1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Signal modulation of type III secretion system in pseudomonas aeruginosa

237 196 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 237
Dung lượng 1,84 MB

Nội dung

SIGNAL MODULATION OF TYPE III SECRETION SYSTEM IN PSEUDOMONAS AERUGINOSA ZHOU LIAN (B. Sc., Shanghai Jiaotong University) A THESIS SUBMITED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF BIOLOGICAL SCIENCES NATIONAL UNIVERSITY OF SINGAPORE 2009 ACKNOWLEDGEMENTS I wish to express my greatest gratitude and heartfelt appreciation to my supervisor, Prof. Zhang Lian-Hui, for his scientific guidance and thought-provoking advice. Sincere thanks are given to my PhD committee members, Prof. Wang Yue and Prof. Liu Ding-Xiang as well as my ex-PhD committee member A/Prof. Poh Chit Laa, for their valuable suggestions and critical evaluations. I would like to take this opportunity to thank all the past and present members in Lab of Microbial Quorum Sensing for their technical assistance and scientific discussions. In particular, I am very grateful to Dr. Wang Jing for her unreserved help in establishing the mouse pulmonary infection model and her suggestions on the mice infection experiments. Also thanks are given to Ms. Soh Pei Fen, the attachment student from Nanyang Polytechnic in 2005, for her extreme patience in screening for T3SS mutants. I would like to thank Ms. Linda Soo and Mr. Wen Chaoming from ex-Lab of Functional Genomics for their technical assistance in microarray analysis. Also thanks are given to IMCB DNA sequencing facility and A-star Biopolis Shared Facilities for their supports. Many thanks are given to Prof. Lin Zhi-Xin and Prof. Luo Jiu-Fu in Shanghai Jiaotong University, for their guidance during my undergraduate study. Thanks also extend to Prof. Xie Dao-Xin in Tsinghua University, A/Prof. Wen Zi-Long in the Hong Kong I University of Science and Technology, and Prof. Peng Jin-Rong in Zhe Jiang Univeristy, for introducing me to study in Singapore Last, but not least, I would like to thank my family members, my husband Ya-wen, my two kids Jeslyn and Eric, and my parents for their love and utmost support. II TABLE OF CONTENTS Page ACKNOWLEDGEMENTS . I TABLE OF CONTENTS III SUMMARY . VIII LIST OF TABLE . X LIST OF FIGURES . XI Chapter Literature Review 1.1 Pseudomonas aeruginosa and clinical importance 1.1.1 Taxonomy, description and distribution 1.1.2 Clinical importance of P. aeruginosa 1.1.2.1 P. aeruginosa infections in CF patients 1.1.2.2 P. aeruginosa infections in burn wounds 1.1.2.3 P. aeruginosa infections in cornea diseases 1.2 The major virulence factors of Pseudomonas aeruginosa 1.2.1 Bacterial cell membrane-associated virulence factors 1.2.1.1 Flagellum . 1.2.1.2 Type IV Pilus . 10 1.2.1.3 Lipopolysaccharide (LPS) 11 1.2.2 Extracellular virulence factors . 13 1.2.2.1 Exopolysaccharide (EPS) . 13 1.2.2.2 Extracellular enzymes 16 1.2.2.3 Extracellular chemical toxins 19 1.2.3 Type III Secretion System (T3SS) . 22 1.2.3.1 Structure of T3SS and the effectors 22 1.2.3.2 T3SS in P. aeruginosa 24 1.2.3.3 Clinical importance of T3SS in P. aeruginosa 30 1.3 Regulation of virulence factor production in P. aeruginosa . 31 1.3.1 Regulation of bacterial membrane associated virulence factors . 31 1.3.1.1 Regulation of flagellar biogenesis . 31 III 1.3.1.2 Regulation of type IV pili biogenesis 32 1.3.2 Regulation of extracellular virulence factors . 33 1.3.2.1 Regulation of EPS biosynthesis 33 1.3.2.2 Regulation of exotoxin and extracellular enzyme production 36 1.3.3 Regulation of T3SS . 37 1.3.3.1 Environmental cues and host signals 38 1.3.3.2 The exoenzyme S regulon 40 1.3.3.3 Regulation of T3SS through the cAMP-Vfr pathway 44 1.3.3.4 Reciprocal regulation of T3SS and biofilm . 45 1.3.3.5 Regulation of T3SS by stress 47 1.4 Treatment and prevention 48 1.5 Aims and scope of present study 51 Chapter Genetic screening of the novel genes involved in regulation of T3SS expression in P. aeruginosa . 53 2.1 Introduction . 53 2.2 Materials and methods . 55 2.2.1 Bacterial strains, plasmids and growth conditions 55 2.2.2 DNA manipulation 57 2.2.3 Construction of reporter strains . 57 2.2.4 Transposon mutagenesis . 58 2.2.5 Quantitative -galactosidase assay 59 2.3 Results . 59 2.3.1 The transcriptional fusion reporters pC-lacZ and pT-lacZ monitor the expression of exsCEBA and exoT respectively . 59 2.3.2 Screening the transposon mutants with decreased T3SS expression . 63 2.3.3 DNA sequence analysis of the transposon mutants 63 2.4 Discussion . 72 2.4.1 The roles of five previously characterized T3SS regulators in modulation of T3SS . 72 2.4.2 Mutants with Tn insertion at the genes functionally or physically related to T3SS regulators . 73 IV 2.4.3 Mutants associated with bacterial motility and EPS production . 75 2.4.4 Mutants associated with metabolic imbalance . 76 2.4.5 Transposon insertion mutants with defects in genes involved in transport of small molecules . 77 2.4.6 Other mutants . 78 Chapter Modulation of bacterial type III secretion system by a spermidine transporterdependent signaling pathway . 80 3.1 Introduction . 80 3.2 Materials and methods . 81 3.2.1 Bacterial strains, plasmids and growth conditions 81 3.2.2 Gene cloning and deletion . 81 3.2.3 RNA Extraction and microarray analysis . 87 3.2.4 Protein isolation and western blotting analysis 88 3.2.5 Quantitative -galactosidase assay 89 3.2.6 Culture of P. aeruginosa with mouse liver extract . 89 3.2.7 HeLa cell culture and cytotoxicity assay 90 3.3 Results . 91 3.3.1 Induction of exsCEBA required the major spermidine uptake transporter encoded by spuDEFGH . 91 3.3.2 Null mutation of the spermidine transporter down-regulated the transcription of T3SS genes 95 3.3.3 Deletion of spuE impaired the production and secretion of the T3SS effector ExoS 96 3.3.4 Exogenous addition of spermidine induced the expression of T3SS and secretion of effector ExoS 101 3.3.5 Spermidine was the most effective polyamine signal for T3SS induction 104 3.3.6 Mutation of spermidine transporter decreased the host cell extract-induced expression of T3SS genes and attenuates the T3SS-mediated cytotoxicity . 104 3.4 Discussion . 107 Chapter A novel spermidine-responsive transcriptional regulator TsrA modulates the expression of T3SS genes in P. aeruginosa . 