Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 140 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
140
Dung lượng
1,06 MB
Nội dung
A NEW FORM OF THE C-METRIC KENNETH HONG CHONG MING (B.Sc. (Hons.), NUS) A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF PHYSICS NATIONAL UNIVERSITY OF SINGAPORE 2005/06 A New Form of the C-Metric A thesis submitted by Hong Chong Ming @ Kenneth (B.Sc. (Hons.), NUS) In partial fulfillment of the requirement for the Degree of Master of Science Supervisor A/P Edward Teo Ho Khoon Department of Physics National University of Singapore Singapore 119260 2005/06 A New Form of the C-metric Hong Chong Ming @ Kenneth June 2, 2006 Dedicated to my wife, Yivin Jou Yann Ting for her immense moral support and tolerance to my numerous shortcomings, and our son, Alpha Hong Yik Hang for the painstaking but joyful experiences he has brought on us. Acknowledgments There are many people I owe thanks to for the completion of this project. First and foremost, I am particularly indebted to my supervisor, A/P Edward Teo Ho Khoon, for the incredible opportunity to be his student. Without his constant support, patient guidance and invaluable encouragement over the years, the completion of this thesis would have been impossible. Being also my supervisor in my job as a teaching assistant here, his advice and help are indispensable. I have been greatly influenced by his attitudes and dedication in both research and teaching. I am also thankful to my seniors, Liang Yeong Cherng, for his advice on Sibgatullin’s integral method, and Brenda Chng Mei Yuen, for her discussion on the five-dimensional Cmetric. I am also grateful to Tan Hai Siong for his stimulating discussion on the generalized Weyl formalism. Special thanks also to Assistant Professor Sow Chorng Haur for granting me the flexibility in my work. The encouragement and help from other colleagues and friends are much appreciated too. I would also like to express my sincere gratitude to my family members in Malaysia. I am deeply grateful to my wife, Yivin Jou Yann Ting, for her valuable cooperation in my life and for sharing a major part of the responsibility on family affairs, so that I could spend my time on this thesis. i Contents Acknowledgments i Summary vii Notations viii Overview § 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . § 1.2 Historical review of the C-metric . . . . . . . . . . . . . . . . . . . . . . . . . § 1.3 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . § 1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Uncharged C-Metric 11 § 2.1 New form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 § 2.2 Coordinate transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 § 2.3 Coordinate transformation to the Weyl form . . . . . . . . . . . . . . . . . . . 16 § 2.4 Weyl form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 § 2.5 Preliminary analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 § 2.5.1 Coordinate range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 § 2.5.2 Curvature singularities and asymptotic flatness . . . . . . . . . . . . . 23 ii CONTENTS iii § 2.5.3 Black hole and acceleration event horizons . . . . . . . . . . . . . . . . 24 § 2.5.4 Symmetric axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 § 2.5.5 Conical singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 § 2.5.6 Zero-acceleration limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 § 2.6 Weyl picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Charged C-Metric 27 30 § 3.1 New form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 § 3.2 Weyl form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 § 3.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 § 3.4 Extremal charged C-metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 § 3.5 Ernst solution Rotating C-Metric 43 § 4.1 Pleba´ nski-Demia´ nski solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 § 4.2 Old form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 § 4.3 New form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 § 4.4 Weyl-Papapetrou form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 § 4.5 Physical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 § 4.5.1 Coordinate range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 § 4.5.2 Curvature singularities and asymptotic flatness . . . . . . . . . . . . . 