang, J. Appl. Phys. 87 (2000) 4410. 109. Z. Jiangou, Z. Shipin, X. Dingquan, W. Xiu and X. Huanfeng, “Optical absorption properties of doped lithium niobate crystals”, J. Phys. Condens. Matter (1992) 2977 – 2983. 110. U. Schlarb , K. Betzler, J. Appl. Phys. 73 (1993) 3472. 111. Y. Yang, “holographic reording and dynamic range improvement in lithium niobate crystals”. Ph.D thesis. California institute of technology 2002. 112. T. Fujiwara, M. Takahashi, M. Ohama, A.J. Ikushima, Y. Furukawa, and K. Kitamura, "Comparison of electro-optic effect between stoichiometric and congruent LiNbO3," Elect. Lett. 35, 499 –501 (1999) 113. D.C. Jones and G. Cook, “Non-reciprocal transmission through photorefractive crystals in the transient regime using reflection geometry,” Opt. Comm. 180, 391-402 (2000). 114. S.G. Odoulov, B.I Sturman, E. Shamonina, and K.H. Ringhofer, “Stochastic photorefractive backscattering from LiNbO3 crystals,” Opt. Lett. 21, 854856 (1996). 165 115. J.J. Liu, P.P. Banerjee, and Q.W. Song, “Role of diffusive, photovoltaic, and thermal effects in beam fanning in LiNbO3,” J. Opt. Soc. Am. B 11, 1688-1693 (1994). 116. G. Zhang, Q.X. Li, P.P. Ho, S Liu, Z. Kang, and R.R. Alfano, “Dependence of specklon size on the laser bem size via photo-induced light scattering in LiNbO3:Fe,” Appl. Opt. 25, 2955-2959 (1986). 117. V.V. Obukhovskii, A.V. Stoyanov, and V.V. Lemeshko, “Photoinduced scattering of light by fluctuations of photoelectric parameters of a medium,” Sov. J Quantum Electron 17, 64-68 (1987). 118. X. Zhang, J. Xu, S. Liu, H. Huang, J. Wolfsberger, X. Chen, and G. Zhang, “Temporal evolution of beam fanning in LiNbO3:Fe,In crystals,” Appl. Opt. 40, 683-686 (2001). 119. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer, 2000), Part II, p. 106. 120. Barbastathis G, Levene M, Psaltis D,” Shift Multiplexing With Spherical Reference Waves”, Appl Optics 35 (14): 2403-2417 May 10 1996. 121. Psaltis D, Pu A,” Holographic 3-D Disks “,Optoelectron-Devices 10 (3): 333-342 Sep 1995. 122. G. Cook, J.P. Duignan, and D.C. Jones, “Photovoltaic contribution to counter-propagating two-beam coupling in photorefractive lithium niobate,” Opt. Comm. 192, 393 (2001). 123. K. Buse, ‘‘Light-induced charge transport processes in photorefractive crystals. I. Models and experimental methods,’’ Appl. Phys. B 64, 273–291 (1997). 166 124. K. Buse, ‘‘Light-induced charge transport processes in photorefractive crystals. II. Materials,’’ Appl. Phys. B 64, 391–407 (1997). 125. M. Wochleke, G. Corradi, K. Betzler, “Optical methods to characterize the composition and homogeneity of lithium niobate single crystals,” Appl. Phys. B 63 323-330 (1996). 126. K.K. Wong (ed.). Properties of Lithium Niobate. pp. 17 – 18, emis: datareviews series 28. 127. L. Hesselink, S.S. Orlov, M.C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231 – 1280 (2004). 128. M. Luennemann, U. Hartwig, and K. Buse, “Improvements of sensitivity and refractive-index changes in photorefractive iron-doped lithium niobate crystals by application of extremely large external electri fields,” J. Opt. Soc. Am. B 20, 1643-1648 (2003). 129. P.F. Bordui, R.G. Norwood, D.H. Jundt and M.M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals,” J. Appl. Phys. 71, 875-879 (1992). 130. X. Liang, X. Xuewu, C.T. Chong, Y. Shaoning, Y. Fengliang, T.Y. Soon, “Lithium in-diffusion treatment of thick LiNbO3 crystals by the vapor transport equilibration method,” J. Cryst. Growth 260, 143-147 (2004). 