112 V 4.1 Introduction . 112 4.2 Materials and methods . 115 4.2.1 Strains and culture conditions 115 4.2.2 Gene cloning and deletion . 115 4.2.3 RNA Extraction and microarray analysis . 120 4.2.4 Extracellular protein isolation and western blotting analysis 120 4.2.5 Quantitative -galactosidase assay 121 4.2.6 HeLa cell culture and cytotoxicity assay 121 4.2.7 Purification of recombinant GST-TsrA . 121 4.2.8 Electrophoretic Mobility Shift Assay (EMSA) 122 4.2.9 Isothermal titration calorimetry (ITC) analysis 122 4.3 Results . 123 4.3.1 Deletion of tsrA (pa2432) encoding a putative transcription regulator in the mutant spuE partially restores the expression level of exsCEBA 123 4.3.2 In trans expression of tsrA down-regulated the expression of T3SS Genes 128 4.3.3 Enhanced expression of tsrA reduced the production of T3SS effector ExoS and attenuated T3SS-mediated cytotoxicity 134 4.3.4 Vfr is involved in the TsrA regulatory pathway . 135 4.3.5 Spermidine modulates the interaction between TsrA and the promoter of vfr (Pvfr) . 141 4.3.6 Self repression of tsrA expression through direct binding between TsrA and tsrA promoter (PtsrA) 148 4.3.7 Deletion of tsrA partially attenuates the response of P. aeruginosa to exogenous addition of spermidine 150 4.4 Discussion . 151 Chapter Protection against mice pulmonary pseudomonal infection by active immunization with polyamine transport protein SpuD of P. aeruginosa 161 5.1 Introduction . 161 5.2 Material and methods . 163 5.2.1 Bacterial strains and growth conditions . 163 5.2.2 Intra-tracheal challenge with P. aeruginosa . 164 VI 5.2.3 Quantification of P. aeruginosa load in mice lungs . 164 5.2.4 Cytokine levels following infection with P. aeruginosa 165 5.2.5 Purification of recombinant SpuD . 165 5.2.6 Endotoxin removal from the SpuD protein solution . 166 5.2.7 Immunogenicity assay of mice by ELISA analysis 166 5.3 Results . 167 5.3.1 Null mutation of spermidine uptake transporter in P. aeruginosa reduces the host mortality in a mouse pulmonary infection model 167 5.3.2 The spuE mutant shows a slow lung clearance post infection 168 5.3.3 Mice infected with spuE have reduced cytokine production 169 5.3.4 SpuD Immunization increased the chance for mice to survive in the Intratracheal challenge model 174 5.4 Discussion . 180 Chapter General Conclusions and Future Directions . 185 6.1 General conclusions . 185 6.2 Future directions 190 Reference List . 193 VII SUMMARY Pseudomonas aeruginosa is an opportunistic pathogen that causes infection mainly in immuno-compromised patients, such as AIDS patients, cystic fibrosis patients and severe burn victims. Various virulence factors have been identified and experimentally evaluated, among which a conserved secretion system, the Type III Secretion System (T3SS), holds particular interests to the scientists studying hostpathogen interactions. By utilizing this system, the pathogen is able to directly inject its protein effectors into host cells, where they manipulate host cellular functions. Expression of T3SS genes is under the tight control of its master regulator ExsA and other regulatory proteins encoded by the exsCEBA operon and induced by calcium depletion and contact with host cells. However, the molecular mechanism by which host cells induce T3SS expression remains elusive. By generating a chromosomal integrated reporter strain PAO1pClacZ, transposon mutagenesis was conducted, which led to identification of a range of mutants defective in T3SS expression under calcium-depletion conditions, including the mutants of spuE, spuF and spuG, As the spuDEFGH genes encode a major uptake system for spermidine, which is abundant in host cells, this transporter system has thus become the focus of this study. Genomic and biochemical analysis showed that mutation of the transporter substantially reduced the expression of most T3SS genes, including the exsCEBA operon, and impaired the secretion of effector ExoS, under calcium-depletion conditions. The mutation also decreased the host cell extract-dependent induction of T3SS expression and attenuated bacterial cytotoxicity towards HeLa cells. Consistently, exogenous addition of spermidine to the wild type strain PAO1 enhanced the expression of exsCEBA and VIII induced the secretion of the effector ExoS, demonstrating that a spermidine transporterdependent signaling pathway is involved in T3SS regulation. By deletion analysis of the genes up-regulated in spu transporter mutants, a LysR type transcriptional regulator TsrA that controls T3SS expression was identified. Further analysis showed that TsrA negatively regulates T3SS expression through downregulating the expression of vfr, which encodes a known positive regulator of T3SS, by binding to its promoter Pvfr. Addition of spermidine activates T3SS expression by interfering with the interaction of the suppressor TsrA with Pvfr. Cumulatively, these data have depicted a novel spermidine transporter-dependent regulation cascade, which plays an essential role in signal modulation of T3SS expression in P. aeruginosa. To evaluate the biological significance of this newly identified signaling pathway, an acute murine pulmonary infection model was established. By using wild type strain PAO1 as a control, it was found that mutation of the transporter compromised the ability of the pathogen to incite the production of cytokines in FVB/N mice, in particular, TNF , IL-6 and KC, and significantly reduced mice mortality. Moreover, active immunization of mice with the transporter substrate-binding protein SpuD significantly boosted mice survival rate against P. aeruginosa pulmonary infection. These findings highlight a promising potential application in treating P. aeruginosa infections by generating antibodies against the spermidine transporter. IX Krall R, Sun J, Pederson KJ, Barbieri JT. In vivo rho GTPase-activating protein activity of Pseudomonas aeruginosa cytotoxin ExoS. Infect Immun 2002; 70 (1):360-7. Krivan HC, Ginsburg V, Roberts DD. Pseudomonas aeruginosa and Pseudomonas cepacia isolated from cystic fibrosis patients bind specifically to gangliotetraosylceramide (asialo GM1) and gangliotriaosylceramide (asialo GM2). Arch Biochem Biophys 1988a; 260 (1):493-6. Krivan HC, Roberts DD, Ginsburg V. Many pulmonary pathogenic bacteria bind