52 § 4.5.3 Black hole and acceleration event horizons . . . . . . . . . . . . . . . . 53 § 4.5.4 Symmetric axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 § 4.5.5 Conical singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 § 4.5.6 Torsion singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 § 4.5.7 Rod structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 CONTENTS iv § 4.5.8 Zero-acceleration limit . . . . . . . . . . . . . . . . . . . . . . . . . . . Rotating Ernst Type Solution § 5.1 Rotating charged C-metric 57 59 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 § 5.2 Stationary Harrison transformation . . . . . . . . . . . . . . . . . . . . . . . . 62 § 5.3 Rotating Ernst solution 63 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dilaton C-Metric 67 § 6.1 Dilaton charged black holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 § 6.1.1 Einstein-Maxwell theory (α = 0) . . . . . . . . . . . . . . . . . . . . . . 69 § 6.1.2 Low energy string theory (α = 1) . . . . . . . . . . . . . . . . . . . . . 69 § 6.2 Emparan and Teo’s solution generating technique . . . . . . . . . . . . . . . . 70 § 6.3 Derivation of the dilaton C-metric . . . . . . . . . . . . . . . . . . . . . . . . 72 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 § 6.5 Physical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 § 6.6 Dilatonic Harrison transformation . . . . . . . . . . . . . . . . . . . . . . . . 79 § 6.7 Dilaton Ernst solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 § 6.4 Coordinate transformation Five-dimensional “C-Metric” 84 § 7.1 Review of generalized Weyl solutions . . . . . . . . . . . . . . . . . . . . . . . 84 § 7.2 Five-dimensional “uncharged C-metric” . . . . . . . . . . . . . . . . . . . . . 87 § 7.3 Physical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 § 7.4 Davidson and Gedalin’s solution generating technique . . . . . . . . . . . . . 94 § 7.5 Teo’s solution generating technique . . . . . . . . . . . . . . . . . . . . . . . . 96 § 7.6 Five-dimensional “dilaton C-metric” . . . . . . . . . . . . . . . . . . . . . . . 99 § 7.7 Five-dimensional “dilaton Ernst” solution . . . . . . . . . . . . . . . . . . . . 102 CONTENTS v Conclusion and Outlook § 8.1 Conclusion 104 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 § 8.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 List of Figures 2.1 Graph of 1/B against mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 The structure of the uncharged C-metric in the x-y coordinate patch. . . . . . 23 2.3 The positions of the rods along the z-axis of the uncharged C-metric. . . . . . 29 3.1 The structure of the charged C-metric in the x-y coordinate patch. . . . . . . 35 3.2 The positions of the rods along the z-axis of the charged C-metric. . . . . . . 36 4.1 The structure of the rotating C-metric in the x-y coordinate patch. . . . . . . 51 4.2 The positions of the rods along the z-axis of the rotating C-metric. . . . . . . 57 5.1 The positions of the rods along the z-axis of the rotating charged C-metric. . 61 7.1 The positions of the rods of the five-dimensional “uncharged C-metric”. . . . 87 7.2 The positions of the rods along the z-axis in the massless limit. . . . . . . . . 92 vi Bibliography [1] § 1.2 A. Ashtekar and T. Dray, “On the existence of solutions to Einstein’s equations with non-zero Bondi-news,” Comm. Math. Phys. 79, 581 (1981). [2] § 8.2 B. Bertotti, “Uniform electromagnetic field in the theory of general relativity,” Phys. Rev. 116, 1331 (1959). [3] § 1.2 J. Bicak, “Gravitational radiation from uniformly accelerated particles in general relativity,” Proc. Roy. Soc. Lond. A 302, 201 (1968). [4] § 2.1, § 4.2 J. Bicak, “The role of exact solutions of Einstein’s equations in the developments of general relativity and astrophysics selected themes,” Lect. Notes Phys. 540, (2000) [arXiv:gr-qc/0004016]. [5] § 2.1, § 4.2 J. Bicak, “Exact radiative spacetimes: Some recent developments,” Annalen Phys. 9, 207 (2000) [arXiv:gr-qc/0004031]. [6] § 1.2, § 4.2, § 4.5.1, § 4.5.7, § 8.1, § 8.1 J. Bicak and V. Pravda, “Spinning C-metric: radiative spacetime with accelerating, rotating black holes,” Phys. Rev. D 60, 044004 (1999) [arXiv:gr-qc/9902075]. [7] § 1.2 J. Bicak and B. G. Schmidt, “Asymptotically flat radiative space-times with boostrotation symmetry: The general structure,” Phys. Rev. D 40, 1827 (1989). i