Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 98 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
98
Dung lượng
1,06 MB
Nội dung
Chapter Chapter – Palladium Catalyzed C-C bond Formation Involving Organoboronic Acids 5.1 Introduction Great effort has been made in the development of catalytic methods for C-C bond formations to synthesize many significant drugs, materials, optical devices etc.126 Owing to the low toxicity as well as high air and moisture stability, organoboronic acids have found a broad range of applications in synthetic chemistry.127 They are mostly used in cross coupling reactions to form biaryl units which are common in natural products.128 Recently, other applications in C-C bond forming processes such as 1,4-additions to unsaturated compounds, 1,2-additions to carbonyl compounds and oxidative aminations have also been reported.129 The aim here is to apply the palladium precursors and the hemilabile ligands described in chapter as catalysts for the Suzuki-Miyaura cross coupling reactions, 1,2- additions to aldehydes and 1,4-conjugate additions to α,βunsaturated ketones 5.1.1 Palladium catalyzed Suzuki-Miyaura cross coupling reactions Palladium-catalyzed Suzuki-Miyaura cross-coupling between organoboranes and organoelectrophiles has become one of the most important C-C bond formation methodologies (Equation 5.1).128 It enables facile syntheses of biaryls and alkylaromatics that are intermediates of pharmaceuticals, natural products and stereoselective reactions etc.130 For example, tetra-ortho-substituted biaryls can be prepared from this method with the use of bulky phosphines,131 hybrid ligands,132 and carbene complexes133 (Scheme 5.1 and 5.2) etc There are however some drawbacks, such as the cost of boron reagents, need for high temperatures and high Pd loadings (2-12 mol%) etc These have restricted the use of 93 Chapter asymmetric Suzuki cross-coupling reactions in producing biologically active biaryls134 and prompted the development of more efficient catalytic systems especially on ligand innovations Therefore, part of our research focus is to develop an efficient ligand/Pd catalyst system for coupling sterically hindered substrates and preferably, to extend further for asymmetric Suzuki-Miyaura cross-coupling reactions R1 R2 + X B(OH)2 catalyst R2 R1 Equation 5.1 A typical Suzuki-Miyaura cross coupling reaction.129 Br B(OH) + Base, Solvent 50-75oC R NMe2 PR' Fe R = Me, R' = Ph, , mol% Pd2(dba)3.CHCl3 used, 72 h, Product Yield = 85% R = Me, R' = Ph, mol% PdCl3 used, 144 h, Product Yield = 58% R = Ph, R' = Ph, mol% Pd2(dba)3.CHCl3 used, 72 h, Product Yield = 62% R = Me, R' = 4-Ph-CF3, mol% Pd2(dba) 3.CHCl used, 72 h, Product Yield = 66% 55 Ar P(t-Bu)2 PCy Fe Pd2(dba)3 Ar Fe Ar = Phenanthrenyl, mol% Pd used, 24 h, Product Yield = 65% Pd2(dba)3 Ar Ar 133 Ar Ar 134 Ar = Ph, 10 mol% Pd used, 25h, Product Yield = 25% DPPF/Pd2(dba) 3, 10mol% Pd used, 96 h, Product Yield = 95% Scheme 5.1 Reported Pd systems used to catalyze Suzuki – Miyaura cross couplings of hindered Suzuki naphthalene substrates.131a-b,132b 94 Chapter X B(OH)2 base solvent + 100 - 110oC 12-18h O O PCy2 OMe MeO N OTf 135 X = Br, mol% Pd2(dba)3 used, Product Yield = 85% + N - iPent Ar N N AriPent Cl Pd Cl 136 X = Br, mol% Pd(OAc)2 used, Product Yield = 91% X = Cl, mol% Pd(OAc)2 used, Product Yield = 71 - 96% 137 X = Br, Cat loading = 2mol%, Product Yield = 88% Scheme 5.2 Successful palladium catalytic Suzuki-Miyaura systems reported to be capable of producing biaryls with four ortho alkyl substituents.132a,133 5.1.2 Palladium catalyzed 1,2- addition of organoboronic acids to aldehydes Chiral diaryl methanols are important intermediates for the synthesis of medically active compounds (Figure 5.1).135 Generally, they can be obtained either by reduction of the corresponding unsymmetrical diaryl ketones or enantioselective aryl transfer reactions to aldehydes (1,2-addition reactions) (Scheme 5.3).136 However, both methods have severe limitations and only work well for a limited range of substrates It is accordingly pertinent a need to develop alternative pathways that can be applied to wider variety of carbinol derivatives 95 Chapter H H OH O X OH NMe2 neobenodine (used as drugs with antihistamine, anticholinergic, local-anaesthetic and laxative activties) X = O, NSO2CH3 2-Benzofuranylcarbinols (display antifungal and aromatic inhibiting activites) Figure 5.1 Some examples of diaryl methanols as intermediates for the synthesis of medically active compounds.135 O catalyst [H] OH * R' R catalyst R"2Zn O R Y H R R' Y = organoboron, organosilane, organozinc, organostanne, organomagnesium groups Scheme 5.3 General Synthetic routes to obtain biaryl methanols.136 The 1,2-addition to aldehydes has been investigated with a variety of protocols employing organoboron,129c,137 organozinc,138 organotin139 and organosilane140 compounds Among the catalytic methodologies used, the rhodium catalyzed 1,2-addition of arylboronic acids to aldehydes is especially notable 137a-b,f, 141 It would also be desirable to use cheaper metals Promising palladium catalysts such those of phosphapalladacycle,137c anionic palladacycles137i and thioether-imidazolinium137k that are active towards the 1,2-addition 96 Chapter reactions have accordingly emerged (Figure 5.2) On the other hand, use of palladium complexes with hybrid ligands towards catalytic additions of arylboronic acids to aldehydes is not known It is therefore of our interest to investigate the efficacy of our Pd/[P, N] ligands system towards 1,2-addition of arylboronic acids to aldehydes Ph2 P Pd Br PPh2 Fe Pd OAc 139 138 i-Pr Cl N i-Pr N [Pd(allyl)Cl]2 PhS 140 Figure 5.2 Phosphapalladacyclic complex (138), anionic palladacycle (139) and thioether-imidazolinium chloride (140)/[Pd(allyl)Cl]2 for the palladium catalyzed 1,2addition of