specifically to the carbohydrate sequence GalNAc beta 1-4Gal found in some glycolipids. Proc Natl Acad Sci U S A 1988b; 85 (16):6157-61. Kuchma SL, Connolly JP, O'Toole GA. A three-component regulatory system regulates biofilm maturation and type III secretion in Pseudomonas aeruginosa. J Bacteriol 2005; 187 (4):1441-54. Kulasekara BR, Kulasekara HD, Wolfgang MC, et al. Acquisition and evolution of the exoU locus in Pseudomonas aeruginosa. J Bacteriol 2006; 188 (11):4037-50. Kulasekara HD, Ventre I, Kulasekara BR, et al. A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol Microbiol 2005; 55 (2):368-80. Kurioka S, Liu PV. Effect of the hemolysin of Pseudomonas aeruginosa on phosphatides and on phospholipase c activity. J Bacteriol 1967; 93 (2):670-4. Laskowski MA, Osborn E, Kazmierczak BI. A novel sensor kinase-response regulator hybrid regulates type III secretion and is required for virulence in Pseudomonas aeruginosa. Mol Microbiol 2004; 54 (4):1090-103. Lau GW, Hassett DJ, Ran H, Kong F. The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol Med 2004; 10 (12):599-606. Lee J, Klusener B, Tsiamis G, et al. HrpZ(Psph) from the plant pathogen Pseudomonas syringae pv. phaseolicola binds to lipid bilayers and forms an ion-conducting pore in vitro. Proc Natl Acad Sci U S A 2001; 98 (1):289-94. Lee N, Ahn B, Jung SB, et al. Conformation-dependent antibody response to Pseudomonas aeruginosa outer membrane proteins induced by immunization in humans. FEMS Immunol Med Microbiol 2000a; 27 (1):79-85. Lee NG, Jung SB, Ahn BY, et al. Immunization of burn-patients with a Pseudomonas aeruginosa outer membrane protein vaccine elicits antibodies with protective efficacy. Vaccine 2000b; 18 (18):1952-61. Leid JG, Willson CJ, Shirtliff ME, et al. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol 2005; 175 (11):7512-8. 208 Leidal KG, Munson KL, Johnson MC, Denning GM. Metalloproteases from Pseudomonas aeruginosa degrade human RANTES, MCP-1, and ENA-78. J Interferon Cytokine Res 2003; 23 (6):307-18. Lesprit P, Faurisson F, Join-Lambert O, et al. Role of the quorum-sensing system in experimental pneumonia due to Pseudomonas aeruginosa in rats. Am J Respir Crit Care Med 2003; 167 (11):1478-82. Li Z, Kosorok MR, Farrell PM, et al. Longitudinal development of mucoid Pseudomonas aeruginosa infection and lung disease progression in children with cystic fibrosis. JAMA 2005; 293 (5):581-8. Linares JF, Lopez JA, Camafeita E, et al. Overexpression of the multidrug efflux pumps MexCD-OprJ and MexEF-OprN is associated with a reduction of type III secretion in Pseudomonas aeruginosa. J Bacteriol 2005; 187 (4):1384-91. Litwin CM, Calderwood SB. Role of iron in regulation of virulence genes. Clin Microbiol Rev 1993; (2):137-49. Liu PV. Extracellular toxins of Pseudomonas aeruginosa. J Infect Dis 1974; 130 Suppl (0):S94-S99. Liu PV, Hsieh H. Exotoxins of Pseudomonas aeruginosa. 3. Characteristics of antitoxin A. J Infect Dis 1973; 128 (4):520-6. Lopatin AN, Makhina EN, Nichols CG. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 1994; 372 (6504):366-9. Lory S, Wolfgang M, Lee V, Smith R. The multi-talented bacterial adenylate cyclases. Int J Med Microbiol 2004; 293 (7-8):479-82. Lovaas E, Carlin G. Spermine: an anti-oxidant and anti-inflammatory agent. Free Radic Biol Med 1991; 11 (5):455-61. Lu CD, Itoh Y, Nakada Y, Jiang Y. Functional analysis and regulation of the divergent spuABCDEFGH-spuI operons for polyamine uptake and utilization in Pseudomonas aeruginosa PAO1. J Bacteriol 2002; 184 (14):3765-73. Lyczak JB, Cannon CL, Pier GB. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2000; (9):1051-60. Lyczak JB, Cannon CL, Pier GB. Lung infections associated with cystic fibrosis. Clin Microbiol Rev 2002; 15 (2):194-222. Ma J, Zhao J, Drumm ML, Xie J, Davis PB. Function of the R domain in the cystic fibrosis transmembrane conductance regulator chloride channel. J Biol Chem 1997; 272 (44):28133-41. 209 Ma L, Jackson KD, Landry RM, Parsek MR, Wozniak DJ. Analysis of Pseudomonas aeruginosa conditional psl variants reveals roles for the psl polysaccharide in adhesion and maintaining biofilm structure postattachment. J Bacteriol 2006; 188 (23):8213-21. Ma L, Lu H, Sprinkle A, Parsek MR, Wozniak DJ. Pseudomonas aeruginosa Psl is a galactose- and mannose-rich exopolysaccharide. J Bacteriol 2007; 189 (22):83536. Maarsingh H, Pera T, Meurs H. Arginase and pulmonary diseases. Naunyn Schmiedebergs Arch Pharmacol 2008c; 378 (2):171-84. Maarsingh H, Pera T, Meurs H. Arginase and pulmonary diseases. Naunyn Schmiedebergs Arch Pharmacol 2008b; 378 (2):171-84. Maarsingh H, Pera T, Meurs H. Arginase and pulmonary diseases. Naunyn Schmiedebergs Arch Pharmacol 2008a; 378 (2):171-84. Manafi A, Kohanteb J, Mehrabani D, et al. Active immunization using exotoxin A confers protection against Pseudomonas aeruginosa infection in a mouse burn model. BMC Microbiol 2009; 9:23. Mandell GL, Douglas RG, Bennett JE. Mandell, Douglas and Bennett's principles and practice of infectious disease. New York: Churchill Livnigstone, 1995. Manderscheid PA, Bodkin RP, Davidson BA, et al. Bacterial clearance and cytokine profiles in a murine model of postsurgical nosocomial pneumonia. Clin Diagn Lab Immunol 2004; 11 (4):742-51. Mansouri E, Gabelsberger J, Knapp B, et al. Safety and immunogenicity of a Pseudomonas aeruginosa hybrid outer membrane protein F-I vaccine in human volunteers. Infect Immun 1999; 67 (3):1461-70. Martin DW, Holloway BW, Deretic V. Characterization of a locus determining the mucoid status of Pseudomonas aeruginosa: AlgU shows sequence similarities with a Bacillus sigma factor. J Bacteriol 1993; 175 (4):1153-64. Masuko T, Kusama-Eguchi K, Sakata K, et al. Polyamine transport, accumulation, and release in brain. J Neurochem 2003; 84 (3):610-7. Mathee K, McPherson CJ, Ohman DE. Posttranslational control of the algT (algU)encoded sigma22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB (AlgN). J Bacteriol 1997; 179 (11):3711-20. Matsukawa M, Greenberg EP. Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development. J Bacteriol 2004; 186 (14):444956. 