BIBLIOGRAPHY ii [8] § 1.3, § 7.4, § 7.4 W. B. Bonnor, “An exact solution of the Einstein-Maxwell equations referring to a magnetic dipole,” Z. Phys. 190, 444 (1966). [9] § 1.2, § 2.1, § 2.4, § 2.4, § 2.4 W. B. Bonnor, “The sources of the vacuum C-metric,” Gen. Rel. Grav. 15, 535 (1983). [10] § 1.2, § 3.1, § 3.1 W. B. Bonnor, “The C-metric with m = 0, e = 0,” Gen. Rel. Grav. 16, 269 (1984). [11] § 4.5.6, § 4.5.6 W. B. Bonnor, “The interaction between two classical spinning particles,” Class. Quant. Grav. 18, 1381–8 (2001). [12] § 4.5.6 W. B. Bonnor, “The interaction of charged, spinning, magnetized masses,” Class. Quant. Grav. 18, 2853–63 (2001) [arXiv:gr-qc/0203046]. [13] § 4.5.6 W. B. Bonnor, “Closed timelike curves in general relativity,” Int. J. Mod. Phys. D 12 1705 (2003) [arXiv:gr-qc/0211051]. [14] § 2.1 W. B. Bonnor and N. S. Swaminarayan, “An exact solution for uniformly accelerated particles in general relativity,” Zeitschrift f¨ ur Physik 177, 240–56 (1964). [15] § 1.3, § 8.2 I. S. Booth and R. B. Mann, “Complex instantons and charged rotating black hole pair creation,” Phys. Rev. Lett. 81, 5052 (1998) [arXiv:gr-qc/9806015]. [16] § 1.3, § 8.2, § 8.2, § 8.2 I. S. Booth and R. B. Mann, “Cosmological pair production of charged and rotating black holes,” Nucl. Phys. B 539, 267 (1999) [arXiv:gr-qc/9806056]. [17] § 1.3 R. Bousso, “Charged Nariai black holes with a dilaton,” Phys. Rev. D 55, 3614 (1997) [arXiv:gr-qc/9608053]. BIBLIOGRAPHY iii [18] § 1.3 R. Bousso and A. Chamblin, “Patching up the no-boundary proposal with virtual Euclidean wormholes,” Phys. Rev. D 59, 084004 (1999) [arXiv:gr-qc/9803047]. [19] § 8.2 D. Brill and G. T. Horowitz, “Negative energy in string theory,” Phys. Lett. B 262, 437 (1991). [20] § 1.2 J. D. Brown, “Black hole pair creation and the entropy factor,” Phys. Rev. D 51, 5725 (1995) [arXiv:gr-qc/9412018]. [21] § 8.2 R. G. Cai, J. Y. Ji and K. S. Soh, “Topological dilaton black holes,” Phys. Rev. D 57, 6547 (1998) [arXiv:gr-qc/9708063]. [22] § 8.2 R. G. Cai and A. Wang, “Non-asymptotically AdS/dS solutions and their higher dimensional origins,” Phys. Rev. D 70, 084042 (2004) [arXiv:hep-th/0406040]. [23] § 8.2 R. G. Cai and Y. Z. Zhang, “Holography and brane cosmology in domain wall backgrounds,” Phys. Rev. D 64, 104015 (2001) [arXiv:hep-th/0105214]. [24] § 8.2 M. Caldarelli, L. Vanzo and S. Zerbini, “The extremal limit of D-dimensional black holes,” in Geometrical Aspects of Quantum Fields, ed. by A. A. Bytsenko, A. E. Goncalves, B. M. Pimentel, World Scientific, Singapore, (2001) [arXiv:hepth/0008136]. [25] § 1.3 R. R. Caldwell, A. Chamblin and G. W. Gibbons, “Pair creation of black holes by domain walls,” Phys. Rev. D 53, 7103 (1996) [arXiv:hep-th/9602126]. [26] § 8.2 R. Casadio, B. Harms, Y. Leblanc and P. H. Cox, “New perturbative solutions of the Kerr-Newman dilatonic black hole field equations,” Phys. Rev. D 55, 814 (1997) [arXiv:hep-th/9606069]. BIBLIOGRAPHY iv [27] § 8.1 A. Chamblin and R. Emparan, “Bubbles in Kaluza-Klein theories with space- or timelike internal dimensions,” Phys. Rev. D 55, 754 (1997) [arXiv:hep-th/9607236]. [28] § 8.2 K. C. K. Chan, J. H. Horne and R. B. Mann, “Charged dilaton black holes with unusual asymptotics,” Nucl. Phys. B 447, 441 (1995) [arXiv:gr-qc/9502042]. [29] § 1.3 S. Chandrasekhar and B. C. Xanthopoulos, “Two black holes attached to strings,” Proc. Roy. Soc. Lond. A 423, 387 (1989). [30] § 8.2 C. Charmousis and R. Gregory, “Axisymmetric metrics in arbitrary dimensions,” Class. Quant. Grav. 21, 527 (2004) [arXiv:gr-qc/0306069]. [31] § 4.5.2 I. Ciufolini, “Gravitomagnetism and status of the LAGEOS III experiment,” Class. Quant. Grav. 11, A73–83 (1994). [32] § 8.2 G. Clement, D. Gal’tsov and C. Leygnac, “Linear dilaton black holes,” Phys. Rev. D 67, 024012 (2003) [arXiv:hep-th/0208225]. [33] § 8.2 G. Clement and C. Leygnac, “Non-asymptotically flat, non-AdS dilaton black holes,” Phys. Rev. D 70, 084018 (2004) [arXiv:gr-qc/0405034]. [34] § 1.2, § 2.1, § 2.4, § 2.5.1, § 2.6 F. H. J. Cornish and W. J. Uttley, “The interpretation of the C metric: the vacuum case,” Gen. Rel. Grav. 27, 439–54 (1995). [35] § 1.2, § 3.1, § 3.1, § 3.2, § 3.3, § 3.3, § 8.2 F. H. J. Cornish and W. J. Uttley, “The interpretation of the C metric: the charged case when e2 ≤ m2 ,” Gen. Rel. Grav. 27, 735–49 (1995). BIBLIOGRAPHY v [36] § 8.2 M. S. Costa and M. J. Perry, “Interacting