arylborons to carbon-heteroatom double bonds.137c,i,k 5.1.3 Palladium catalyzed 1,4- conjugate additions of organoboronic acids to α,βunsaturated ketones Some of the enantiomerically enriched compounds possessing a chiral diarylmethane unit are known to be biologically active in antimuscarinics,142 antidepressants,143 and endothelin antagonists,144 and have received growing attention for their syntheses One of the straightforward methods is via conjugate addition of an aryl nucleophile to electron97 Chapter deficient olefins substituted with another aryl groups at the β position The 1,4-addition of arylboronic acids to enones and related substrates is a versatile method reported.137f,141c Although the catalysts reported are dominated by rhodium-based complexes,129c,140c,145 palladium(0)-SbCl3 (cat A),146 palladium-bipyridine (cat B),147 cationic palladium(II) complex (cat C)137g-h and palladacycles (cat D and E)148,137i have been reported as active catalysts for 1,4-addition reactions of arylboronic acids with α,β-unsaturated ketones and α-ketoesters (Scheme 5.4) Despite the ready availability of the reagents, the conjugate addition of arylboronic acids to activated ketones has been elusive until now Therefore, it is of interest to explore the potential application of the mixed donor hybrid ligands in the palladium-catalyzed 1,4 addition reaction of arylboronic acids to these ketones as well Ar O R O ArB(OH)2 catalyst R' R R' Catalyst: 10mol%Pd(OAc) 10mol% SbCl3 N 5mol% Pd(OAc)2 N cat B cat A O cat D dppe = Ph2P cat C PPh2 PR2 Pd 5mol% 5mol% [Pd(dppe)(PhCN) 2](SbF6)2 PPh2 Cl 5mol% Fe Pd OAc cat E Scheme 5.4 Reported active catalysts for 1,4-addition reactions of arylboronic acids with α,β-unsaturated ketones and α-ketoesters.137g-i, 146-148 98 Chapter 5.2 Results and discussion 5.2.1 Catalytic Studies 5.2.1.1 Suzuki-Miyaura cross coupling reactions of aryl halides and organoboronic acids The ligand system (t-Bu)2PFcC=NCH(CH3)R (Fc = ferrocenyl (C5H4)2Fe) is chosen as a model for this study because it contains both strong (phosphine) and weak (imine) donor sites and that they are separated by a conformationally flexible ferrocenyl skeleton which would in principle enable the weak donor to undergo facile reversible coordination.8a It is also important that both donating sites contain a substituent group that can be changed This allows the introduction of substituents (R or R’) to systematically and independently alter the electronic and steric properties of both sites.149 Within this ligand system, there are two types (Figure 5.3) The former (ligand L1a) has a fixed phenyl on the imine but the R on the phosphine varies, whereas the latter (ligand L1k-o) has a variable group on the imine with a constant tBu on the phosphine Ligand L1a is known to support Pd-catalyzed Suzuki coupling of aryl chlorides and aryl boronic acids8a-b and Ni-catalyzed ethylene oligomerization.8c R C=N-Ph C=N Fe Fe P(t-Bu)2 P(t-Bu)2 L1k, R = Ph L1l , R =p-tolyl L1m, R = p-f luorophenyl L1n, R = m-methoxyl L1o, R =Naphthyl L1a Figure 5.3 [P, N] ferrocenyl ligand synthesized in this study 99 Chapter We first compared the catalytic ability of L1a and L1k–o towards extremely hindered substrate combination involving 1-bromo-2-methylnaphthalene and 2-methylnaphthyl-1boronic acid in the presence of Pd2(dba)3 under typical Suzuki cross-coupling reactions (Table 5.1) Change of -Ph to -CH(CH3)(Ph) could be manifested in chelate dissociation and halide-bridge formation, thus reducing the metal sphere congestion promoting metalsubstrate interaction Indeed, a significant increase in the cross coupling product is observed (Table 5.1, entry and 2) It is evident that the product yields are sensitively dependent on R (Table 5.1, entry – 6) One possible explanation is the different oxidative addition products that are formed as a result of the hemilability of the ligands Table 5.1: Ligand effect on the Suzuki cross-coupling reactions of 1-bromo-2methylnaphthalene and 2-methylnaphthyl-1-boronic acid.a 1.2 mol% ligand 0.5mol% Pd 2(dba)3 + Br THF, Cs 2CO reflux, 24hr B(OH) Entry Ligand Isolated Yieldb L1a L1k 90 L1l 65 L1m 78 L1n 50 a 98 L1o equiv base Not optimized Isolated Yield is 100% if CsF is used b c Since L1o gives the highest yield in the above coupling, it is used as a model to examine the efficiency of sp2-sp2 Ar-Ar’ couplings (Table 5.2) The yields are satisfactory with many near-quantitative conversions Consistent with published results128a,e-f, sterically 100 Chapter demanding substrates require higher catalytic loads to achieve satisfactory yields (Table 5.2, entries 6-8).Cross-coupling using sterically bulky substrates to form tetra-orthosubstituted products were obtained in remarkably high isolated yields at low catalytic loads of 1.0 mol% Pd (Table 2, Entries 6-8) These catalyst loadings are comparable or lower than the reported catalyst systems.131-132 For example, only 0.1 mol% of Pd2(dba)3 (with 0.23 mol% of L1k) is sufficient to promote quantitative coupling of 1bromonaphthalene and naphthyl-1-boronic acid at r.t (Table 5.2, Entry 1) This is more favourable than the coupling of 1-bromonaphthalene and naphthyl-1-boronic acid at mol% of Pd(dba)2 and mol% of 134 at r.t over days.131b Although electron-rich aryl halides tend to be more sluggish in Suzuki couplings,128 electron-rich 1-bromo-2methoxynaphthalene can perform better than the electron-poor 1-bromonaphthyl-2aldehyde in this system when sterically demanding substrates are used 101 Chapter Table 5.2 sp2-sp2 Suzuki cross-coupling of aryl bromides and aryl boronic acids catalyzed by Pd2(dba)3 with ligand L1o.a RX + R'-B(OH)2 Pd2(dba)3/ligand L1o Cs2CO3, THF R-R' Entry R-Br R’-B(OH)2 mol% Pd 1c 4-bromobenzaldehyde PhB(OH)2 1x 10-6 r.t., h 100 2c 2-bromobenzaldehyde B(OH)2 0.2 r.t., h 100 2-bromobenzaldehyde B(OH)2 reflux, 12 h 100 0.1 r.t., h 100 0.5 r.t., 12 h 100 reflux, 24 h 98 B(OH)2 reflux, 12 h 84 B(OH)2 reflux, 12 h 76 Br B(OH)2 Reaction conditionsb Isolated % Yield OMe B(OH)2 Br Br B(OH) OMe Br CHO a Br Pd:ligand = 1:1.2 b Not optimized c K2CO3 was used instead of Cs2CO3 102 2005 (d) Yi, J.; Huang, X.; Zhang, W.; Hong, X.; Jing, Z J Nat Gas Chem 2003, 12, 98 (e) Schareina, T.; Hillebrand, G.; Fuhrmann, H.; Kempe, R Eur J Inorg Chem 2001, 2421 (f) Gao, R.; Xiao, L.; Hao, X.; Sun, W-H.; Wang, F Dalton Trans 2008, 5645 (g) Liu, F.