210 Mattick JS. Type IV pili and twitching motility. Annu Rev Microbiol 2002; 56:289-314. McCaw ML, Lykken GL, Singh PK, Yahr TL. ExsD is a negative regulator of the Pseudomonas aeruginosa type III secretion regulon. Mol Microbiol 2002; 46 (4):1123-33. McClure CD, Schiller NL. Effects of Pseudomonas aeruginosa rhamnolipids on human monocyte-derived macrophages. J Leukoc Biol 1992; 51 (2):97-102. McCubbin M, Fick RBJr. Pathogenesis of Pseudomonas aeruginosa lung disease in cystic fibrosis. In: Fick RBJr, Ed. Pseudomonas aeruginosa the Opportunist: Pathogenesis and Disease. Boca Raton, Fla: CRC Press, 1993:189-211. McIver KS, Kessler E, Ohman DE. Identification of residues in the Pseudomonas aeruginosa elastase propeptide required for chaperone and secretion activities. Microbiology 2004; 150 (Pt 12):3969-77. McKnight SL, Iglewski BH, Pesci EC. The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 2000; 182 (10):2702-8. Meksuriyen D, Fukuchi-Shimogori T, Tomitori H, et al. Formation of a complex containing ATP, Mg2+, and spermine. Structural evidence and biological significance. J Biol Chem 1998; 273 (47):30939-44. Merz AJ, So M, Sheetz MP. Pilus retraction powers bacterial twitching motility. Nature 2000; 407 (6800):98-102. Meyer JM, Abdallah MA. The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physiochemical properties. J Gen Microbiol 1978; 107:319-28. Meyer JM, Neely A, Stintzi A, Georges C, Holder IA. Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infect Immun 1996; 64 (2):518-23. Meyers DJ, Berk RS. Characterization of phospholipase C from Pseudomonas aeruginosa as a potent inflammatory agent. Infect Immun 1990; 58 (3):659-66. Migula W. Arbeiten aus dem Bakteriologischen Institut der Technischen Hochschule zu Karlsruhe. In: 1894:235-8. Migula W. Bacteriaceae (Stäbchenbakterien). In: !n EnglerA, Prantl N, Eds. Die Natürlichen Pflanzenfamilien, Teil I, Abt. la, W. Engelmann, Leipzig., 1895:2030. Miller VL. Connections between transcriptional regulation and type III secretion? Curr Opin Microbiol 2002; (2):211-5. 211 Mills SD, Boland A, Sory MP, et al. Yersinia enterocolitica induces apoptosis in macrophages by a process requiring functional type III secretion and translocation mechanisms and involving YopP, presumably acting as an effector protein. Proc Natl Acad Sci U S A 1997; 94 (23):12638-43. Miyazaki H, Kato H, Nakazawa T, Tsuda M. A positive regulatory gene, pvdS, for expression of pyoverdin biosynthetic genes in Pseudomonas aeruginosa PAO. Mol Gen Genet 1995; 248 (1):17-24. Mondino BJ, Rabin BS, Kessler E, Gallo J, Brown SI. Corneal rings with gram-negative bacteria. Arch Ophthalmol 1977; 95 (12):2222-5. Montie TC, Doyle-Huntzinger D, Craven RC, Holder IA. Loss of virulence associated with absence of flagellum in an isogenic mutant of Pseudomonas aeruginosa in the burned-mouse model. Infect Immun 1982; 38 (3):1296-8. Moore TA, Standiford TJ. The role of cytokines in bacterial pneumonia: an inflammatory balancing act. Proc Assoc Am Physicians 1998; 110 (4):297-305. Morihara K. PRODUCTION OF ELASTASE AND PROTEINASE PSEUDOMONAS AERUGINOSA. J Bacteriol 1964; 88:745-57. BY Morihara K, Tsuzuki H, Harada M, Iwata T. Purification of human plasma alpha 1proteinase inhibitor and its inactivation by Pseudomonas aeruginosa elastase. J Biochem 1984; 95 (3):795-804. Moss J, Ehrmantraut ME, Banwart BD, Frank DW, Barbieri JT. Sera from adult patients with cystic fibrosis contain antibodies to Pseudomonas aeruginosa type III apparatus. Infect Immun 2001; 69 (2):1185-8. Mozola MA, Wilson RB, Jordan EM, Draper RK, Clowes RC. Cloning and expression of a gene segment encoding the enzymatic moiety of Pseudomonas aeruginosa exotoxin A. J Bacteriol 1984; 159 (2):683-7. Muller M. Pyocyanin induces oxidative stress in human endothelial cells and modulates the glutathione redox cycle. Free Radic Biol Med 2002; 33 (11):1527-33. Murray TS, Kazmierczak BI. FlhF is required for swimming and swarming in Pseudomonas aeruginosa. J Bacteriol 2006; 188 (19):6995-7004. Nakane A, Minagawa T, Kohanawa M, et al. Interactions between endogenous gamma interferon and tumor necrosis factor in host resistance against primary and secondary Listeria monocytogenes infections. Infect Immun 1989; 57 (11):33317. Neidle EL, Hartnett C, Ornston LN. Characterization of Acinetobacter calcoaceticus catM, a repressor gene homologous in sequence to transcriptional activator genes. J Bacteriol 1989; 171 (10):5410-21. 212 Nicas TI, Iglewski BH. Contribution of exoenzyme S to the virulence of Pseudomonas aeruginosa. Antibiot Chemother 1985; 36:40-8. Nishijyo T, Haas D, Itoh Y. The CbrA-CbrB two-component regulatory system controls the utilization of multiple carbon and nitrogen sources in Pseudomonas aeruginosa. Mol Microbiol 2001; 40 (4):917-31. Nivens DE, Ohman DE, Williams J, Franklin MJ. Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J Bacteriol 2001; 183 (3):1047-57. Norrby SR, Nord CE, Finch R. Lack of development of new antimicrobial drugs: a potential serious threat to public health. Lancet Infect Dis 2005; (2):115-9. O'Callaghan RJ, Engel LS, Hobden JA, et al. Pseudomonas keratitis. The role of an uncharacterized exoprotein, protease IV, in corneal virulence. Invest Ophthalmol Vis Sci 1996; 37 (4):534-43. O'Malley YQ, Reszka KJ, Spitz DR, Denning GM, Britigan BE. Pseudomonas aeruginosa pyocyanin directly oxidizes glutathione and decreases its levels in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2004; 287 (1):L94103. O'Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol 2000; 54:49-79. O'Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 1998; 30 (2):295-304. Ohki R, Kawamata T, Katoh Y, Hosoda F, Ohki M. Escherichia coli dnaJ deletion mutation results in loss of stability of a positive regulator, CRP. J Biol Chem 1992; 267 (19):13180-4. Ostroff RM, Vasil ML. Identification of a new phospholipase C activity by analysis of an insertional mutation in the hemolytic phospholipase C structural gene of Pseudomonas aeruginosa. J Bacteriol 1987; 169 (10):4597-601. Ozawa T, Tanaka H, Miyatake T, Tsuji S. Shy-Drager syndrome with abnormal circadian rhythm of plasma antidiuretic hormone secretion and urinary excretion. Intern Med 1993; 32 (3):225-7. Palleroni NJ. Present Situation of the Taxonomy of Aerobic Pseudomonads. In: Galli E, Silver S, Witholt B, Eds. Pseudomonas Molecular Biology and Biotechnology. Washington, D.C.: ASM press, 1992:105-15. Palleroni NJ, Kunisawa R, Contopoulos R, Doudoroff M. Nucleic acid homologies in genus Pseudomonas. Int J Syst Bacteriol 1973; 23:333-9. 