black holes,” Nucl. Phys. B 591, 469 (2000) [arXiv:hep-th/0008106]. [37] § 2.1 H. Curzon, “Cylindrical solutions of Einstein’s gravitation equations,” Proc. London Math. Soc. 23, 477–80 (1924). [38] § 8.2 N. Dadhich, “On product spacetime with 2-sphere of constant curvature,” [arXiv:grqc/0003026]. [39] § 1.4, 7, § 7.4, § 7.4, § 8.1 A. Davidson and E. Gedalin, “Finite magnetic flux tube as a black and white dihole,” Phys. Lett. B 339, 304 (1994) [arXiv:gr-qc/9408006]. [40] § 8.2 M. H. Dehghani and N. Farhangkhah, “Charged rotating dilaton black strings,” Phys. Rev. D 71, 044008 (2005) [arXiv:hep-th/0412049]. [41] § 1.3, § 8.2 ´ J. C. Dias, “Pair creation of anti-de Sitter black holes on a cosmic string background,” O. Phys. Rev. D 70, 024007 (2004) [arXiv:hep-th/0401069]. [42] § 1.1, § 1.3, § 2.5.1, § 3.3 O. J. C. Dias, “Black hole solutions and pair creation of black holes in three, four and higher dimensional spacetimes,” [arXiv:hep-th/0410294]. [43] § 1.2, § 1.2, § 2.5.1, § 3.3, § 8.2, § 8.2, § 8.2, § 8.2 ´ J. C. Dias and J. P. S. Lemos, “Pair of accelerated black holes in anti-de Sitter backO. ground: The AdS C-metric,” Phys. Rev. D 67, 064001 (2003) [arXiv:hep-th/0210065]. [44] § 1.2, § 2.5.1, § 3.3, § 8.2, § 8.2, § 8.2, § 8.2 ´ J. C. Dias and J. P. S. Lemos, “Pair of accelerated black holes in a de Sitter backO. ground: The dS C-metric,” Phys. Rev. D 67, 084018 (2003) [arXiv:hep-th/0301046]. BIBLIOGRAPHY vi [45] § 8.2 ´ J. C. Dias and J. P. S. Lemos, “The extremal limits of the C-metric: Nariai, BertottiO. Robinson and anti-Nariai C-metrics,” Phys. Rev. D 68, 104010 (2003) [arXiv:hepth/0306194]. [46] § 1.3, § 8.2 ´ J. C. Dias and J. P. S. Lemos, “Pair creation of de Sitter black holes on a cosmic O. string background,” Phys. Rev. D 69, 084006 (2004) [arXiv:hep-th/0310068]. [47] § 1.3 W. Dietz and C. Hoenselaers, “Two mass solutions of Einsteins vacuum equations: The double Kerr solution,” Annals Phys. 165, 319 (1985). [48] § 1.3, § 6.6 F. Dowker, J. P. Gauntlett, S. B. Giddings and G. T. Horowitz, “On pair creation of extremal black holes and Kaluza-Klein monopoles,” Phys. Rev. D 50, 2662 (1994) [arXiv:hep-th/9312172]. [49] § 1.2, § 1.3, § 1.4, 6, 6, § 6.6, § 6.6, § 6.6, § 6.7, § 6.7, § 7.6, § 8.1, § 8.1 F. Dowker, J. P. Gauntlett, D. A. Kastor and J. H. Traschen, “Pair creation of dilaton black holes,” Phys. Rev. D 49, 2909–17 (1994) [arXiv:hep-th/9309075]. [50] § 1.2, § 8.1, § 8.2 H. F. Dowker and S. N. Thambyahpillai, “Many accelerating black holes,” Class. Quant. Grav. 20, 127–36 (2003) [arXiv:gr-qc/0105044]. [51] § 1.3 D. M. Eardley, G. T. Horowitz, D. A. Kastor and J. H. Traschen, “Breaking cosmic strings without monopoles,” Phys. Rev. Lett. 75, 3390 (1995) [arXiv:gr-qc/9506041]. [52] § 1.2, § 2.1 J. Ehlers and W. Kundt, “Gravitation, an introduction to current research,” edited by L. Witten, Willey, New York (1962). [53] § 8.1 H. Elvang, “A charged rotating black ring,” Phys. Rev. D 68, 124016 (2003) [arXiv:hepth/0305247]. BIBLIOGRAPHY vii [54] § 1.3 R. Emparan, “Pair creation of black holes joined by cosmic strings,” Phys. Rev. Lett. 75, 3386 (1995) [arXiv:gr-qc/9506025]. [55] § 1.3, § 2.5.5, § 7.4 R. Emparan, “Black diholes,” Phys. Rev. D 61, 104009 (2000) [arXiv:hep-th/9906160]. [56] § 7.7 R. Emparan, “Tubular branes in fluxbranes,” Nucl. Phys. B 610, 169 (2001) [arXiv:hepth/0105062]. [57] § 1.2, § 1.2 R. Emparan, G. T. Horowitz and R. C. Myers, “Exact description of black holes on branes,” JHEP 0001, 007 (2000) [arXiv:hep-th/9911043]. [58] § 1.2, § 1.2 R. Emparan, G. T. Horowitz and R. C. Myers, “Exact description of black holes on branes. II: Comparison with BTZ black holes and black strings,” JHEP 0001, 021 (2000) [arXiv:hep-th/9912135]. [59] § 1.4, § 2.6, 7, § 7.1, § 7.1, § 7.5, § 8.1, § 8.2 R. Emparan and H. S. Reall, “Generalized Weyl solutions,” Phys. Rev. D 65, 084025 (2002) [arXiv:hep-th/0110258]. [60] § 8.1, § 8.1 R. Emparan and H. S. Reall, “A rotating black ring in five dimensions,” Phys. Rev. Lett. 88, 101101 (2002) [arXiv:hep-th/0110260]. [61] § 1.3, § 1.4, § 3.3, 6, § 6.2, § 6.2, § 8.1 R. Emparan and E. Teo, “Macroscopic and microscopic description of black diholes,” Nucl. Phys. B 610, 190–214 (2001) [arXiv:hep-th/0104206]. [62] § 7.4 F. J. Ernst, “New formulation of the axially symmetric gravitational field problem,” Phys. Rev. 167, 1175–8 (1968). BIBLIOGRAPHY viii [63] § 5.2, § 7.4 