-S.; Gao, H.-Y.; Song, K.-M.; Zhao, Y.; Long, J.-M.; Zhang, L.; Zhu, F.M.; Wu, Q Polyhedron, 2009, 28, 673 77 (a) Kermagoret, A.; Braunstein, P Dalton Trans 2008, 1564 (b) Younkin, T R.; Connor, E F.; Henderson, J I.; Friedrich, S K.; Grubbs, R H.; Bansleben, D A Science 2000, 287, 460 (c) Wang, L.; Sun, W.-H.; Li, Z.; Hu, Y.; He, C.; Yan, C.; J Organomet Chem 2002, 650, 59 (d) Chen, Y Wu, G.; Bazan, G C.; Angew Chem Int Ed 2005, 44, 1108 (e) Zhao, W.; Qian, Y.; Huang, J.; Duan, J J Organomet Chem 2004, 689, 2614 (f) Yang, Q.-Z.; Kermagoret, A.; Agostinho, M.; Siri, O.; Braunstein, P.; Organometallics, 2006, 25, 5518 78 (a) Speiser, F.; Braunstein, P.; Saussine, L Organometallics 2004, 23, 2625 (b) Speiser, F.; Braunstein, P.; Saussine, L.; Welter, R Organometallics 2004, 23, 2613 (c) Kermagoret, A.; Braunstein, P Organometallics, 2008, 27, 88 (d) Chavez, P.; Rios, I G.; Kermagoret, A.; Pattacini, R.; Meli, A.; Biachini, C.; Giambastiani, G.; Braunstein, P Organometallics, 2009, 28, 1776 79 (a) Bonnet, M C.; Dahan, F.; Ecke, A.; Keim, W.; Schulz, R P.; Tkatchenko, I J Chem Soc., Chem Commun 1994, 615 (b) Ecke, A.; Keim, W.; Bonnet, M C.; Tkatchenko, I.; Dahan, F Organometallics, 1995, 14, 5302 (c) Flapper, J.; Kooijman, H.; Lutz, M.; Spek, A L.; van Leeuwen, P W N M.; Elseiver, C J.; Kamar, P C J Organometallics, 2009, 28, 1180 (d) Flapper, J.; Kooijman, H.; Lutz, M.; Spek, A L.; van Leeuwen, P W N M.; Elseiver, C J.; Kamar, P C J Organometallics, 2009, 28, 3264 (e) Flapper, J.; Kooijman, H.; Lutz, M.; Spek, A L.; van Leeuwen, P W N M.; Elseiver, C J.; Kamar, P C J Organometallics, 2009, 28, 3272 80 (a) Speiser, F.; Braunstein, P.; Saussine, L Dalton Trans 2004, 1539 (b) Kermagoret, A.; Tomicki, F.; Braunstein, P.; Dalton Trans 2008, 2945 81 Speiser, F.; Braunstein, P.; Saussine, L Inorg Chem 2004, 43, 1649 82 Ziegler, K.; Gellet, H G.; Holakamp, E.; Wilke, G Brennst.-Chem 1954, 35, 321 83 Wilke, G Angew Chem Int Ed Engl 1988, 27, 185 84 (a) Pӧrschke, K R.; Jonas, K.; Wilke, G.; Benn, R.; Mynott, R.; Goddard, R.; Krüger, C Chem Ber 1985, 118, 275 (b) Pӧrschke, K R.; Jonas, K.; Wilke, G Chem Ber 1988, 121, 1913 (c) Kaschube, W.; Pӧrschke, K R.; Angermund, K.; Krüger, C.; Wilke, G Chem Ber 1988, 121, 1921 (d) Pӧrschke, K R.; Wilke, G J Organomet Chem 1988, 349, 257 85 (a) Eisch, J, J.; Ma, X.; Singh, M.; Wilke, G J Organomet Chem 1997, 527, 301 (b) Eisch, J, J.; Sexsmith, S R.; Fichter, K C J Organomet Chem 1990, 382, 273 176 86 (a) Holland, P L.; Cundari, T R.; Perez, L L.; Eckert, N A ; Lachicotte, R J J Am Chem Soc 2002, 124, 14416 (b) Puiu, S.; Warren, T H.; Organometallics, 2003, 22, 3974 (c) Zhang, D.; Jin, G.-X.; Weng, L.-H.; Wang, F Organometallics, 2004, 23, 3270 (d) Kitiachvili, K G.; Mindiola, D J.; Hillhouse, G L.; J Am Chem Soc 2004, 126, 10554 (e) Mindiola, D J.; Hillhouse, G L J Am Chem Soc 2001, 123, 4623 87 Day, V W.; Abdel – Meguid, S S.; Dabestani, S.; Thomas, M G.; Pretzer, W R.; Muetterties, E L.; J Am Chem Soc 1976, 98, 8289 88 (a) Müller, C.; Lachicotte, R J.; Jones, W D Organometallics, 2002, 21, 1975 (b) Edelbach, B L Lachicotte, R J ; Jones, W D Organometallics, 1999, 18, 4040 89 (a) Dickson, R S.; Ibers, J A J Organomet Chem 1972, 36, 191 (b) Eisch, J J.; Ma, X.; Han, K I Eur J Inorg Chem 2001, 77 (c) Pӧrschke, K R.; Mynott, R.; Angermund, K.; Krüger, C Z Naturforsch, 1995, 40b, 199 (d) Goddard, R.; Apotecher, B.; Hoberg, H Acta Crystallogr, 1987, C43, 1290 90 Mavriris, A.; Moustakali – Mavridis, I Acta Crystallogr 1977, B33, 3612 91 (a) Rosenthal, U.; Nauck, C.; Amdt, P.; Pulst, S.; Baumann, W.; Burlakov, V V.; Gorls, H J Organomet Chem 1994, 484, 81 (b) Rosenthal, U.; Schulz, W J Organomet Chem 1987, 321, 103 (c) Bartik, T.; Happ, B.; Iglewsky, M.; Bandmann, H.; Boese, R.; Heimbach, P.; Hoffmann, T.; Wenschuh, E Organometallics 1992, 11, 1235 92 (a) Ugi, I Ed Isonitrile Chemistry, Academic Press: New York, 1971 (b) Tanabiki, M.; Tsuchiya, K.; Kumanomido, Y.; Matsubara, K.; Motoyama, Y.; Nagashima, H Organometallics 2004, 23, 3976 (c) Veya, P.; Floriani, C Organometallics 1993, 12, 4899 (d) Otsuka, S.; Nakamura, A.; Yoshida, T.; Naruto, M.; Ataka, K J Am Chem Soc 1973, 95, 3180 93 (a) Krüger, C.; Tsay, Y.-H Cryst Struct Commun 1974, 3, 455 (b) Del Pra, A.; Zanotti, G.; Pandolfo, L.; Segala, P Cryst Struct Commun 1981, 10, (c) Meichel, E.; Stein, T Kralik, J.; Lang, R H J Organomet Chem 2002, 649, 191 (d) Lesueur, W.; Solari, E.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C Inorganic Chem 1997, 36, 3354 94 (a) Van Hecke, G R.; Horrocks, W D Jr Inorg Chem 1966, 5, 1960 (b) Kawata, Y.; Tanaka, T Chemistry Letters 1974, 7, 831 95 (a) Hou, J.; Sun, W-H.; Zhang, S.; Ma, H Deng, Y.; Lu, X Organometallics 2006, 25, 236 (b) Sauthier, M.; Leca, F.; Souza, R F.; Bernardo-Gusmāo, K Queiroz, L F T.; Toupet, L.; Réau, R New J Chem 2002, 26, 630 96 (a) Kersting, B.; Siebert, D Inorg Chem 1998, 37, 3820 (b) Brooker, S.; Croucher, P D.; Davidson, T C.; Dunbar, G S.; Beck, C U.; Subramanian, S Eur J Inorg Chem 2000, 169 (c) Kersting, B Eur J Inorg Chem 1999, 2157 (d) Kersting, B.; Steinfeld, G.; Hausmann, J Eur J Inorg Chem 1999, 179 177 97 (a) Chen, Y.; Sui-Seng, C.; Zargarian, D Angew Chem Int Ed 2005, 44, 7721 (b) Barnett, B L.; Krüger, C.; Tsay, Y H Chem Ber 1977, 110, 3900 (c) Jones, R A.; Stuart, A L.; Atwood, J L.; Hunter, W