213 Parad RB, Gerard CJ, Zurakowski D, Nichols DP, Pier GB. Pulmonary outcome in cystic fibrosis is influenced primarily by mucoid Pseudomonas aeruginosa infection and immune status and only modestly by genotype. Infect Immun 1999; 67 (9):474450. Park PW, Pier GB, Preston MJ, et al. Syndecan-1 shedding is enhanced by LasA, a secreted virulence factor of Pseudomonas aeruginosa. J Biol Chem 2000; 275 (5):3057-64. Park SH, O'Neil KT, Roder H. An early intermediate in the folding reaction of the B1 domain of protein G contains a native-like core. Biochemistry 1997; 36 (47):14277-83. Park YK, Bearson B, Bang SH, Bang IS, Foster JW. Internal pH crisis, lysine decarboxylase and the acid tolerance response of Salmonella typhimurium. Mol Microbiol 1996; 20 (3):605-11. Parkins MD, Ceri H, Storey DG. Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Mol Microbiol 2001; 40 (5):1215-26. Parmely M, Gale A, Clabaugh M, Horvat R, Zhou WW. Proteolytic inactivation of cytokines by Pseudomonas aeruginosa. Infect Immun 1990; 58 (9):3009-14. Parsek MR, Fuqua C. Biofilms 2003: emerging themes and challenges in studies of surface-associated microbial life. J Bacteriol 2004; 186 (14):4427-40. Passador L, Cook JM, Gambello MJ, Rust L, Iglewski BH. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 1993; 260 (5111):1127-30. Pesci EC, Milbank JB, Pearson JP, et al. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 1999; 96 (20):11229-34. Pesci EC, Pearson JP, Seed PC, Iglewski BH. Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 1997b; 179 (10):3127-32. Pesci EC, Pearson JP, Seed PC, Iglewski BH. Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 1997a; 179 (10):3127-32. Peters JE, Galloway DR. Purification and characterization of an active fragment of the LasA protein from Pseudomonas aeruginosa: enhancement of elastase activity. J Bacteriol 1990; 172 (5):2236-40. Pier GB. Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity. Int J Med Microbiol 2007; 297 (5):277-95. 214 Pier GB, Ames P. Mediation of the killing of rough, mucoid isolates of Pseudomonas aeruginosa from patients with cystic fibrosis by the alternative pathway of complement. J Infect Dis 1984; 150 (2):223-8. Pier GB, Grout M, Zaidi TS. Cystic fibrosis transmembrane conductance regulator is an epithelial cell receptor for clearance of Pseudomonas aeruginosa from the lung. Proc Natl Acad Sci U S A 1997; 94 (22):12088-93. Pier GB, Grout M, Zaidi TS, et al. Role of mutant CFTR in hypersusceptibility of cystic fibrosis patients to lung infections. Science 1996; 271 (5245):64-7. Pollack M, Koles NL, Preston MJ, Brown BJ, Pier GB. Functional properties of isotypeswitched immunoglobulin M (IgM) and IgG monoclonal antibodies to Pseudomonas aeruginosa lipopolysaccharide. Infect Immun 1995; 63 (11):4481-8. Power MR, Peng Y, Maydanski E, Marshall JS, Lin TJ. The development of early host response to Pseudomonas aeruginosa lung infection is critically dependent on myeloid differentiation factor 88 in mice. J Biol Chem 2004; 279 (47):49315-22. Preston MJ, Fleiszig SM, Zaidi TS, et al. Rapid and sensitive method for evaluating Pseudomonas aeruginosa virulence factors during corneal infections in mice. Infect Immun 1995; 63 (9):3497-501. Price BM, Galloway DR, Baker NR, et al. Protection against Pseudomonas aeruginosa chronic lung infection in mice by genetic immunization against outer membrane protein F (OprF) of P. aeruginosa. Infect Immun 2001; 69 (5):3510-5. Priebe GP, Dean CR, Zaidi T, et al. The galU Gene of Pseudomonas aeruginosa is required for corneal infection and efficient systemic spread following pneumonia but not for infection confined to the lung. Infect Immun 2004; 72 (7):4224-32. Prince LR, Bianchi SM, Vaughan KM, et al. Subversion of a lysosomal pathway regulating neutrophil apoptosis by a major bacterial toxin, pyocyanin. J Immunol 2008; 180 (5):3502-11. Prince RW, Cox CD, Vasil ML. Coordinate regulation of siderophore and exotoxin A production: molecular cloning and sequencing of the Pseudomonas aeruginosa fur gene. J Bacteriol 1993; 175 (9):2589-98. Qiu D, Eisinger VM, Rowen DW, Yu HD. Regulated proteolysis controls mucoid conversion in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2007; 104 (19):8107-12. Ramos JL, Duque E, Gallegos MT, et al. Mechanisms of solvent tolerance in gramnegative bacteria. Annu Rev Microbiol 2002; 56:743-68. 215 Ramphal R, Balloy V, Huerre M, Si-Tahar M, Chignard M. TLRs and are not involved in hypersusceptibility to acute Pseudomonas aeruginosa lung infections. J Immunol 2005; 175 (6):3927-34. Ramsey DM, Wozniak DJ. Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol Microbiol 2005; 56 (2):309-22. Rasmussen TB, Bjarnsholt T, Skindersoe ME, et al. Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 2005a; 187 (5):1799-814. Rasmussen TB, Skindersoe ME, Bjarnsholt T, et al. Identity and effects of quorumsensing inhibitors produced by Penicillium species. Microbiology 2005b; 151 (Pt 5):1325-40. Reiniger N, Ichikawa JK, Pier GB. Influence of cystic fibrosis transmembrane conductance regulator on gene expression in response to Pseudomonas aeruginosa infection of human bronchial epithelial cells. Infect Immun 2005; 73 (10):682230. Reis DJ, Regunathan S. Is agmatine a novel neurotransmitter in brain? Trends Pharmacol Sci 2000; 21 (5):187-93. Rietsch A, Mekalanos JJ. Metabolic regulation of type III secretion gene expression in Pseudomonas aeruginosa. Mol Microbiol 2006; 59 (3):807-20. Rietsch A, Vallet-Gely I, Dove SL, Mekalanos JJ. ExsE, a secreted regulator of type III secretion genes in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2005; 102 (22):8006-11. Rietsch A, Wolfgang MC, Mekalanos JJ. Effect of metabolic imbalance on expression of type III secretion genes in Pseudomonas aeruginosa. Infect Immun 2004; 72 (3):1383-90. Riordan JR, Rommens JM, Kerem B, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989; 245 (4922):1066-73. Robinson HL. Nucleic acid vaccines: an overview. Vaccine 1997; 15 (8):785-7. Rocchetta HL, Burrows LL, Lam JS. Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 1999; 63 (3):523-53. Roy-Burman A, Savel RH, Racine S, et al. Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J Infect Dis 2001; 183 (12):1767-74. 