F. J. Ernst, “New formulation of the axially symmetric gravitational field problem II,” Phys. Rev. 168, 1415–7 (1968). [64] § 1.4, § 3.5, 5, § 5.2, § 8.1 F. J. Ernst, “Black holes in a magnetic universe,” J. Math. Phys. 17, 54–6 (1976). [65] § 1.1, § 1.2, § 1.4, § 3.5, § 5.3, § 6.7, § 8.1 F. J. Ernst, “Removal of the nodal singularity of the C-metric,” J. Math. Phys. 17, 515–6 (1976). [66] § 3.5, § 8.1 F. J. Ernst and W. J. Wild, “Kerr black holes in a magnetic universe,” J. Math. Phys. 17, 182–4 (1976). [67] § 4.2 H. Farhoosh and R. L. Zimmerman, “Stationary charged C metric,” J. Math. Phys. 20, 2272–9 (1979). [68] § 1.2, § 4.2 H. Farhoosh and R. L. Zimmerman, “Killing horizons and dragging of the inertial frame about a uniformly accelerating particle,” Phys. Rev. D 21, 317–27 (1980). [69] § 1.2, § 4.2 H. Farhoosh and R. L. Zimmerman, “Surfaces of infinite red-shift around a uniformly accelerating and rotating particle,” Phys. Rev. D 21, 2064–74 (1980). [70] § 1.2 H. Farhoosh and R. L. Zimmerman, “Killing horizons around a uniformly accelerating and rotating particle,” Phys. Rev. D 22, 797–801 (1980). [71] § 8.2 V. P. Frolov, A. I. Zelnikov and U. Bleyer, “Charged rotating black hole from fivedimensional point of view,” Annalen Phys. 44, 371 (1987). [72] § 6.1, § 6.2, § 6.2, § 7.4, § 8.2 D. Garfinkle, G. T. Horowitz and A. Strominger, “Charged black holes in string theory,” Phys. Rev. D 43, 3140 (1991) [Erratum-ibid. D 45, 3888 (1992)]. BIBLIOGRAPHY ix [73] § 1.3 D. Garfinkle, S. B. Giddings and A. Strominger, “Entropy in black hole pair production,” Phys. Rev. D 49, 958 (1994) [arXiv:gr-qc/9306023]. [74] § 1.3 D. Garfinkle and A. Strominger, “Semiclassical Wheeler wormhole production,” Phys. Lett. B 256, 146 (1991). [75] § 8.2 T. Ghosh and P. Mitra, “Asymptotically non-flat rotating dilaton black holes,” Class. Quant. Grav. 20, 1403 (2003) [arXiv:gr-qc/0212057]. [76] § 1.3 G. W. Gibbons, “Quantised flux-tubes in Einstein–Maxwell theory and non-compact internal spaces,” in Fields and Geometry 1986: Proceedings of the XXIInd Winter School and Workshop of Theoretical Physics, Karpacz, Poland , ed. A. Jadczyk, World Scientific, Singapore (1986). [77] § 6.1, § 6.2, § 6.2, § 6.6, § 6.6, § 7.4, § 8.2 G. W. Gibbons and K. i. Maeda, “Black holes and membranes in higher dimensional theories with dilaton fields,” Nucl. Phys. B 298, 741 (1988). [78] § 8.2 P. H. Ginsparg and M. J. Perry, “Semiclassical perdurance of de Sitter space,” Nucl. Phys. B 222, 245 (1983). [79] § 2.1 B. B. Godfrey, “Horizons in Weyl metrics exhibiting extra symmetries,” Gen. Rel. Grav. 3, 3–16 (1972). [80] § 8.2 R. Gregory and J. A. Harvey, “Black holes with a massive dilaton,” Phys. Rev. D 47, 2411 (1993) [arXiv:hep-th/9209070]. [81] § 1.2, § 8.2 J. B. Griffiths and J. Podolsky, “Accelerating and rotating black holes,” Class. Quant. Grav. 22, 3467 (2005) [arXiv:gr-qc/0507021]. BIBLIOGRAPHY x [82] § 1.2, § 8.2 J. B. Griffiths and J. Podolsky, “A new look at the Plebanski-Demianski family of solutions,” [arXiv:gr-qc/0511091]. [83] § 1.2, § 8.2 J. B. Griffiths and J. Podolsky, “Global aspects of accelerating and rotating black hole space-times,” Class. Quant. Grav. 23, 555 (2006) [arXiv:gr-qc/0511122]. [84] § 7.4 D. J. Gross and M. J. Perry, “Magnetic monopoles in Kaluza-Klein theories,” Nucl. Phys. B 226, 29 (1983). [85] § 1.2, § 3.5 B. K. Harrison, “New solutions of the Einstein-Maxwell equations from old,” J. Math. Phys. 9, 1744–52 (1968). [86] § 8.2 S. W. Hawking and S. F. Ross, “Duality between electric and magnetic black holes,” Phys. Rev. D 52, 5865 (1995) [arXiv:hep-th/9504019]. [87] § 1.3 S. W. Hawking and S. F. Ross, “Pair production of black holes on cosmic strings,” Phys. Rev. Lett. 75, 3382 (1995) [arXiv:gr-qc/9506020]. [88] § 1.2, § 1.4, § 1.4, § 2.1, § 2.2, § 7.3, § 7.3, § 8.1, § 8.2, § 8.2 K. Hong and E. Teo, “A new form of the C-metric,” Class. Quant. Grav. 20, 3269 (2003) [arXiv:gr-qc/0305089]. [89] § 1.2, § 1.4, § 1.4, § 8.1 K. Hong and E. Teo, “A new form of the rotating C-metric,” Class. Quant. Grav. 22, 109 (2005)[arXiv:gr-qc/0410002]. [90] § 8.2 J. H. Horne and G. T. Horowitz, “Rotating dilaton black holes,” Phys. Rev. D 46, 1340 (1992) [arXiv:hep-th/9203083]. BIBLIOGRAPHY xi [91] § 7.6 G. T. Horowitz and A. Strominger, “Black strings and P-branes,” Nucl. Phys. B 360, 197 (1991). [92] § 2.6, § 2.6, § 2.6, § 4.4, § 5.2, § 7.4, § 7.4, § 