E.; Rogers, R D Organometallics 1982, 1, 1721 (d) Fryzuk, M D.; Clentsmith, G K B.; Leznoff, D B.; Rettig, S J.; Geiib, S J Inorg Chim Acta 1997, 265, 169 (e) Kriley, C E.; Woolley, C J.; Krepps, M K.; Popa, E M.; Fanwick, P E.; Rothwell, I P Inorg Chim Acta 2000, 300-302, 200 98 König, H.; Menu, M J.; Dartiguenave, M.; Dartiguenave, Y.; Klein, H F J Am Chem Soc 1990, 112, 535 99 (a) Kersting, B.; Siebert, D Inorg Chem 1998, 37, 3820 (b) Brooker, S.; Croucher, P D.; Davidson, T C.; Dunbar, G S.; Beck, C U.; Subramanian, S Eur J Inorg Chem 2000, 169 (c) Harrop, T C.; Olmstead, M M.; Mascharak, P K Chem Commun 2003, 410 100 (a) Ziegler, T Chem Rev 1991, 91, 651 (b) Parr, R G.; Yang, W Density Functional Theory of Atoms and Molecules; Oxford University Press: New York, 1989, pp 47-69 101 (a) Vannice, M A.; Sen, B J Catal 1989, 115, 65 (b) Gallezot, P.; Richonel, D Catal Rev Sci Eng 1998, 70(1&2), 81 (c) Lafaya, G.; Ekou, T.; Micleaud-Especel, C.; Montassier, C ; Marecot, P App Catal A 2004, 257, 107 102 (a) Ready, J M ; Jacobson, E N J Am Chem Soc 2001, 123, 2687 (b) Jacobsen, E N.; Pflatz, A Yamamoto, H Eds.; Springer-Verlag: New York, 1999, pp 1309 – 1326 (c) Jacobsen, E Acc Chem Res 2000, 33, 412 103 (a) Raebiger, J W.; Turner, J W.; Noll, B C.; Curtis, C J.; Miedaner, A.; Cox, B.; DuBois, D L Organometallics, 2006, 25, 3345 (b) Guo, N.; Li, L.; Marks, T J J Am Chem Soc 2004, 126, 6542 (c) van den Benken, E K.; Feringa, B L Tetrahedron 1998, 54, 12985 (d) Peng, W.-J.; Train, S G.; Howell, D K.; Fronczek, F R.; Stanley, G G Chem Commun 1996, 2607 104 (a) Champouret, Y D M.; Fawett, J.; Nodes, W J ; Singh, K ; Solan, G A Inorg Chem 2006, 45, 9890 (b) Taquet, J.–P ; Siri, O ; Braunstein, P ; Welter, R Inorg Chem 2006, 45, 4668 (c) Hu, T.; Tang, L.–M.; Li, X.–F.; Li, Y.–S.; Hu, N.–H Organometallics, 2005, 24, 2628 (d) Luo, H.–K.; Schumann, H J Mol Catal A: Chem 2005, 227, 153 (e) Jie, S.; Zhang, T.; Sun, W.-H.; Chen, J.; Ren, Q.; Liu, D.; Zheng, G.; Chen, W J Organomet Chem 2005, 690, 1739 (f) Zhang, D.; Jin, G.–X Organometallics, 2003, 22, 2851 (g) Mi, X.; Ma, Z.; Wang L.; Ke, Y.; Hu, Y Macromol Chem Phys 2003, 204, 868 (h) Gibson, V C.; Halliwell, C M.; Long, N J.; Oxford, P J.; Smith, A M.; White, A J P.; Williams, D J Dalton Trans 2003, 918 (i) Tomov, A.; Kurtev, K J Mol Catal A: Chem 1995, 103, 95 (j) Kurtev, K.; Tomov, A J Mol Catal 1994, 88, 141 105 (a) Chen, E Y X.; Marks, T J Chem Rev 2000, 100, 139 (b) Erker, G Dalton Trans 178 2005, 1883 106 (a) Munshieva, M K.; Azerb Khim Zh 1999, 104, 2003, 171 (b) Barnett, K W U.S Patent 4628139 A 19861209, 1986 107 Dighton, G L in Alpha Olefins Applications Handbook, Eds Lappin, G R.; Sauer, J D Wiley-VCH, New York, 1989, chapter 108 (a) Alpha-Olefins - World Markets, 2000-2010, Colin A Houston & Associates, Inc http://www.alpha-olefins.com/ao/ (b) Chemical Profile: 1-octene on ICIS Chemical Business, 06 Aug 2007, http://www.icis.com/Articles/2007/08/06/9050162/CHEMICALPROFILE-1-octene.html 109 Vogt, D in Applied Homogeneous Catalysis with Organometallic Compounds, Eds Cornils, B., Herrmann, W., Wiley-VCH, New York, 2002, Vol 1, pp 240 110 Dixon, J T.; Green, M J.; Hess, F M.; Morgan, D H J Organomet Chem 2004, 689, 3641 111 Bollmann, A.; Blann, K.; Dixon, J T.; Hess, F M.; Killian, E.; Maumela, H.; McGuinness, D S.; Morgan, D H.; Nevelling, A.; Otto, S.; Overett, M J.; Slawin, A M Z.; Wasserscheid, P.; Kuhlmann, J Am Chem Soc 2004, 126, 14712 112 Carter, A.; Cohen, S A.; Cooley, N A.; Murphy, A.; Scutt, J.; Wass, D F Chem Commun 2002, 858 113 Overett, M J.; Blann, K.; Bollmann, A.; Dixon, J T.; Haasbroek, D.; Killian, E.; Maumela, H.; McGuinness, D S.; Morgan, D H J Am Chem Soc 2005, 127, 10723 114 Overett, M J.; Blann, K.; Bollmann, A.; Dixon, J T.; Hess, F.; Killian, E.; Maumela, H.; Morgan, D H.; Neveling, A.; Otto, S Chem Commun 2005, 622 115 (a) Jiang, T.; Zhang, S.; Jiang, X.; Yang, C.; Niu, B.; Ning, Y J Mol Catal A: Chem 2008, 279, 90 (b) Kuhlmann, S.; Blann, K.; Bollmann, A.; Dixon, J T.; Killian, E.; Maumela, M C.; Maumela, H.; Morgan, D H.; Prétorius, M.; Taccardi, N.; Wasserscheid, P J Catal 2007, 245, 279 (c) Killian, E.; Blann, K.; Bollmann, A.; Dixon, J T.; Kuhlmann, S.; Maumela, M C.; Maumela, H.; Morgan, D H.; Nongodlwana, P.; Overett, M J.; Prétorius, M.; Hӧfener, K.; Wasserscheid, P J Mol Catal A: Chem 2007, 270, 214 (d) Jiang, T.; Ning, Y.; Zhang, B.; Li, J.; Wang, G.; Yi, J.; Huang, Q J Mol Catal A: Chem 2006, 259, 161 116 Overett, M J.; Blann, K.; Bollmann, A.; de Villiers, R.; Dixon, J T.; Killian, E.; Maumela, M C.; Maumela, H.; McGuinness, D S.; Morgan, D H.; Rucklidge, A J ; Slawin, A M Z J Mol Catal A: Chem 2008, 283, 114 117 Agapie, T.; Schofer, S L.; Labinger, J A.; Bercaw, J E J Am Chem Soc 2004, 126, 1304 118 Agapie, T.; Day, M W.; Henling, L M.; Labinger, J A.; Bercaw, J E Organometallics, 2006, 25, 2733 179 119 (a) Aminophosphonic and Aminophosphinic Acids Chemistry and Biological Activity; Kukhar, V P.; Hudson, H R., Eds.; Wiley and Sons: Chichestor, NY, 2000, pp – 634 (b) Green, J R J Organomet Chem 2005, 690, 2439 120 (a) Hirai, T.; Han, L-B.; J Am Chem Soc 2006, 128, 7422 (b) Hamilton, R.; Mckervey, M A.; Rafferty, M D.; Walker, B J J Chem Soc., Chem Commun 1994, 37 (c) Vanderhoydonck, B.; Stevens, C V Synthesis, 2004, 722 121 Wass, D F Dalton Trans 2007, 816 122 (a) Briggs, J R Chem Commun 1989, 674 (b) Carter, A.; Cohen, S A.; Cooley, N A.; Murphy, A.; Scutt, J.; Wass, D F Chem Commun 2002, 858 (c) Andes, C.; Harkins, S B.; Murtuza, S.; Oyler, K.; Sen, A J Am Chem Soc 2001, 123, 7423 (d) Yu, Z.