216 Rumbaugh KP, Griswold JA, Hamood AN. The role of quorum sensing in the in vivo virulence of Pseudomonas aeruginosa. Microbes Infect 2000; (14):1721-31. Ryder C, Byrd M, Wozniak DJ. Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol 2007; 10 (6):644-8. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1987. Sato H, Frank DW. ExoU is a potent intracellular phospholipase. Mol Microbiol 2004; 53 (5):1279-90. Sawa T, Ohara M, Kurahashi K, et al. In vitro cellular toxicity predicts Pseudomonas aeruginosa virulence in lung infections. Infect Immun 1998; 66 (7):3242-9. Sawa T, Yahr TL, Ohara M, et al. Active and passive immunization with the Pseudomonas V antigen protects against type III intoxication and lung injury. Nat Med 1999; (4):392-8. Schell MA. Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 1993; 47:597-626. Schroeder TH, Lee MM, Yacono PW, et al. CFTR is a pattern recognition molecule that extracts Pseudomonas aeruginosa LPS from the outer membrane into epithelial cells and activates NF-kappa B translocation. Proc Natl Acad Sci U S A 2002; 99 (10):6907-12. Schuber F. Influence of polyamines on membrane functions. Biochem J 1989; 260 (1):110. Seiler N, Raul F. Polyamines and apoptosis. J Cell Mol Med 2005; (3):623-42. Shah P, Swiatlo E. A multifaceted role for polyamines in bacterial pathogens. Mol Microbiol 2008; 68 (1):4-16. Shaver CM, Hauser AR. Relative contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to virulence in the lung. Infect Immun 2004; 72 (12):6969-77. Shen DK, Filopon D, Kuhn L, Polack B, Toussaint B. PsrA is a positive transcriptional regulator of the type III secretion system in Pseudomonas aeruginosa. Infect Immun 2006; 74 (2):1121-9. Sheppard DN, Travis SM, Ishihara H, Welsh MJ. Contribution of proline residues in the membrane-spanning domains of cystic fibrosis transmembrane conductance regulator to chloride channel function. J Biol Chem 1996; 271 (25):14995-5001. 217 Shigematsu T, Fukushima J, Oyama M, et al. Iron-Mediated regulation of alkaline proteinase production in Pseudomonas aeruginosa. Microbiol Immunol 2001; 45 (8):579-90. Shime N, Sawa T, Fujimoto J, et al. Therapeutic administration of anti-PcrV F(ab')(2) in sepsis associated with Pseudomonas aeruginosa. J Immunol 2001; 167 (10):58806. Shoriridge VD, Lazdunski A, Vasil ML. Osmoprotectants and phosphate regulate expression of phospholipase C in Pseudomonas aeruginosa. Molecular Microbiology 1992; (7):863-71. Shryock T, Silver AS, Baschbach MW, Kramer JC. Effect of Pseudomonas aeruginosa rhamnolipid on human neutrophil migration. Curr Microbiol 1984; 10:323-8. Sibille Y, Reynolds HY. Macrophages and polymorphonuclear neutrophils in lung defense and injury. Am Rev Respir Dis 1990; 141 (2):471-501. Simm R, Morr M, Kader A, Nimtz M, Romling U. GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 2004; 53 (4):1123-34. Simpson JA, Smith SE, Dean RT. Scavenging by alginate of free radicals released by macrophages. Free Radic Biol Med 1989; (4):347-53. Singh PK, Schaefer AL, Parsek MR, et al. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 2000; 407 (6805):762-4. Slater H, Alvarez-Morales A, Barber CE, Daniels MJ, Dow JM. A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in Xanthomonas campestris. Mol Microbiol 2000; 38 (5):986-1003. Smith RL, Banks JL, Snavely MD, Maguire ME. Sequence and topology of the CorA magnesium transport systems of Salmonella typhimurium and Escherichia coli. Identification of a new class of transport protein. J Biol Chem 1993; 268 (19):14071-80. Smith RS, Iglewski BH. P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 2003; (1):56-60. Sokol PA. Surface expression of ferripyochelin-binding protein is required for virulence of Pseudomonas aeruginosa. Infect Immun 1987; 55 (9):2021-5. Sokol PA, Kooi C, Hodges RS, Cachia P, Woods DE. Immunization with a Pseudomonas aeruginosa elastase peptide reduces severity of experimental lung infections due to P. aeruginosa Or Burkholderia cepacia. J Infect Dis 2000; 181 (5):1682-92. 218 Sorensen RU, Klinger JD. Biological effects of Pseudomonas aeruginosa phenazine pigments. Antibiot Chemother 1987; 39:113-24. Spiers AJ, Kahn SG, Bohannon J, Travisano M, Rainey PB. Adaptive divergence in experimental populations of Pseudomonas fluorescens. I. Genetic and phenotypic bases of wrinkly spreader fitness. Genetics 2002; 161 (1):33-46. Sriyosachati S, Cox CD. Siderophore-mediated iron acquisition from transferrin by Pseudomonas aeruginosa. Infect Immun 1986; 52 (3):885-91. Standiford TJ, Kunkel SL, Greenberger MJ, Laichalk LL, Strieter RM. Expression and regulation of chemokines in bacterial pneumonia. J Leukoc Biol 1996; 59 (1):248. Stapper AP, Narasimhan G, Ohman DE, et al. Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation. J Med Microbiol 2004; 53 (Pt 7):679-90. Stover CK, Pham XQ, Erwin AL, et al. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 2000; 406 (6799):959-64. Strom MS, Lory S. Structure-function and biogenesis of the type IV pili. Annu Rev Microbiol 1993; 47:565-96. Sun J, Barbieri JT. ExoS Rho GTPase-activating protein activity stimulates reorganization of the actin cytoskeleton through Rho GTPase guanine nucleotide disassociation inhibitor. J Biol Chem 2004; 279 (41):42936-44. Sundin C, Henriksson ML, Hallberg B, Forsberg A, Frithz-Lindsten E. Exoenzyme T of Pseudomonas aeruginosa elicits cytotoxicity without interfering with Ras signal transduction. Cell Microbiol 2001; (4):237-46. Sutherland IW. The biofilm matrix--an immobilized but dynamic microbial environment. Trends Microbiol 2001; (5):222-7. Tabor CW, Tabor H. Polyamines. Annu Rev Biochem 1984; 53:749-90. Tabor CW, Tabor H. Polyamines in microorganisms. Microbiol Rev 1985; 49 (1):81-99. Tabor H, Tabor CW. Polyamine requirement for efficient translation of amber codons in vivo. Proc Natl Acad Sci U S A 1982; 79 (23):7087-91. Tang HB, DiMango E, Bryan R, et al. Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection. Infect Immun 1996; 64 (1):37-43. 