7.4 J. N. Islam, “Rotating fields in general relativity,” Cambridge University Press (1985). [93] § 1.3, § 1.3 W. Israel and K. A. Khan, “Collinear particles and Bondi dipoles in general relativity,” Nuovo Cim. 33, 331 (1964). [94] § 1.1, § 1.2, § 1.2, § 2.1, § 3.1, § 3.3 W. Kinnersley and M. Walker, “Uniformly accelerating charged mass in general relativity,” Phys. Rev. D 2, 1359–70 (1970). [95] § 8.2 T. Koikawa and M. Yoshimura, “Dilaton fields and event horizon,” Phys. Lett. B 189, 29 (1987). [96] § 1.3 D. Kramer and G. Neugebauer, “The superposition of two Kerr solutions,” Phys. Lett. A 75, 259 (1980). [97] § 1.2, § 1.2, § 1.2 P. Krtous, “Accelerated black holes in an anti-de Sitter universe,” Phys. Rev. D 72, 124019 (2005) [arXiv:gr-qc/0510101]. [98] § 1.2 P. Krtous and J. Podolsky, “Radiation from accelerated black holes in de Sitter universe,” Phys. Rev. D 68, 024005 (2003) [arXiv:gr-qc/0301110]. [99] § 4.2, § 4.5.6, § 4.5.6 P. S. Letelier and S. R. de Oliveira, “Double Kerr-NUT spacetimes: Spinning strings and spinning rods,” Phys. Lett. A 238, 101 (1998). [100] § 1.2, § 4.2, § 8.1, § 8.1 P. S. Letelier and S. R. Oliveira, “On accelerated black holes,” Phys. Rev. D 64, 064005 (2001) [arXiv:gr-qc/9809089]. BIBLIOGRAPHY xii [101] § 1.1, § 1.2 T. Levi-Civita, Atti Accad. Nazl. Lincei. 27, 343 (1918). [102] § 7.4 Y. C. Liang and E. Teo, “Black diholes with unbalanced magnetic charges,” Phys. Rev. D 64, 024019 (2001) [arXiv:hep-th/0101221]. [103] § 1.3, § 1.3 S. D. Majumdar, “A class of exact solutions of Einstein’s field equations,” Phys. Rev. 72, 390 (1947). [104] § 1.3 V. S. Manko, J. Martin and E. Ruiz, “Metric of two arbitrary Kerr-Newman sources located on the symmetry axis,” J. Math. Phys. 35, 6644 (1994). [105] § 1.3 V. S. Manko, E. Ruiz, “Stationary generalization of the Bonnor magnetic dipole solution,” Gen. Rel. Grav. 29, 991 (1997). [106] § 1.3 V. S. Manko, J. D. Sanabria-Gomez and O. V. Manko, “Nine parameter electrovac metric involving rational functions,” Phys. Rev. D 62, 044048 (2000). [107] § 8.2 V. S. Manko and N. R. Sibgatullin, “Construction of exact solutions of the EinsteinMaxwell equations corresponding to a given behaviour of the Ernst potentials on the symmetry axis,” Class. Quant. Grav. 10, 1383 (1993). [108] § 1.3 R. B. Mann, “Pair production of topological anti-de Sitter black holes,” Class. Quant. Grav. 14, L109 (1997) [arXiv:gr-qc/9607071]. [109] § 1.3 R. B. Mann, “Charged topological black hole pair creation,” Nucl. Phys. B 516, 357 (1998) [arXiv:hep-th/9705223]. BIBLIOGRAPHY xiii [110] § 1.3, § 8.2, § 8.2, § 8.2, § 8.2 R. B. Mann and S. F. Ross, “Cosmological production of charged black hole pairs,” Phys. Rev. D 52, 2254 (1995) [arXiv:gr-qc/9504015]. [111] § 1.3 F. Mellor and I. Moss, “Black holes and gravitational instantons,” Class. Quant. Grav. 6, 1379 (1989). [112] § 1.3 F. Mellor and I. Moss, “Black holes and quantum wormholes,” Phys. Lett. B 222, 361 (1989). [113] § 3.5, § 3.5, § 5.2, § 6.6 M. A. Melvin, “Pure magnetic and electric geons,” Phys. Lett. 8, 65–8 (1964). [114] § 8.2, § 8.2 H. Nariai, “On some static solutions of Einstein’s gravitational field equations in a spherically symmetric case,” Sci. Rep. Tohoku Univ. 34, 160 (1950). [115] § 8.2, § 8.2 H. Nariai, “On a new cosmological solution of Einstein’s field equations of gravitation,” Sci. Rep. Tohoku Univ. 35, 62 (1951). [116] § 8.2 H. Nariai and H. Ishihara, “On the de Sitter and Nariai solutions in General Relativity and their extension in higher dimensional spacetime,” in A Random Walk in Relativity and Cosmology, ed. P. N. Dadhich, J. K. Rao, J. V. Narlikar and C. V. Vishveshwara, John Wiley & Sons, New York. [117] § 1.2 E. Newman and Tamburino, J. Math. Phys. 2, 667 (1961). [118] § 1.3 K. Oohara and H. Sato, “Structure of superposed two Kerr metrics,” Prog. Theor. Phys. 65, 1891 (1981). BIBLIOGRAPHY xiv [119] § 6.6 M. Ortaggio,“Higher dimensional black holes in external magnetic fields,” JHEP 0505, 048 (2005) [arXiv:gr-qc/0410048]. [120] § 1.3, § 1.3 A. Papapetrou, “A static solution of the equations of the gravitational field for an arbitrary charge distribution,” Proc. Roy. Irish Acad. (Sect. A)A 51, 191 (1947). [121] § 1.2, § 1.4, § 2.1, 4, § 4.1, § 4.1, § 4.2, § 4.3, § 8.2, § 8.2 J. F. Plebanski and M. Demianski, “Rotating, charged, and uniformly accelerating mass in general relativity,” Annals Phys. 98, 98–127 (1976). [122] § 1.2, § 1.2, § 8.2, § 8.2, § 8.2 J. Podolsky, “Accelerating black holes in anti-de Sitter universe,” Czech. J. Phys. 52, (2002) [arXiv:gr-qc/0202033]. [123] § 1.2 J. Podolsky and J. B. Griffiths, “Null limits of the C-metric,” Gen. Rel. Grav. 33, 59 (2001) [arXiv:gr-qc/0006093]. [124] § 1.2, § 8.2, § 8.2, § 8.2 J. Podolsky and J. B. Griffiths, “Uniformly accelerating black holes in a de Sitter universe,” Phys. Rev. D 63, 024006 (2001) [arXiv:gr-qc/0010109]. [125] § 8.2 S. J. Poletti and D. L. Wiltshire, “The global properties of static spherically symmetric charged dilaton space-times with a Liouville potential,” Phys. Rev. D 50, 7260 (1994) [Erratum-ibid. D 52, 3753 (1995)] [arXiv:gr-qc/9407021]. [126] § 1.2, § 2.5.1, § 3.4 V. Pravda and A. Pravdova, “Boost-rotation symmetric spacetimes - review,” Czech. J. Phys. 50, 333–76 (2000) [arXiv:gr-qc/0003067]. [127] § 1.2 V. Pravda and A. Pravdova, “Co-accelerated particles in the C-metric,” Class. Quant. Grav. 18, 1205 (2001) [arXiv:gr-qc/0010051]. BIBLIOGRAPHY xv [128] § 1.2 A. Pravdova and V. Pravda, “Boost-rotation symmetric vacuum spacetimes with spinning sources,” J. Math. Phys. 43, 1536 (2002) [arXiv:gr-qc/0107068]. [129] § 1.2, § 1.4, 4, § 4.2, § 4.2, § 4.2, § 4.5.1, § 4.5.7, § 8.1, § 8.1 V. Pravda and A. Pravdov´a, “On the spinning C-metric,” in Gravitation: Following the Prague Inspiration (Selected Essays in Honour of J. Biˇc´ ak), eds. O. Semer´ak, ˇ J. Podolsk´ y and M. Zofka, World Scientific, Singapore (2002) [arXiv:gr-qc/0201025]. [130] § 8.2 M. Rakhmanov, “Dilaton black holes with electric charge,” Phys. Rev. D 50, 5155 (1994) [arXiv:hep-th/9310174]. [131] § 8.2 I. Robinson, Bull. Acad. Polon. 7, 351 (1959). [132] § 1.2 I. Robinson and A. Trautman, “Some spherical gravitational waves in general relativity,” Proc. Roy. Soc. Lond. A 265, 463 (1962). [133] § 1.3 L. J. Romans, “Supersymmetric, cold and lukewarm black holes in cosmological Einstein-Maxwell theory,” Nucl. Phys. B 383, 395 (1992) [arXiv:hep-th/9203018]. [134] § 8.2 A. Sen, “Rotating charged black hole solution in heterotic string theory,” Phys. Rev. Lett. 69, 1006 (1992) [arXiv:hep-th/9204046]. [135] § 8.2 K. Shiraishi, “Spinning a charged dilaton black hole,” Phys. Lett. A 166, 298 (1992). [136] § 8.2 N. R. Sibgatullin, “Oscillations and waves in strong gravitational and electromagnetic fields,” (Nauka, Moscow, 1984; English Translation: Springer-Verlag, Berlin, 1991). [137] § 7.4 R. d. Sorkin, “Kaluza-Klein monopole,” Phys. Rev. Lett. 51, 87 (1983). BIBLIOGRAPHY xvi [138] § 1.1, § 4.1, § 4.3, § 7.4, § 7.5, § 8.2, § 8.2 H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers and E. Herlt, “Exact solutions of Einstein’s field equations,” Cambridge University Press (2003). [139] § 7.3, § 7.3 H. S. Tan and E. Teo,“Multi-black hole solutions in five dimensions,” Phys. Rev. D 68, 044021 (2003) [arXiv:hep-th/0306044]. [140] § 1.4, § 1.4, 7, § 7.5, § 7.5, § 7.7, § 8.1, § 8.1 E. Teo, “Black diholes in five dimensions,” Phys. Rev. D 68, 084003 (2003) [arXiv:hepth/0307188]. [141] § 8.1 E. Teo, “Accelerating black diholes and static black di-rings,” Phys. Rev. D 73, 024016 (2006)[arXiv:hep-th/0511007]. [142] § 8.2 R. Wald,“Gravitational spin interaction,” Phys. Rev. D 6, 406 (1972). [143] § 1.2 Y. C. Wang, “Vacuum C metric and the metric of two superposed Schwarzschild black holes,” Phys. Rev. D 55, 7977 (1997). [144] § 1.2 C. G. Wells, “Extending the black hole uniqueness theorems. I: Accelerating black holes: The Ernst solution and C-metric,” [arXiv:gr-qc/9808044]. [145] § 1.1, § 1.2 H. Weyl, “Bemerkung u¨ber die axisymmetrischen l¨ osungen der Einsteinschen gravitationsgleinchungen,” Ann. Phys. (Germany) 59, 185 (1919). [146] § 6.6 S. S. Yazadjiev, “Magnetized black holes and black rings in the higher dimensional dilaton gravity,” Phys. Rev. D 73, 064008 (2006) [arXiv:gr-qc/0511114]. [147] § 2.1 Z. Zhao, J. H. Zhang and Y. L. Jiang, “A jet appearing when a black hole event horizon touches the rindler horizon,” Int. J. Theor. Phys. 36, 1359–68 (1997). [...]