167 Journal papers 1. S. Solanki, T.C. Chong, X.W. Xu, “Flux growth and morphology study of stoichiometric lithium niobate crystals”, J. Crystal Growth, Vol. 250, pp.134138, 2003. 2. Sanjeev Solanki, Xue-Wu Xu, Tow-Chong Chong, “Deterministic beam fanning in Fe doped stoichiometric lithium niobate crystals”, in press Applied Optics. 3. Sanjeev Solanki, Xuewu Xu, Chong Tow-Chong, “Effect of non-reciprocal energy transfer on diffraction efficiency of reflection hologram in Fe:SLN crystal”, submitted to Josa B. 4. X.W. Xu, T.C. Chong, S. Solanki, X.A. Liang, S.N. Yuan, “Anisotropic thermal expansion of stoichiometric lithium niobate crystals grown along the normal direction of facets”, Optical Materials, Vol. 26, pp.489-494, 2004. 5. Xuewu Xu, Xinan Liang, Tow-Chong Chong, Shaoning Yuan, Sanjeev Solanki, Yongsoon Tay, “Vertical Bridgman growth and optical characterization of LiNbO3:Cu:Ce crystals ” J. Crystal Growth, Vol. 275, pp.e791-e797, 2005. 168 International Conference papers 1. S. Solanki, T.C. Chong, X.W. Xu , “Flux growth and morphology study of stoichiometric lithium niobate crystals”, The Forteenth American Conference on Crystal Growth & Epitaxy, Seattle/USA, 2002, oral presentation. 2. S. Solanki, T.C. Chong, X.W. Xu, Y.S. Tay, “Optical characterization of undoped and doped SLN crystals grown by TSSG method”, The Fifteenth American Conference on Crystal Growth & Epitaxy held jointly with The 11th Biennial (US) Workshop on OMVPE and The 3rd International Symposium on Laser and NLO Materials, Keystone/Colorado/USA, 2003, oral presentation. 3. X.W. Xu, T.C. Chong, S. Solanki, X.A. Liang, S.N. Yuan, “Anisotropic thermal expansion of stoichiometric lithium niobate crystals grown along the normal direction of facets”, The Fifteenth American Conference on Crystal Growth & Epitaxy held jointly with The 11th Biennial (US) Workshop on OMVPE and The 3rd International Symposium on Laser and NLO Materials, Keystone/Colorado/USA, 2003, oral presentation. 4. Xuewu Xu, Xinan Liang, Tow-Chong Chong, Shaoning Yuan, Sanjeev Solanki, Yongsoon Tay, “Vertical Bridgman growth and optical characterization of LiNbO3:Cu:Ce crystals”, The Fourteenth International Conference On Crystal Growth in conjugation with The Twelfth International Conference On Vapor Growth And Epitaxy, Alpes Congres, Grenoble, France . 169 [...]... Experimental setup for high speed plane wave holographic recording Fig.5.16 Recording and erasing curve for Z-cut Fe:Tb:SLN-1 at Irecording = 0.35 W/cm2 Fig.5.17 Recording and erasing curve for Z-cut Fe:Tb:SLN-1 at Irecording = 8.08 W/cm2 Fig.5.18 Recording and erasing curve for Z-cut Fe:Tb:SLN-1 at Irecording = 17.06 W/cm2 Fig.5.19 Recording and erasing curve for Z-cut Fe:Tb:SLN-1 at Irecording = 70.03... melts or form K2O containing melts With reduced intrinsic defects the LN crystals can be made photorefractive by selectively doping with single or multiple transition metal or rare earth elements The electro-optic properties of stoichiometric crystals are improved and as grown 8 crystals are single domain Fe, Mn and Tb are one of the most important dopants for holographic recording Beam fanning and optical... melt and very high vertical temperature gradient (200 – 700 oC) to grow bulk optical quality crystals M.Lee and Kitamura et al [69 – 73, 75 – 76, 78 – 79, 81, 87 – 88, 97, 99 97] has done remarkable work in growth and photorefractive testing of stoichiometric lithium niobate crystal and still continuing to test various doped SLN 7 (stoichiometric lithium niobate) crystals Out of the long list of transition. .. for using low power to recording holograms that slows down the information recording process in X,Y or 45o cut lithium niobate crystals By using Z – cut crystals and low doping concentration, the beam fanning can be drastically reduced and high light power density can be used to faster recording of information carrying holograms Chapter 2 describes the TSSG (Top Seeded Solution Growth) of undoped and. .. Solution Growth) of undoped and doped stoichiometric lithium niobate crystals at low vertical temperature gradient The powder XRD measurements for lithium niobate phase and growth morphology using X-ray goniometer are also presented Chapter 3 describes the optical characterization methods for stoichiometry of undoped and doped crystal samples using absorption edge measurement and OH-1 IR spectra measurement... holographic recording in various doped SLN crystals and results compared with doped CLN crystal Further work was done on high-speed recording in doped SLN crystals Ultra high speed recording of analog images using shift multiplexing is also presented Chapter 6 describes the two-color holographic recording in doped SLN crystals Analysis of effect oxidation and reduction on two-color recording is done Further... sensitivity is still a big problem with lithium niobate crystals and need further study One way is to try various dopants and look for optimized behavior For WORM type storage devices, sensitivity (~500 cm/J) is 6 not really an issue but for read/write type of system it is very important to have media with high sensitivity 1.5 Stoichiometric lithium niobate Stoichiometric crystals have an advantage of having... holographic recording performance of doped lithium niobate crystals with stoichiometric composition Congruently grown lithium niobate crystals (Li ~ 48.6 mol%) have around 5 mol% (1 mol% of NbLi and 4 mol% of Li vacancy) of intrinsic defects that makes it unsuitable to efficient use for holographic recording Intrinsic defects density can be reduced by growing crystals with stoichiometric composition either... requirements for practical storage system is much higher than these values Sη=1cm/j and M/# = 10 This creates lots of scope for improvement in doped- SLN [47, 51, and 82] in terms of new dopants and annealing conditions [61] such that required performance can be achieved 1.6 Thesis overview This thesis presents the results of research done on growth, characterization and holographic recording performance of doped. .. Fig.6.7 Second recording of hologram in Fe:SLN using 5W/cm2 recording density and no gating light Fig.6.8 Experimental setup for Two – Color holographic recording using IR recording light and UV gating light Fig.6.9 Results of two color experiment performed with Fe:Mn:Tb:SLN-2 crystal sample with 6W/cm2 of recording light and 100 mW/cm2 of gating light Fig.6.10 Results of two color experiment performed with . TRANSITION METAL AND RARE EARTH DOPED STOICHIOMETRIC LITHIUM NIOBATE CRYSTALS FOR HOLOGRAPHIC RECORDING SANJEEV. NATIONAL UNIVERSITY OF SINGAPORE 2004 TRANSITION METAL AND RARE EARTH DOPED STOICHIOMETRIC LITHIUM NIOBATE CRYSTALS FOR HOLOGRAPHIC RECORDING SANJEEV SOLANKI. 2.2 Growth of undoped and doped SLN crystals 12 2.2.1 Stoichiometric undoped 12 2.2.2 Stoichiometric doped 19 2.2.3 Stoichiometric doubly doped 20 2.2.3 Stoichiometric triply doped 20 v 2.3