219 Thony B, Hwang DS, Fradkin L, Kornberg A. iciA, an Escherichia coli gene encoding a specific inhibitor of chromosomal initiation of replication in vitro. Proc Natl Acad Sci U S A 1991; 88 (10):4066-70. Tielen P, Strathmann M, Jaeger KE, Flemming HC, Wingender J. Alginate acetylation influences initial surface colonization by mucoid Pseudomonas aeruginosa. Microbiol Res 2005; 160 (2):165-76. Treggiari MM, Rosenfeld M, Retsch-Bogart G, Gibson R, Ramsey B. Approach to eradication of initial Pseudomonas aeruginosa infection in children with cystic fibrosis. Pediatr Pulmonol 2007; 42 (9):751-6. Troisfontaines P, Cornelis GR. Type III secretion: more systems than you think. Physiology (Bethesda ) 2005; 20:326-39. Turner JM, Messenger AJ. Occurrence, biochemistry and physiology of phenazine pigment production. Adv Microb Physiol 1986; 27:211-75. Urbanowski ML, Brutinel ED, Yahr TL. Translocation of ExsE into Chinese hamster ovary cells is required for transcriptional induction of the Pseudomonas aeruginosa type III secretion system. Infect Immun 2007; 75 (9):4432-9. Urbanowski ML, Lykken GL, Yahr TL. A secreted regulatory protein couples transcription to the secretory activity of the Pseudomonas aeruginosa type III secretion system. Proc Natl Acad Sci U S A 2005; 102 (28):9930-5. Usher LR, Lawson RA, Geary I, et al. Induction of neutrophil apoptosis by the Pseudomonas aeruginosa exotoxin pyocyanin: a potential mechanism of persistent infection. J Immunol 2002; 168 (4):1861-8. Uthaisangsook S, Day NK, Bahna SL, Good RA, Haraguchi S. Innate immunity and its role against infections. Ann Allergy Asthma Immunol 2002; 88 (3):253-64. Vallis AJ, Finck-Barbancon V, Yahr TL, Frank DW. Biological effects of Pseudomonas aeruginosa type III-secreted proteins on CHO cells. Infect Immun 1999a; 67 (4):2040-4. Vallis AJ, Yahr TL, Barbieri JT, Frank DW. Regulation of ExoS production and secretion by Pseudomonas aeruginosa in response to tissue culture conditions. Infect Immun 1999b; 67 (2):914-20. VanBogelen RA, Olson ER, Wanner BL, Neidhardt FC. Global analysis of proteins synthesized during phosphorus restriction in Escherichia coli. J Bacteriol 1996; 178 (15):4344-66. Vance RE, Rietsch A, Mekalanos JJ. Role of the type III secreted exoenzymes S, T, and Y in systemic spread of Pseudomonas aeruginosa PAO1 in vivo. Infect Immun 2005; 73 (3):1706-13. 220 Vasseur P, Vallet-Gely I, Soscia C, Genin S, Filloux A. The pel genes of the Pseudomonas aeruginosa PAK strain are involved at early and late stages of biofilm formation. Microbiology 2005a; 151 (Pt 3):985-97. Vasseur P, Vallet-Gely I, Soscia C, Genin S, Filloux A. The pel genes of the Pseudomonas aeruginosa PAK strain are involved at early and late stages of biofilm formation. Microbiology 2005b; 151 (Pt 3):985-97. Ventre I, Goodman AL, Vallet-Gely I, et al. Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci U S A 2006; 103 (1):171-6. Versura P, Maltarello MC, Cellini M, et al. Detection of mucus glycoconjugates in human conjunctiva by using the lectin-colloidal gold technique in TEM. III. A quantitative study in asymptomatic contact lens wearers. Acta Ophthalmol (Copenh) 1987; 65 (6):661-7. von Specht BU, Lucking HC, Blum B, et al. Safety and immunogenicity of a Pseudomonas aeruginosa outer membrane protein I vaccine in human volunteers. Vaccine 1996; 14 (12):1111-7. Wall D, Kaiser D. Type IV pili and cell motility. Mol Microbiol 1999; 32 (1):1-10. West SE, Sample AK, Runyen-Janecky LJ. The vfr gene product, required for Pseudomonas aeruginosa exotoxin A and protease production, belongs to the cyclic AMP receptor protein family. J Bacteriol 1994; 176 (24):7532-42. Whitchurch CB, Alm RA, Mattick JS. The alginate regulator AlgR and an associated sensor FimS are required for twitching motility in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 1996; 93 (18):9839-43. Whitchurch CB, Beatson SA, Comolli JC, et al. Pseudomonas aeruginosa fimL regulates multiple virulence functions by intersecting with Vfr-modulated pathways. Mol Microbiol 2005; 55 (5):1357-78. Whiteley M, Parsek MR, Greenberg EP. Regulation of quorum sensing by RpoS in Pseudomonas aeruginosa. J Bacteriol 2000; 182 (15):4356-60. Williams K, Romano C, Dichter MA, Molinoff PB. Modulation of the NMDA receptor by polyamines. Life Sci 1991; 48 (6):469-98. Wilson R, Sykes DA, Watson D, et al. Measurement of Pseudomonas aeruginosa phenazine pigments in sputum and assessment of their contribution to sputum sol toxicity for respiratory epithelium. Infect Immun 1988; 56 (9):2515-7. Wolfgang MC, Lee VT, Gilmore ME, Lory S. Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signaling pathway. Dev Cell 2003; (2):253-63. 221 Wood DM, Smyth AR. Antibiotic strategies for eradicating Pseudomonas aeruginosa in people with cystic fibrosis. Cochrane Database Syst Rev 2006 (1):CD004197. Woods DE, Straus DC, Johanson WG, Jr., Berry VK, Bass JA. Role of pili in adherence of Pseudomonas aeruginosa to mammalian buccal epithelial cells. Infect Immun 1980; 29 (3):1146-51. Worlitzsch D, Tarran R, Ulrich M, et al. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 2002; 109 (3):317-25. Wu W, Badrane H, Arora S, Baker HV, Jin S. MucA-mediated coordination of type III secretion and alginate synthesis in Pseudomonas aeruginosa. J Bacteriol 2004; 186 (22):7575-85. Wu W, Jin S. PtrB of Pseudomonas aeruginosa suppresses the type III secretion system under the stress of DNA damage. J Bacteriol 2005; 187 (17):6058-68. Yahr TL, Barbieri JT, Frank DW. Genetic relationship between the 53- and 49-kilodalton forms of exoenzyme S from Pseudomonas aeruginosa. J Bacteriol 1996a; 178 (5):1412-9. Yahr TL, Goranson J, Frank DW. Exoenzyme S of Pseudomonas aeruginosa is secreted by a type III pathway. Mol Microbiol 1996b; 22 (5):991-1003. Yahr TL, Greenberg EP. The genetic basis for the commitment to chronic versus acute infection in Pseudomonas aeruginosa. Mol Cell 2004; 16 (4):497-8. Yahr TL, Vallis AJ, Hancock MK, Barbieri JT, Frank DW. ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa type III system. Proc Natl Acad Sci U S A 1998; 95 (23):13899-904. Yahr TL, Wolfgang MC. Transcriptional regulation of the Pseudomonas aeruginosa type III secretion system. Mol Microbiol 2006; 62 (3):631-40. Yang F, Wang LH, Wang J, et al. Quorum quenching enzyme activity is widely conserved in the sera of mammalian species. FEBS Lett 2005; 579 (17):3713-7. Yorgey P, Rahme LG, Tan MW, Ausubel FM. The roles of mucD and alginate in the virulence of Pseudomonas aeruginosa in plants, nematodes and mice. Mol Microbiol 2001; 41 (5):1063-76. Yoshida M, Meksuriyen D, Kashiwagi K, Kawai G, Igarashi K. Polyamine stimulation of the synthesis of oligopeptide-binding protein (OppA). Involvement of a structural change of the Shine-Dalgarno sequence and the initiation codon aug in oppa mRNA. J Biol Chem 1999; 274 (32):22723-8. 