...Summary The C- metric describes a pair of black holes uniformly accelerating apart from each other We advocate a new form of the C- metric, which is related to the traditional one by a coordinate transformation It has the advantage that its properties become much simpler to analyze We explore the extension of this idea to the rotating (charged) C- metric However, it turns out that the new form of the rotating... in the vacuum If there exists an external electric field, some of these particle-antiparticle pairs may receive enough energy to materialize and become real particles These particles are then accelerated away by the external Lorentz force and describe an uniformly accelerated hyperbolic motion approaching asymptotically the speed of light These two charged particles approach each other until they come... et al found the dilatonic generalization of the charged C- metric for arbitrary dilaton coupling α [49] For each value of α, there exists a three-parameter family of black hole solutions labeled by mass m, the magnetic (or electric) charge q and the acceleration A This solution describes a pair of dilaton black holes uniformly accelerating apart Using the dilatonic generalization of the Ehlers-Harrison... coordinate transformation relating the static C- metric type solution to the Weyl form We will then cast the new form of the uncharged C- metric into the Weyl form explicitly This is then followed by a detailed analysis of the new form of the uncharged C- metric in both coordinate systems In Chapter 3, a new form of the charged C- metric [88] is presented together with the coordinate transformation relating... equations for a pair of charged black holes uniformly accelerating apart The geometrical properties of the C- metric were further investigated by Farhoosh and Zimmerman [68] and the asymptotic properties of the C- metric were analyzed by Ashtekar and Dray [1] In 1983, Bonnor [9] explored in detail the physical interpretation of the vacuum C- metric He transformed the vacuum C- metric into the Weyl form, ... [65] can also be constructed from the C- metric The C- metric and the Ernst solution describe two uniformly accelerated black holes in opposite directions under a source of acceleration The closest analogy is the pair of oppositely charged particles that are created in the Schwinger process Recall that in the Schwinger process virtual and short-lived particles are being created and rapidly annihilated... each of the black holes Furthermore, they pointed out that the vacuum C- metric is a member of the Weyl static axially symmetric class, whose mass sources are determined by the solutions of the Laplace equation The electromagnetic generalization of the vacuum C- metric, which is now known as the charged C- metric, was also discovered by them This can be interpreted as the solution of the Einstein-Maxwell... describes a pair of uniformly accelerated black holes It is then followed by the coordinate transformation relating the old and new forms of the uncharged C- metric After that, we will present a generic coordinate transformation between the static C- metric type solution and the Weyl form This will then be used to cast the uncharged C- metric into the Weyl form explicitly The properties of the uncharged C- metric. .. Each of these instantons corresponds a different way by which energy can be furnished to materialize the pair of black holes and then accelerate them apart It is therefore important to have a rather good understanding of the C- metric solutions at the level of classical general relativity For completeness, we now give a rather brief historical overview of the pair creation of § 1.4 Organization of the. .. Thambyahpillai [50] have found a solution describing an arbitrary numbers of collinear accelerating neutral black holes In 2003, Hong and Teo [88] rewrote the charged C- metric in a new form that simplifies the analysis on the charged C- metric It is to be noted that the C- metric is an important and explicit example of a general class of asymptotically flat radiative spacetimes with boost-rotation symmetry and . C- metric is a member of the Weyl static axially symmetric class, whose mass sources are determined by the solutions of the Laplace equation. The electromagnetic generalization of the vacuum C- metric, . performed the explicit calculation of the pair creation rate of non-extremal black holes. Later on, the problem of the pair creation of dilaton black holes in a background magnetic field was also. accelerating apart from each other. We advocate a new form of the C- metric, which is related to the traditional one by a coordinate transformation. It has the advantage that its properties become much simpler