-X.; Houk, K N Angew Chem Int Ed 2003, 42, 808 (e) Tomov, A K.; Chirinos, J J.; Jones, D J.; Long, R J J Am Chem Soc 2005, 127, 10166 123 (a) Tshuva, E Y.; Goldberg, I.; Kol, M.; Weitman, N; Goldschmidt, Z Chem Commun 2000, 379 (b) Chmura, A J.; Davidson, M G.; Jones, M D.; Lunn, M D.; Mahon, M F Dalton Trans 2006, 887 (c) Douthwaite, R E Annu Rep Prog Chem., Sect A: Inorg Chem 2004, 100, 385 (d) Jones, D J.; Gibson, V C.; Green, S M.; Maddox, P J White, A J P.; Williams, D J J Am Chem Soc 2005, 127, 11037 124 (a) Li, K.; Ilia, J D.; Guzei, A.; Mapolie, S F J Organomet Chem 2002, 660, 108 (b) Grinshpun, V.; Rudin, A J Appl Polym Sci 1985, 30, 2413 125 (a) Schulz, G V Z Phys Chem., Abt B 30, 1935, 379 (b) Schulz, G V Z Phys Chem., Abt B 43, 1939, 25 (c) Flory, P J J Am Chem Soc 1940, 62, 1561 126 Petasis, N A Aust J Chem 2007, 60, 795 127 Boronic Acids: Preparation, Applications in Organic Synthesis and Medicine, Hall, D G Ed Wiley-VCH, Weinheim, 2005, pp 42 – 84 128 (a) Miyaura, N.; Suzuki, A Chem Rev 1995, 95, 2457 (b) Kotha, S ; Lahiri, K ; Kashinath, D Tetrahedron, 2002, 58, 9633 (c) Littke, A F.; Fu, G C Angew Chem Int Ed 2002, 41, 4176 (d) Frish, A C.; Beller, M Angew Chem Int Ed 2005, 44, 674 (e) Miyaura, N.; Suzuki, A.; Chem Rev 1995, 95, 2457 (f) Suzuki, A J Organomet Chem 1998, 576, 147 (g) Metal-Catalyzed Cross-Coupling Reactions, Vol 1&2 Eds.: de Meijere, A.; Diederich, F., 2nd ed., Wiley-VCH, Weinheim, 2004 129 (a) Stefani, H A.; Cella, R.; Vieira, A S Tetrahedron, 2007, 63, 3623 (b) Molander, G A ; Ellies, N Acc Chem Res 2007, 40, 275 (c) Fagou, K.; Lautens, M Chem Rev 2003, 103, 169 (d) Patel, S J.; Jamison, T F Angew Chem Int Ed 2004, 43, 3941 130 Rouhi, A M Chem Eng News 2004, 82, 49 131 (a) Jensen, J F.; Johannsen, M Org Lett 2003, 5, 3025 (b) Kataoka, N., Shelby, Q., Stambuli, J P., Hartwig, J F., J Org Chem 2002, 67, 5553 (c) Yin, J., Rainka, M P., Zhang, X.-X., Buchwald, S L., J Am Chem Soc 2002, 124, 1162 (d) Barder, T E.; 180 Walker, S D.; Martinelli, J R.; Buchwald, S L J Am Chem Soc 2005, 127, 4685 132 (a) Walker, S D., Barder, T E., Martinelli, J R., Buchwald, S L Angew Chem., Int Ed 2004, 43, 1871 (b) Genov, M., Almorín, A., Espinet, P., Chem Eur J 2006, 12, 9346 133 (a) Altenhoff, G.; Goddard, R.; Lehmann, C W.; Glorius, F Angew Chem Int Ed 2003, 42, 3690 (b) Organ, M G.; Çalimsiz, S.; Sayah, M.; Hoi, K H.; Lough, A J Angew Chem Int Ed 2009, 48, 2383 (c) Altenhoff, G.; Goddard, R.; Lehmann, C W.; Glorius, F J Am Chem Soc 2004, 126, 15195 134 (a) Hayashi, T Hayashizaki, K., Kiyoi, T., Ito, Y., J Am Chem Soc 1988, 110, 8153 (b) Cammidge, A N., Crépy, K V L., Chem Commun., 2000, 1723 (c) Cammidge, A N., Crépy, K V L., Tetrahedron, 2004, 60, 4377 (d) Yin, J., Buchwald, S L., J Am Chem Soc 2000, 122, 12051 (e) Castanet, A.-S., Colobert, F.; Broutin, P.-E., Obringer, M., Tetrahedron: Asymmetry 2002, 13, 659 (f) Mikami, K., Miyamoto, T., Hatano, M., Chem Commun., 2004, 2082 (g) Herrbach, A.; Marinetti, A.; Baudoin, O.; Guénard, D.; Gueritte, F J Org Chem 2003, 68, 4897 (h) Willis, M C.; Powell, L H.; Claverie, C K.; Watson, S Angew Chem Int Ed 2004 43, 1249 (i) Takemoto, T.; Iwasa, S.; Hamada, H.; Shibatomi, K.; Kameyama, M.; Motoyama, Y.; Nishiyama, H Tetrahedron Lett 2007, 48, 3397 (j) Bronger, R P J.; Guiry, P J Tetrahedron: Asymmetry 2007, 17, 1094 (k) Sawai, K.; Tatumi, R.; Nakahodo, T.; Fujihara, H Angew Chem Int Ed 2008, 47, 6917 (l) Bermejo, A.; Ros, A.; Fernández, R.; Lassaletta, J M J Am Chem Soc 2008, 130, 15798 135 (a) Meguro, K.; Aizawa, M.; Sohda, T.; Kawamatsu, Y.; Nagaoka, A Chem Pharm Bull 1985, 33, 3787 (b) Toda, F.; Tanaka, K.; Koshiro, K.; Tetrahedron: Asymmetry 1991, 2, 873 (c) Stanev, S.; Rakovska, R.; Berova, N.; Snatzke, G.; Tetrahedron: Asymmetry, 1995, 6, 183 (d) Botta, M.; Summa, V.; Corelli, F.; Di Pietro, G.; Lombardi, P Tetrahedron : Asymmetry, 1996, 7, 1263 136 (a) Jin, M – J.; Sarkar, S M.; Lee, D H.; Qiu, H Org, Lett 2008, 10(6), 1235 (b) Dosa, P I.; Ruble, J C.; Fu, G C.; J Org Chem 1997, 62, 444 (c) Huang, W –S.; Hu, Q – S.; Pu, L J Org Chem 1999, 64, 4222 (d) Huang, W –S ; Pu, L Tetrahedron Lett 2000, 41, 145 (e) Bolm, C ; Muniz, K Chem Commun 1999, 1295 (f) Ohkuma, T.; Koizumi, M.; Ikehira, H.; Tokozawa, T.; Noyori, R Org Lett 2000, 2, 659 (g) Corey, E, J.; Helal, C J.; Tetrahedron Lett 1995, 36, 9153 (h) Corey, E J.; Helal, C J Tetrahedron Lett 1996, 7, 1263 137 (a) Sakai, M ; Ueda, M ; Miyaura, N.; Angew Chem., Int Ed 1998, 37, 3279 (b) Ueda, M.; Miyuara, N.; J Org Chem 2000, 65, 4450 (c) Gibson, S.; Foster, D F.; Eastham, G R.; Tooze, R P.; ColeHamilton, D J Chem Commun 2001, 779 (d) Yamamoto, T.; Ohta, T.; Ito, Y Org Lett 2005, 7, 4153 (e) Qin, C.; Wu, H.; Cheng, J.; Chen, X.; Liu, M.; Zhang, W.; Su, W.; Ding, J J Org Chem 2007, 72, 4102 (f) Sakai, M.; Hayashi, 181 H.; Miyaura, N Organometallics, 1997, 16, 4229 (g) Nishikata, T.; Yamamoto, Y.; Miyaura, N Angew Chem., Int Ed 2003, 42, 2768 (h) Nishikata, T.; Yamamoto, Y.; Miyaura, N Organometallics, 2004, 23, 4317 (i) He, P.; Lu, Y.; Dong, C.-G.; Hu, Q.-S Org Lett 2007, 9, 343 (j) Sieber, J D.; Liu, S.; Morken, J P.; J Am Chem Soc., 2007, 129, 2214 (k) Kuriyama, M.; Shimazawa, R.; Shirai, R J Org Chem 2008, 73, 1597 138 (a) Soai, K Enantiomer, 1999, 4, 591 (b) Soai, K.; Niwa, S Chem Rev., 1992, 92, 833 (c) Dosa, P I.; Fu, G C J Am Chem Soc 1998, 120, 445 139 Oi, S.; Moro, M.; Inoue, Y Chem Commun 1997, 1621 140 (a) Oi, S.; Moro, M.; Inoue, Y Organometallics 2001, 20, 136 (b) Murata, M.; Shimazaki, R.; Ishikura, M.; Watanabe, S.; Masuda, Y Synthesis 2002, 717 141 (a) Martina, S L X.; Jagt, R B C.; Vries, J G de; Feringa, B L.; Minnaard, A J Chem Commun 2006, 4093 (b) Fürstner, A.; Krause, H Adv Synth Catal 2001, 343, 343 (e) Moreau, C.; Hague, C.; Weller, A S.; Frost, C G Tetrahedron Lett 2001, 42, 6957 (c) Focken, T.; Rudolph, J.; Bolm, C Synthesis 2005, 429 (d) Takaya, Y.; Ogasawara, M.; Hayashi, T.; Sakai, M.; Miyaura, N.; J Am Chem Soc 1998, 120, 5579 (e) Hayashi, T ; Yamasaki, K Chem Rev 2003, 103, 2829 (f) Boiteau, J.-G.; Imbos, R.; Minnaard, A J.; Feringa, B L Org Lett 2003, 5, 681 (g) Jagt, R B C.; Vries, J G de; Feringa, B L.; Minnaard, A J Org Lett 2005, 7, 2433 142 Nilvebrant, L.; Andersson, K.-E.; Gillberg, P.-G.; Stahl, M.; Sparf, B Eur J Pharmacol 1997, 327, 195 143 Welch, W M.; Krasha, A R.; Sarges, R.; Coe, K B.; J Med Chem 1984, 27, 1508 144 Astles, P C.; Brown, T J.; Halley, F.; Handscombe, C M.; Harris, N V.; Majid, T N.; McCarthy, C.; McLay, I M.; Morley, A.; Porter, B.; Roach, A G.; Sargent, C.; Smith, C.; Walsh, R J A J Med Chem 2000, 43, 900 145 Glorius, F Angew Chem Int Ed 2004, 43, 3364 146 Cho, C S.; Motofusa, S.; Ohe, K.; Uemura, S J Org Chem 1995, 60, 883 147 (a) Lu, X.; Lin, S J Org Chem 2005, 70, 9651 (b) Lu, X ; Lin, S Tetrahedron Lett 2006, 47, 7167 148 Bedford, R B.; Betham, M.; Charmant, J P H.; Haddow, M F.; Orpen, A G.; Pilarski, L T Organometallics, 2007, 26, 6346 149 (a) Stoccoro, S.; Chelucci, G.; Zucca, A.; Cinellu, M A.; Minghetti, G.; Manassero, M., J Chem Soc., Dalton Trans., 1996, 1295 (b) Van den Beuken, E K.; Smeets, W J J.; Spek, A L.; Feringa, B L Chem Commun., 1998, 223 150 (a) Kwong, F Y.; Chan, K S.; Yeung, C H.; Chan, A S C Chem Commun 2004, 2336 (b) Stambuli, J P.; Kuwano, R.; Hartwig, J F Angew Chem Int Ed 2002, 41, 4746 (c) Bedford, R B.; Cazin, C S J.; Hazelwood, S L Angew Chem Int Ed 2002, 41, 4120 (d) Littke, A F.; Dai, C.; Fu, G C.; J Am Chem Soc 2000, 122, 4020 182 151 (a) Marion, N.; Navarro, O.; Mei, J.; Stevens, E P.; Scott, B N.; Nolan, S P J Am Chem Soc 2006, 128, 4101 (b) Navarro, O.; Kelly, R A., III; Nolan, S P J Am Chem Soc 2003, 125, 16194 (c) Altenhoff, G.; Goddard, R.; Lehmann, C W.; Glorius, F Angew Chem Int Ed 2003, 42, 3690 (d) Gstӧttmayr, C W K.; Bӧhm, V P W.; Herdtweck, E.; Grosche, M.; Herrmann, W A Angew Chem Int Ed 2002, 41, 1363 152 (a) Sato, M., Miyaura, N., Suzuki, A., Chem Lett 1989, 1405 (b) Chemler, S R., Trauner, D., Danishefsky, S J Angew Chem Int Ed 2001, 40, 4544 (c) Miyaura, N.; Ishiyama, T.; Sasaki, H.; Ishikawa, M.; Satoh, M.; Suzuki, A J Am Chem Soc 1989, 111, 314 153 Molander, G A., Ito, T Org Lett 2001, 3, 393 154 Zou, G., Falck, J R Tetrahedron Lett 2001, 42, 5817 155 (a) Cammidge, A N.; Crépy, K V L J Org Chem 2003, 67, 6832 (b) Watanabe, T.; Miyaura, N.; Suzuki, A Synlett 1992, 207 156 (a) Crabtree, R H The Organometallic Chemistry of the Transition Metals, 4th Ed.; John Wiley & Sons: Hoboken, NJ, 2005 (b) Barrios-Landeros, F.; Corrow, B P.; Hartwig, J F J Am Chem Soc 2009, 131, 8141 (c) Braga, A A C.; Ujaque, G.; Maseras, F Organometallics, 2006, 25, 3662 157 (a) Hartwig, J F.; Kawatsura, M.; Hauck, S I.; Shaughnessy, K H.; Alcazar-Roman, L M.; J Org Chem 1999, 64, 5575 (b) Surry, D S.; Buchwald, S L.; Angew Chem Int Ed 2008, 47, 6338 158 Scrivanti, A.; Beghetto, V.; Matteoli, U.; Antonaroli, S.; Marini, A ; Crociani, B Tetrahedron, 2005, 61, 9752 159 (a) Mingos, D M P.; Vilar, R J Organomet Chem 1998, 557, 131 (b) Herrmann, W A.; Thiel, W R.; Brossmer, C.; ӧfele K.; Priermeier, T.; Scherer, W J J Organomet Chem 1993, 461, 51 160 (a) Blaser, H U Chem Commun 2003, 293 (b) Federsel, H.-J Nature Rev Drug Discovery, 2005, 4, 685 (c) Breuer, M.; Ditrich, K.; Habicher, T.; Keβelr, M.; Stürmer, R.; Zelinski, T Angew Chem Int Ed 2004, 43, 788 161 (a) Serra, M E Catalysis from Theory to Application: An Integrated Course, Figueiredo, J L.; Pereira, M M.; Faria, J Ed.; Imprensa da Universidade de Coimbra, Coimbra, 2008, pp 401-418 (b) Lennon, I C.; Moran, P Curr Opin Drug Discovery Dev 2003, 6, 855 162 (a) Ader, U.; Andersch, P.; Berger, M.; Goergens, U.; Seemayer, R.; Schneider, M Pure & Appl Chem 1992, 64, 1165 (b) Lennon, I C.; Ramsden, J A Org Process Res Dev 2005, 9, 110 (c) Noyori, R.; Ohkuma, T Angew Chem Int Ed 2001, 40, 40 (c) Blaser, H U.; Spindler, F.; Studer, M Appl Cat A: General 2001, 221, 119 183 163 (a) Pamies, O.; Claver, C.; Dieguez, M.; J Mol Catal A Chem., 2006, 249, 207 (b) Langer, T.; Janssen, J.; Helmchen, G Tetrahedron: Asymmetry, 1996, 7, 1599 (c) Marciniec, B Hydrosilylation, A Comprehensive Review on Recent Advances, Springer, Netherlands, 2009, pp 289-398 164 Colacot, T J.; Chem Rev 2003, 103, 3101 165 (a) Nishiyama, H.; Itoh, K Transition Metals for Organic Synthesis: 2nd Ed., Beller, M.; Bolm, C Eds.; Wiley-VCH: Weinheim, 2004, vol 2, pp 182 – 191 (b) Arena, C G Mini-Rev Org Chem 2009, 6, 159 (c) Morris, R H Chem Soc Rev 2009, 38, 2282 166 For representative reviews: (a) Nishiyama, H.; Itoh, K Catalytic Asymmetric Synthesis, 2nd ed.; Ojima, I., Ed.; Wiley-VCH: Weinheim, 2000, pp 111 -143 (b) Nishiyama, H Comprehensive Asymmetric Catalysis; Jacobsen, E N.; Pfaltz, A.; Yamamoto, H Eds Springer: Berlin, 1999, Vol 1, pp 267 – 287 (c) Brunner, H Angew Chem Int Ed 1983, 22, 897 167 (a) Nishiyama, H.; Sakaguchi, H.; Nakamura, T.; Horihata, M.; Kondo, M.; Itoh, K Organometallics 1989, 8, 846 (b) Nishiyama, H.; Kondo, M.; Nakamura, T.; Itoh, K Organometallics 1991, 10, 500 (c) Nishiyama, H.; Yamagushi, S.; Kondo, M.; Itoh, K J Org Chem 1992, 57, 4306 (d) Ojima, I.; Kogure, T.; Kumagai, M J Org Chem 1977, 42, 1671 (e) Brunner, H.; Brandl, P Tetrahedron: Asymmetry 1991, 2, 919 (f) Kuwano, R.; Sawamura, M.; Shirai, J.; Takahashi, M.; Ito, Y Bull Chem Soc Jpn 2000, 73, 485 (g) Imamoto, T.; Itoh, T.; Yamanoi, Y.; Narui, R.; Yoshida, K Tetrahedron: Asymmetry 2006, 17, 560 168 Reyes, C.; Prock, A.; Giering, W P J Organomet Chem 2003, 671, 13 169 (a) Lipshutz, B H.; Lower, A.; Noson, K Org Lett 2002, 4, 4045 (b) Lipshutz, B H.; Lower, A.; Kucejko, R J.; Noson, K Org Lett 2006, 8, 2969 (c) Brunner, H.; Becker, R.; Riepi, G Organometallics, 1984, 3, 1354 170 (a) Nishiyama, H.; Kondo, M.; Nakamura, T.; Itoh, K J Organometallics, 1991, 10, 500 (b) Nishiyama, H.; Yamaguchi, S.; Kondo, M.; Itoh, K J Org Chem 1992, 57, 4306 (c) Nishiyama, H.; Park, S.-B.; Itoh, K Tetrahedron: Asymmetry, 1992, 3, 1029 (d) Park, S.B.; Murata, K.; Matsumoto, H.; Nishiyama, H Tetrahedron: Asymmetry, 1995, 6, 2487 (e) Davies, I W.; Gerena, L.; Lu, N.; Larsen, R D.; Reider, P J J Org Chem 1996, 61, 9629 171 (a) Nishiyama, H.; Yamaguchi, S.; Park, S.-B.; Itoh, K Tetrahedron: Asymmetry, 1995, 6, 2487 (b) Lowenthal, R E.; Abiko, A.; Masamune, S Tetrahedron Lett 1990, 31, 6005 (c) Evans, D A.; Woerpel, K A.; Hinman, M M.; Faul, M M J Am Chem Soc 1991, 113, 726 (d) Pfaltz, A Acc Chem Res 1993, 26, 339 (e) Imai, Y.; Zhang, W.; Kida, T.; Nakatsuji, Y.; Ikeda, I Tetrahedron: Asymmetry, 1996, 7, 2453 184 172 (a) Brunner, H.; Henrichs, C Tetrahedron: Asymmetry, 1995, 6, 653 (b) Brunner, H.; Brandl, P Tetrahedron: Asymmetry, 1991, 2, 919 (c) Brunner, H.; Brandl, P J Organomet Chem 1990, 390, C82-C83 173 Yamanoi, Y.; Imamoto, T J Org Chem 1999, 64, 2988 174 Tsuruta, H.; Imamoto, T Tetrahedron: Asymmetry, 1999, 10, 877 175 Ohta, T.; Ito, M.; Tsuneto, A.; Takaya, H J Chem Soc., Chem Commun 1994, 2525 176 Newmann, L M.; Williams, J M J.; McCague, R.; Potter, G A Tetrahedron: Asymmetry, 1996, 7, 1597 177 Sudo, A.; Yoshida, H.; Saigo, K Tetrahedron: Asymmetry, 1997, 8, 3205 178 (a) Lee, S.; Lim, C W.; Song, C E.; Kim, I O Tetrahedron: Asymmetry, 1997, 8, 4027 (b) Nishibayashi, Y.; Uemura, S Synlett, 1995, 79 (c) Nishibayashi, Y.; Segawa, K.; Ohe, K Uemura, S Organometallics, 1995, 14, 5486 (d) Coyne, A G.; Guiry, P J Tetrahedron Lett 2007, 48, 747 179 Pfaltz, A.; Drury III, W J Proc Natl Acad Sci USA 2004, 101, 5723 180 (a) Hayashi, T.; Mise, T.; Fukushima, M.; Kagotani, M ; Nagashima, N.; Hamada, Y.; Matsumoto, A.; Kawakami, S.; Konshi, M.; Yamamoto, K.; Kumada, M Bull Chem Soc Jpn 1980, 53, 1138 (b) Marquarding, D.; Klusacek, H.; Gokel, G.; Hoffmann, P.; Ugi, I J Am Chem Soc 1970, 92, 5389 (c) Hauser, C R.; Lindsay, J K J Org Chem 1957, 22, 906 (d) Lindsay, J K.; Hauser, C R J Org Chem 1957, 22, 355 181 Brunner, H Transition Metals for Organic Synthesis: Beller, M.; Bolm, C Eds.; WileyVCH: Weinheim, 1998, vol 2, pp 131 – 140 182 Fryzuk, M D.; Jafarpour, L.; Rettig, S J Tetrahedron: Asymmetry, 1997, 8, 2927 183 Lee, S.; Lim, C W.; Song, C E.; Kim, I O.; Jun, C.-H Tetrahedron: Asymmetry, 1997, 8, 2927 184 Goldberg, Y.; Alper, H Tetrahedron: Asymmetry, 1992, 3, 1055 185 Gomez, M.; Jansat, S.; Muller, G.; Bonnet, M C.; Breuzard, J A J.; Lemaire, M J Organomet Chem 2002, 659, 186 186 Brenchley, G.; Fedouloff, M.; Merifield, E.; Wills, M Tetrahedron: Asymmetry, 1996, 7, 2809 187 Brunner, H.; Stefaniak, S.; Zabel, M Synthesis, 1999, 1776 188 Ini, S.; Oliver, A G.; Don Tilley, T Bergman, R G Organometallics, 2001, 20, 3839 189 (a) Nishibayashi, Y.; Segawa, K.; Takada, H.; Ohe, K.; Uemura, S Chem Commun 1996, 847 (b) Gade, L H ; César, V ; Bellemin-Laponnaz, S Angew Chem Int Ed 2004, 43, 1014 190 (a) Cipot, J.; McDonald, R.; Ferguson, M J.; Schatte, G.; Stradiotto, M Organometallics, 2007, 26, 594 (b) Philips, A D.; Bolaño, S.; Bosquain, S S.; Daran, J.-C.; Malacea, R.; Peruzzini, M.; Poli, R.; Gonsalvi, L Organometallics, 2006, 25, 2189 (c) Wechsler, D.; 185 Rankin, M A.; McDonald, R.; Ferguson, M J.; Schatte, G.; Stradiotto, M Organometallics, 2007, 26, 6418 (d) Schnyder, A.; Togni, A.; Wiesli, U Organometallics, 1997, 16, 255 (e) Fox, M E.; Jackson, M.; Lennon, I C.; Klosin, J Abboud, K A J Org Chem 2008, 775 (f) Yang, H.; Lugan, N.; Mathieu, R Organometallics, 1997, 16, 2089 191 SMART version 5.1, Bruker Analytical X-ray Systems, Madison, WI, 2000 192 Sheldrick, G M SADABS, a program for Empirical Absorption Correction, Göttingen, Germany, 2000 193 SHELXTL version 5.03; Bruker Analytical X-ray Systems, Madison, WI, 1997 194 (a) Bishop, J J.; Davison, A.; Katcher, M L.; Lichtenberg, D W.; Merrill, R E.; Smart, J C J Organomet Chem 1971, 27, 241 (b) Castanet, A S.; Colobert, F.; Broutin, P.-E.; Obringer, M.; Tetrahedron: Asymmetry, 2002, 13, 659 (c) Clews, J.; Curtis, A D M.; Malkin, H Tetrahedron, 2000, 56, 8735 (d) Ukai, T.; Kawazura, H.; Ishii, Y.; Bonnet, J J.; Ibers, J A J Organomet Chem 1974, 65, 253 (e) A Bollmann, K Blann, J T Dixon, F M Hess, E Killian, H Maumela, D S McGuinness, D H Morgan, A Neveling, S Otto, M Overett, A M Z Slawin, P Wasserscheid, S Kuhlmann, J Am Chem Soc 2004, 126, 14712 (f) Uson, R.; Oro, L A.; Cabeza, J A.; Inorg Syn 1985, 22, 126 (g) Teo, S.; Weng, Z.; Hor, T S A Organometallics, 2006, 25, 1199 (h) Dong, T.-Y.; Lai, L.-L J Organomet Chem 1996, 509, 131 186 Appendix: Crystal Structure and refinement data Table A1 Crystal Data and Structure Refinement Parameters for complexes L4d, C1 and C3 complexes Empirical formula L4d C28H29NP2S C1•C6H14 C51H64FeNNiP C3•C6H14 C66H52F10Fe2N2NiO2P2 Mr 473.52 836.56 1327.45 temp, K 223(2) 223(2) 223(2) Light yellow Dark red Dark red cryst size, mm 0.26 x 0.10 x 0.06 0.30 x 0.20 x 0.08 0.30 x 0.20 x 0.12 cryst system Orthorhombic Triclinic Triclinic space group P2(1)2(1)2(1) Pī Pī a, Å 9.2813(10) 9.7577(10) 11.0651(8) b, Å 9.8308(8) 12.6044(14) 15.2100(11) c, Å 27.659(3) 18.6464(19) 17.6503(12) α, deg 90 94.371(3) 86.609(2) β, deg 90 94.356(3) 80.427(2) γ, deg 90 96.860(3) 83.410(2) 2523.6(4) 2261.9(4) 2907.4(4) cryst color V, Å 2 1.246 1.228 1.516 -1 abs coeff, mm 0.271 0.806 0.948 F(000) 1000 892 1356 θ range for data collection 1.47 to 25.00° 1.63 to 25.00° 1.75 to 27.50° index ranges no of reflns collected -10 ≤ h ≤ 11, 10 ≤ k ≤ 9, -32 ≤ l ≤ 6731 -11 ≤ h ≤ 11, -14 ≤ k ≤ 9, -22 ≤ l ≤ 22 13266 -14 ≤ h ≤ 14, -19 ≤ k ≤ 19, -22 ≤ l ≤ 22 38590 indep reflns 3723 (Rint = 0.0731) 7933 Rint = 0.0518 13339 Rint = 0.0537 max and transmission 0.9839 and 0.9328 0.9383 and 0.7940 0.8947 and 0.7641 no of 3723 / / 298 7933 / 121 / 532 13339 / 16 / 768 final R indices [I >2σ(I)] a, b R1 = 0.0840, wR2 = 0.1530 R1 = 0.0999, wR2 = 0.1957 R1 = 0.0652, wR2 = 0.1586 R indices (all data) R1 = 0.1115, wR2 = 0.1715 R1 = 0.1436, wR2 = 0.2125 R1 = 0.0978, wR2 = 0.1741 1.071 1.160 1.032 0.447 and -0.382 0.455 and -0.450 1.081 and -0.524 Z density, Mg/m data/restraints/params goodness-of-fit on F2 c large diff peak and hole, e Å a -3 R = (Σ|Fo| - |Fc|)Σ|Fo| b wR2 = [(Σ ω|Fo| - |Fc|)2/Σ ω|Fo|2]1/2 187 c GoF = [(Σ ω|Fo| - |Fc|)2/(Nobs-Nparam)]1/2 Table A2 Crystal Data and Structure Refinement Parameters for complexes C4, C5 and C7a complexes Empirical formula C4•C7H16Cl2 C65H54Cl3F10Fe2N2Ni2P2 C5 C32H37Cl3CrNOP2S C7a C30H32Cl3CrN2P2S Mr 1450.51 703.98 672.93 temp, K 223(2) 295(2) 223(3) Red Blue Blue cryst size, mm 0.34 x 0.20 x 0.18 0.10 x 0.08 x 0.06 0.10 x 0.08 x 0.02 cryst system Triclinic Monoclinic Monoclinic space group Pī P2(1)/c P2(1)/n a, Å 12.867(2) 13.308(3) 11.3331(13) b, Å 14.027(2) 14.316(3) 16.3009(19) c, Å 17.800(2) 17.351(4) 17.286(2) α, deg 100.472(3) 90 90 β, deg 106.307(3) 96.869(8) 99.248(4) γ, deg 90.936(4) 90 90 V, Å3 3024.2(8) 3281.7(12) 3151.8(6) cryst color 4 1.593 1.425 1.418 -1 abs coeff, mm 1.343 0.781 0.808 F(000) 1474 1460 1388 θ range for data collection 1.48 to 25.00° 1.54 to 25.00° 1.73 to 25.00° index ranges no of reflns collected -15 ≤ h ≤ 15, -16 ≤ k ≤ 16, -21 ≤ l ≤ 21 25829 -15 ≤ h ≤ 14, -17 ≤ k ≤ 15, -14 ≤ l ≤ 20 18581 -12 ≤ h ≤ 12, -17 ≤ k ≤ 19, -20 ≤ l ≤ 20 18076 indep reflns 9040(Rint = 0.1064) 5784(Rint = 0.2164) 5559(Rint = 0.1524) max and transmission 0.7940 and 0.6581 0.9546 and 0.9260 0.9840 and 0.9235 no of 9040/11/740 5783/118/407 5559/22/373 final R indices [I >2σ(I)] a, b R1 = 0.0695, wR2 = 0.1598 R1 = 0.1079, wR2 = 0.1590 R1 = 0.1175, wR2 = 0.1997 R indices (all data) R1 = 0.1330, wR2 = 0.1711 R1 = 0.2136, wR2 = 0.1913 R1 = 0.1920, wR2 = 0.2300 0.811 1.040 1.094 1.087 and -0.457 0.437 and -0.429 0.604 and -0.514 Z density, Mg/m data/restraints/params goodness-of-fit on F2 c large diff peak and hole, e Å-3 a R = (Σ|Fo| - |Fc|)Σ|Fo| b wR2 = [(Σ ω|Fo| - |Fc|)2/Σ ω|Fo|2]1/2 188 c GoF = [(Σ ω|Fo| - |Fc|)2/(Nobs-Nparam)]1/2 Table A3 Crystal Data and Structure Refinement Parameters for complexes C7b, C8 and C9 complexes Empirical formula C7b C31H34Cl3CrN2P2S C8 C32H34Cl3CrN2P2 2xC9•C2H3NO2 C54H53Cl6Cr2N3O6 P4 Mr 686.95 666.90 1280.57 temp, K 223(2) 223(2) 223(2) Blue Blue Purple cryst size, mm 0.18 x 0.06 x 0.02 0.20 x 0.08 x 0.06 0.10 x 0.08 x 0.06 cryst system Orthorhombic Orthorhombic Monoclinic space group Pbca Pbca P2(1)/c a, Å 11.213(2) 10.8132(9) 20.8878(15) b, Å 16.453(3) 17.3988(13) 18.7658(14) c, Å 34.755(7) 34.178(3) 15.4625(10) α, deg 90 90 90 β, deg 90 90 110.622(2) γ, deg 90 90 90 6414(2) 6430.1(9) 5672.6(7) cryst color V, Å 8 1.423 1.378 1.499 -1 abs coeff, mm 0.796 0.729 0.830 F(000) 2840 2760 2624 θ range for data collection 2.16 to 25.00° 2.23 to 25.00° 1.04 to 25.00° index ranges no of reflns collected -13 ≤ h ≤ 13, -19 ≤ k ≤ 15, -41 ≤ l ≤ 41 35350 -12 ≤ h ≤ 12, -20 ≤ k ≤ 19, -40 ≤ l ≤ 35 35585 -24 ≤ h ≤ 23, -22 ≤ k ≤ 21, -18 ≤ l ≤ 17 32273 indep reflns 5646(Rint = 0.1304) 5666 (Rint = 0.1468) 9999 (Rint = 0.1160) max and transmission 0.9843 and 0.8700 0.9575 and 0.8678 0.9519 and 0.9216 no of 5646/0/363 5666 / / 362 9999 / / 689 R1 = 0.0713, wR2 = 0.1314 R1 = 0.1024, wR2 = 0.1432 1.112 R1 = 0.0626, wR2 = 0.1120 R1 = 0.1026, wR2 = 0.1243 1.032 R1 = 0.1034, wR2 = 0.2122 R1 = 0.1626, wR2 = 0.2383 1.091 0.401 and -0.445 0.357 and -0.326 1.054 and -0.877 Z density, Mg/m data/restraints/params final R indices [I >2σ(I)] a, b R indices (all data) goodness-of-fit on F2 c large diff peak and hole, e Å a -3 R = (Σ|Fo| - |Fc|)Σ|Fo| b wR2 = [(Σ ω|Fo| - |Fc|)2/Σ ω|Fo|2]1/2 189 c GoF = [(Σ ω|Fo| - |Fc|)2/(Nobs-Nparam)]1/2 Table A4 Crystal Data and Structure Refinement Parameters for complexes L5, (R)C16a and (S)-C16a complexes Empirical formula Mr L5 C26H25NO2P2 (R)-C16a•C6H11.50Cl1.50O1.50 C49H53.50BCl1.50F4FeNO1.50PRh (S)-C16a•C6H12Cl1.50O1.50 C49H54BCl1.50F4FeNO1.50PRh 445.41 1010.14 1010.65 temp, K 223 (2) 223(2) 223(2) Colourless Orange Red cryst size, mm 0.26 x 0.20 x 0.14 0.86 x 0.22 x 0.08 0.86 x 0.22 x 0.08 cryst system Monoclinic Triclinic Triclinic space group C2/c P1 P1 a, Å 20.424(15) 10.1370(5) 10.1234(6) b, Å 8.974(7) 11.0821(6) 11.0655(7) c, Å 12.342(9) 20.1903(11) 20.1676(12) α, deg 90 87.6030(10) 87.3770(10) β, deg 99.544(15) 84.6930(10) 84.4320(10) γ, deg 90 87.6290(10) 87.4130(10) 2231(3) 2254.9(2) 2244.3(2) cryst color V, Å 2 1.326 1.488 1.496 -1 abs coeff, mm 0.219 0.868 0.872 F(000) 936 1038 1039 θ range for data 2.02 to 27.50° 1.84 to 27.50 1.84 to 27.50 -26 ≤ h ≤ 26, -5 ≤ k ≤ 11, -16 ≤ l ≤ 15 7201 -13 ≤ h ≤ 13, -14≤ k ≤ 14 -26 ≤ l ≤ 26 29499 -13 ≤ h ≤ 13, -14≤ k ≤ 14 -26 ≤ l ≤ 26 28441 2551 (Rint = 0.0751) 0.9700 and 0.9453 20499 (Rint = 0.0296) 20313 (Rint = 0.0341) 0.9338 and 0.5223 0.9335 and 0.5209 2551 / 21 / 151 20499/139/1093 20313/137/1060 R1 = 0.0827, wR2 = 0.2262 R1 = 0.0492, wR2 = 0.1167 R1 = 0.0679, wR2 = 0.1378 Z density, Mg/m collection index ranges no of reflns collected indep reflns max and transmission no of data/restraints/ params final R indices [I >2σ(I)] a, b R1 = 0.1079, R1 = 0.0529, R indices (all data) wR2 = 0.2453 wR2 = 0.1196 goodness-of-fit 1.068 1.017 on F2 c large diff peak 0.871 and -0.459 0.856 and -0.499 and hole, e Å-3 a R = (Σ|Fo| - |Fc|)Σ|Fo| b wR2 = [(Σ ω|Fo| - |Fc|)2/Σ ω|Fo|2]1/2 190 R1 = 0.0631, wR2 = 0.1414 1.051 1.199 and -0.928 c GoF = [(Σ ω|Fo| - |Fc|)2/(Nobs-Nparam)]1/2 ... enantioselective reduction of ketones to secondary alcohols They are nitrogenbased chelating ligands, diphosphines and heterobidentate [P, N] ligands 6.1.3.1 Nitrogen-based ligands A number of highly efficient... The mixture of Pd2(dba)3, ligand and chloroform were made Preliminary analyses were performed on a one-pot reaction of Pd2(dba)3, ligand L1k in chloroform stirred at temperature of 60°C for h... result of the hemilability of the ligands Table 5.1: Ligand effect on the Suzuki cross-coupling reactions of 1-bromo-2methylnaphthalene and 2-methylnaphthyl-1-boronic acid.a 1.2 mol% ligand 0.5mol%