222 Yu H, Mudd M, Boucher JC, Schurr MJ, Deretic V. Identification of the algZ gene upstream of the response regulator algR and its participation in control of alginate production in Pseudomonas aeruginosa. J Bacteriol 1997; 179 (1):187-93. Zaidi TS, Fleiszig SM, Preston MJ, Goldberg JB, Pier GB. Lipopolysaccharide outer core is a ligand for corneal cell binding and ingestion of Pseudomonas aeruginosa. Invest Ophthalmol Vis Sci 1996; 37 (6):976-86. Zaidi TS, Lyczak J, Preston M, Pier GB. Cystic fibrosis transmembrane conductance regulator-mediated corneal epithelial cell ingestion of Pseudomonas aeruginosa is a key component in the pathogenesis of experimental murine keratitis. Infect Immun 1999; 67 (3):1481-92. Zhang LH, and Dong YH (2004) Quorum sensing and signal interference: diverse implications. Mol. Microbiol. 53: 1563-1571. Zhou D, Mooseker MS, Galán JE. An invasion-associated Salmonella protein modulates the actin-bundling activity of plastin. Proc Natl Acad Sci U S A 1999; 96 (18):10176-81. Zhou L, Wang J, Zhang LH. Modulation of bacterial type III secretion system by a spermidine transporter dependent signaling pathway. PLoS One 2007; 2(12): e1291. Zolfaghar I, Angus AA, Kang PJ, et al. Mutation of retS, encoding a putative hybrid twocomponent regulatory protein in Pseudomonas aeruginosa, attenuates multiple virulence mechanisms. Microbes Infect 2005; (13):1305-16. 223 [...]... P aeruginosa is not dependent on a single TLR is likely due to the redundancy of TLRs in the host innate immune system In addition, MyD88 adaptor protein has been shown to be important in modulating host inflammatory responses through recruitment of neutrophils (Power et al., 2004) 1.1.2.2 P aeruginosa infections in burn wounds In healthy individuals, the intact skin forms a barrier to protect against... (Ostroff and Vasil, 1987), ferripyochelin-binding protein (Sokol, 1987), LPS and the effector proteins secreted by the type III secretion system (Nicas and Iglewski, 1985; Sokol, 1987; Goldberg et al., 1995), which promote its own dissemination throughout the host 1.1.2.3 P aeruginosa infections in cornea diseases P aeruginosa causes severe eye infections even in healthy individuals Previously, eye infections... Structures of common polyamines 159 Fig 4-15 Proposed spermidine signaling pathway required for T3SS gene expression in P aeruginosa 160 Fig 5-1 The growth patterns of PAO1 and spuE 170 Fig 5-2 Survival plots of FVB/N mice infected by P aeruginosa 171 Fig 5-3 P aeruginosa clearance in mouse lung after intra-tracheal infection 172 Fig 5-4 Expression of recombinant SpuD... (TLR5); the event leads to activation of the MyD88-dependent signaling pathway and is subsequently provoking the innate inflammatory response (Feuillet et al., 2006) 1.2.1.2 Type IV Pilus Type IV pili are strong and flexible filaments that mediate diverse cellular functions in P aeruginosa First of all, type IV pili are the major adhesins in P aeruginosa acting by binding to the glycolipids asialo-GM1... 2008) In addition, P aeruginosa is associated with urinary tract infections, nosocomial pneumonia and severe eye disease due to the use of contact lenses in healthy individuals This pathogen is also easily found in clinics and hospitals, leading to infections in patients through colonization of respiratory tubes and intravascular catheters (Pollack et al., 1995) 1.1.2.1 P aeruginosa infections in CF... Genetic organization of the P aeruginosa exoenzyme S regulon 26 Fig 1-2 Occurrence of the protein homologues of T3SS genes in Pseudomonas and other bacterial families 28 Fig 1-3 Schematic model of the Type III Secretion System (T3SS) in P aeruginosa 29 Fig 1-4 The environmental signals and regulatory systems which regulate the expression of the P aeruginosa T3SS 39 Fig 1-5... advantages for P aeruginosa in the CF airways P aeruginosa alginate is an acetylated polymer composed of non-repetitive monomers of -1,4 linked L-guluronic and D-mannuronic acids (Ryder et al., 2007) Overproduction of alginate causes the mucoid phenotype for P aeruginosa The CF patients carrying the mucoid P aeruginosa strains have a worse prognosis than those colonized with non-mucoid strains (Govan and... liquid in CF decreases mucociliary clearance of P aeruginosa from the airway and allows the retention of organisms within the airway lumen (Worlitzsch et al., 2002) In addition to be a chloride channel, CFTR has also been identified as an important epithelial cell receptor for clearance of P aeruginosa from lungs In healthy individuals, CFTR recognizes P aeruginosa through specific binding of the amino... corneal injury happens In this case, instead of clearing the bacterial cells, the CFTR- 8 expressing epithelial cells function as a reservoir for P aeruginosa since the bacterialaden cell layer is buried beneath several epithelial cell layers (Fleiszig et al., 1995; Zaidi et al., 1999) 1.2 The major virulence factors of Pseudomonas aeruginosa P aeruginosa employs a range of virulence determinants as... nucleotide binding domain (NBD) (Lyczak et al., 2002) The membrane-spanning 3 domain of CFTR determines the diameter of the pore for the chloride ion (Sheppard et al., 1996) The NBD is responsible for the binding and hydrolysis of ATP to provide energy as well as for the regulation of the opening and closing of the ion channel pore (Anderson et al., 1991; Gadsby and Nairn, 1999) In addition, CFTR contains . 1 1.1.2 Clinical importance of P. aeruginosa 3 1.1.2.1 P. aeruginosa infections in CF patients 3 1.1.2.2 P. aeruginosa infections in burn wounds 6 1.1.2.3 P. aeruginosa infections in cornea diseases. chemical toxins 19 1.2.3 Type III Secretion System (T3SS) 22 1.2.3.1 Structure of T3SS and the effectors 22 1.2.3.2 T3SS in P. aeruginosa 24 1.2.3.3 Clinical importance of T3SS in P. aeruginosa 30 1.3. SIGNAL MODULATION OF TYPE III SECRETION SYSTEM IN PSEUDOMONAS AERUGINOSA ZHOU LIAN (B. Sc., Shanghai Jiaotong University) A THESIS SUBMITED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT

Ngày đăng: 14/09/2015, 14:06

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN