1. Trang chủ
  2. » Giáo Dục - Đào Tạo

In situ spectroscopic of the early events in the rodium mediated pauson khand reaction

270 323 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 270
Dung lượng 10,24 MB

Nội dung

IN-SITU SPECTROSCOPY OF THE EARLY EVENTS IN THE RHODIUM MEDIATED PAUSON KHAND REACTION. AYMAN DAOUD ALLIAN NATIONAL UNIVERSITY OF SINGAPORE 2006 IN-SITU SPECTROSCOPY OF THE EARLY EVENTS IN THE RHODIUM MEDIATED PAUSON KHAND REACTION. AYMAN DAOUD ALLIAN (B. Eng. UIUC, M .Eng., NUS-UIUC JOINT MS. PROGRAM) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMICAL & BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2006 ACKNOWLEDGEMENT The research carried out in this thesis was a multidisciplinary and required (1) designing and machining of flow through high/low pressure reactors and spectroscopic cells, (2) using various spectroscopic tools (IR and Raman and NMR) (3) carrying out blind deconvolution of the collected in-situ spectra, (4) a sound understanding of organometallic chemistry in particular coordination chemistry (5) the use of density functional theory to assist in geometrical assignments. Such an immense task can not be achieved by a single individual, therefore, I was very fortunate to be part of very competent team at the National University of Singapore and Institute of Chemical and Engineering Sciences (ICES) whom their constant support helped me tremendously overcome many of the obstacles faced while carrying out this diverse project. The first person I would like to thank is my supervisor Marc Garland for making sure that I acquired all the resources needed to carry out my research. In addition, I would like to thank him for all the good conversations on science, politics and life. I am very grateful to his understanding of my sense of curiosity which stretched me at times but it was very satisfying. I remember at some point I was working on (i) a thermodynamic project, (ii) analyzing spectra from a heterogeneous system and (iii) writing a MATLAB script to analyze Raman optical activity simultaneously. I would like to thank Prof. Mark Saeys and his research group in particular Xu Jing and Sun Wenjie for their help on DFT calculations. Our collaboration resulted in a successful project wherein the results were published in the journal of vibrational spectroscopy. DFT became an essential tool for the research conducted in this dissertation and I’ll always be grateful to Prof. Mark Saeys even for the DFT work carried out beyond the mentioned collaboration because he and his team were the one who got me started. In addition, I would like to thank the undergraduate students that I supervised while they were carrying out their final year project Teo Boon Wee and Wang Yezhong as both really made significant contribution to the development of the DFT calculations on Rhodium carbonyl species. I would like to thank Dr Li Chuanzhao, for training me on using in-situ high pressure spectroscopy and valuable remarks/feedback on my work throughout my PHD in particular issues related to organometallics chemistry and reactors design/use. I also would like to thank my friend and partner Martin Tjahjono. Martin’s expertise in thermodynamic i and my experience with chemistry/spectroscopy/DFT were an excellent combination that enabled us to complete four projects successfully. Results from two projects were published in good journals and were well received by the scientific community. Also, I would like to thank Martin for the wonderful conversation on life and religion. I like to thank Dr Effendi Widjaja, for his valuable support in using Raman spectroscopy and numerical aspects and Dr Chacko Jacob for carrying out the 13 C NMR experiment and his help in making sense of the resultant spectra. I would like to thank Dr Guo Liangfeng for his resourcefulness in using MATLAB. I also like to thank Dr Gao Feng and Mr Karl Irwin Krummel for enriching conversation on heterogeneous catalysis and rhodium phosphine chemistry. I also would like to thank Dr Chew Wee for many of stimulating discussions. I would like to express my thanks all of members in our research group including Ms Cheng Shuying and Mr Zhang Huajun my friends in NUS Jeremy Daniel Lease, N.V.S.N. Murthy Konda and Ng Yew Seng who made my graduate student life interesting. I would like to the technical staff at NUS, in particular Mr Ng Kim Poi and his employee at the workshop their help on machining my designed flow through spectroscopic cells. I would like to thank my family for their moral support through out my PHD. I also would like to thank God. While I did work hard in the past 10 years of my academic life, but the successful completion of my PHD was just beyond my wildest dreams as young boy growing up in east Jerusalem and would not be possible without his generosity. I always felt that I was in the right time and the right place and being part of the right team. Finally this thesis is dedicated to my parents Siham and Daoud Allian. ii TABLE OF CONTENTS ACKNOWLEDGEMENT ……………………………………………………… … i SUMMARY ………………………………………………………………………… x NOMENCLATURE ……………………………………………………………… . xii LIST OF FIGURES ……………………………………………………………… xv LIST OF TABLES ……………………………………………………………… …. xxiii INTRODUCTION ……… …………………………………………………… . 1.1 Problem Statement: Missing Links in the Early Events of Rh4(CO)12 PK Reaction …………………………………………… …. 1.2 Thesis Objective ………………………………………………………… 1.3 Thesis Organization …………………………………………………… … LITERATURE REVIEW ……… …………………………………………… . 2.1 Pauson Khand Reaction………….……………………………………… …. 2.1.1 Early Pauson Khand reactions……… .………… .………………… …. 2.1.2 Reaction Mechanism for the Pauson Khand Reaction…………… …. 10 2.1.3 Cobalt catalyzed Pauson Khand Reaction………….………………… . 12 2.1.4 Titanocene and Ruthenium catalyzed Pauson Khand Reaction………… 13 2.2 Rhodium Catalyzed Pauson Khand Reaction……………………………… . 14 2.2.1 Development of new protocols for the Rhodium catalyzed PK Reaction…………………………………………………………………… … 16 2.3 Terarhodium dodecacarbonyl……….……………………………………… . 18 2.3.1 Important transformation of Rh4(CO)12 ……………………………………. 21 2.3.2 FTIR spectroscopy to study rhodium carbonyl clusters …………………. 21 2.4 Unmodified Cobalt and Rhodium carbonyl cluster reaction with alkynes… . 22 2.4.1 Reaction of alkyne with homometallic cobalt carbonyl species …………. 23 2.4.2 Reaction of alkyne with hetrometallics carbonyl species…… .… …… 24 2.4.3 Reaction of alkyne with homometallic Rhodium carbonyl species….… 25 EXPERIMENTAL APPROACH AND METHODOLOGY…………… … 27 3.1 Homogenous Catalysis and in Situ Spectroscopy………………… .…… .… 27 3.2 Experimental Setups.…… .……………………………………………… . 29 3.2.1 General scheme of in-situ spectroscopy……………………………… … 29 iii 3.2.1.1 Advantages of the current in-situ spectroscopic approach ….…. 29 3.2.2 High Pressure in-situ FTIR apparatus……………………………… .… 30 3.2.3 Low Pressure in-situ FTIR apparatus……………………………… .… 32 3.2.4 Spectrometers and Flow through cells………………………………… . 33 3.3 General Experimental Procedure…………………………………………… . 34 3.3.1 Schlenk Techniques………………………… .……………………… . 34 3.3.2 Chemicals and Gases………………………………………………… . 35 3.3.3 Quantitative measurements ………………………………………… . 35 3.4 Chemometic tools for total algebraic system identification………………… 35 3.4.1 Experimental Procedure and Spectra collection ……… 37 3.4.1.1 Lambert-Beer-Bouguer law………………………………… 40 3.4.2 Singular Vale Decomposition (SVD) …………………………………… 41 3.4.3 Pure Component Spectra Reconstruction………………………………. 44 3.4.4 Solvent and background pure Component Spectra; Spectral Substraction…………………………………………………………… 48 3.4.5 Relative concentration……………………….………………………… . 49 3.4.6 Real Molar Concentration…………………………………………… . 52 3.4.6.1 Spectral Renormalization………………………………………. 52 3.4.6.2 Real spectral absorptivities and mole numbers………………… 56 TETRARHODIUM DODECACARBONYLS………………………………… 4.1 Experimental Section………………………………………… .………… . 59 59 4.1.1 Experimental design…………………………………………………… . 60 4.1.2 Experimental Procedure and Spectra collection…………………… …. 61 4.2 Spectral Analysis and preliminary results……………………… .………… . 65 4.2.1 Singular Value Decomposition and spectral reconstruction…………… . 65 4.2.2 Relative Concentration and Signal Ratio ………………………… …… 69 4.3 Discussion… .……………………… .…………………… ………… 71 4.3.1 Rhodium based Organometallics ……….… … ……………….…… . 71 4.3.2 Gas impurities Ni(CO)4 and Fe(CO)5…….… ……………….…… . 73 4.3.3 Species X………………………………………… …….……………… 74 4.4 Real molar concentration and thermodynamics .…… .…… ………… . 77 4.4.1Properly scaled pure component spectra……….… ……………….…… 78 iv 4.4.2 CO solubility …………………………………… … ……………….…… . 80 4.4.3 Thermodynamics…….………………………… … ……………….……… . 81 4.4.3.1 Fluxionally and the discovery of all-terminal Rh4(CO)12……… 81 4.4.3.2 The cluster fragmentation to Rh2(CO)6(μ-CO)8……………… . 83 4.5 Summary … .…… ………… 85 Density Functional Theory ………………………………………………… … . 86 5.1 Geometrical assignment based on vibrational spectroscopy…………………. 87 5.1.1 Traditional approaches for Vibrational assignment ….………… …… 87 5.1.2 DFT assisted structural determination………………………….……… . 87 5.2 Finding the appropriate density functional and basis set….………… …… 88 5.2.1 Widely applied DFT methods for Rhodium based Organometallics……. 89 5.2.2 The HRh(CO)4 Test……………… ………………………… …….… 90 5.2.2.1 Application to the cobalt hydride HCo(CO)4.…………… …. 93 5.3 Calculation of Metal Carbonyl Clusters……………….………………… 94 5.3.1 Dirhodium Octacarbonyl Rh2(CO)6(μ-CO)2…….……………… … 94 5.3.1.1 Different Geometries of Rh2(CO)8……… .…………… … 96 5.3.1.2 Cobalt dimer Co2(CO)6(μ-CO)2 ……… .…………… …… 97 5.3.2 Tetrarhodium Dodecacarbonyl Rh4(CO)9(μ-CO)3 ………………… … . 98 5.3.2.1 Solvent Effect on the Observed Vibrational Spectra .…… …. 101 5.3.2.2 All-terminal Geometries of Rh4(CO)12…………….…… … . 102 5.3.3 Hexarhodium Hexacarbonyl Rh6(CO)12(μ3-CO)4……………… .……. 103 5.3.4 Reliability of the Mid-infrared Predicted Vibrational Spectra…………. 105 5.3.4.1 Predicted terminal Carbonyl frequency…………….…… .… 105 5.3.4.2 Predicted Bridged Carbonyl frequency…………….…… …. 106 5.4 Calculation of modified Metal Carbonyl Species…… …………………… . 106 5.4.1 Acylrhodium tetracarbonyl………………………………………….… …… 106 5.4.2 Geometry of RCORh(CO)3(π-C2H4)…………………………………… 109 5.4.3 The Spectrum of Rh4(CO)11PPh3………………………………………… 111 5.5 Experimental Section…… ……………………………… ……………… 113 5.5.1 In-situ Cell For Liquid/Supercritical Gas Measurements………………… 113 5.5.2 Experimental Setup and Procedure………………………………………… 114 5.6 Summary…… ……………………………… …………… 115 The Homometallic Rhodium Butterfly Cluster……………………… …… …. 116 v 6.1 Preliminary Investigation…………………………………………… .…… . 116 6.1.1 Experimental Setup and Procedure ………………………………… 117 6.1.2 Spectra Analysis…………………………… ……………………… . 118 6.2 Mid-Infrared Characterization of the Butterfly Cluster……………………… 119 6.2.1 High resolution vibrational study of (μ4-η2-3-hexyne)Rh4(CO)8(μ-CO)2 120 6.2.1.1 Experimental Section and procedure…………….……… … . 120 6.2.1.2 Spectra Analysis and DFT Calculations ……….……… …. 121 6.2.2 Low resolution vibrational study of (μ4-η2-terminal)-Rh4(CO)8(μ-CO)2 125 6.2.3 Low resolution vibrational study of (μ4-η2-asymmetric alkyne)Rh4(CO)8(μ-CO)2……………………………… 127 6.2.4 Rates of Formation, Dependence on Substrate …………………… 128 6.2.5 Spectra of Various (μ4-η -alkyne)Rh4(CO)8(μ-CO)2 in d-benzene……… 129 6.2.5.1 Experimental Procedure and BTEM Results.…………… .…. 130 6.2.5.2 Spectra Analysis…………….…………………………… .…. 131 6.3 Raman spectra of (hexyne)Rh4(CO)8(μ-CO)2…….……… ……………….… 132 6.3.1 Experimental Section…….……… …………………………………… 133 6.3.1.1 Experimental Setup …………….……… ………………… . 133 6.3.1.2 Experimental Procedure …………….……… ……………… 134 6.3.2 Spectra Analysis.……… …………… .……… …………………… 135 6.3.2.1 Mid-Raman Vibrational Spectra …………….……… …… 135 6.3.2.2 Far-Raman Vibrational Spectra …………….……… ……… 140 6.3.2.3 Relative Concentrations…………….……… ………………. 145 6.4 NMR spectra of (3-hexyne)Rh4(CO)8(μ-CO)2……………………………… 146 6.4.1 Experimental Section- Rh4(CO)9(µ-CO)3 Enrichment…….……… . 146 6.4.2 Results and Discussion…….……… ……………………………….… 146 6.4.2.1 The 13C NMR Spectrum of Rh4(CO)9(µ-CO)3 ………… .…. 147 13 6.4.2.2 The C NMR Reaction Spectrum…………….……… .…. 148 6.4.2.3 The 13C NMR Reaction Spectrum of (μ4-η2-3hexyne)Rh4(CO)8(μ-CO)2…………… .….……… .…………… . 150 6.5 Kinetics of the formation of (C2H5C2C2H5)Rh4(CO)8(μ-CO)2… .…………… 152 6.5.1 Experimental Section……… .….……… .….……… .….……… . 152 6.5.1.1 Experimental Design……… .….……… .….……… .… 152 6.5.1.2 Experimental Procedure and Spectra Collection……… .…… 153 6.5.2 Spectra Analysis……… .….……… .….……… .….……… .… 155 vi 6.5.2.1 Relative Concentration…… .….……… .…… .….………. 155 6.5.2.2 Real Concentration…… .….……… .…… .….……… . 156 6.5.3 Alkyne and CO molar concentrations……… .…….……… .…….…… 157 6.5.4 Kinetic and Mechanism of the Reaction……… .…….……… .…….… 158 6.5.5 Thermodynamic and Apparent Eyring Activation……… .…….………. 163 6.6 Summary……… .…….……… .…….……… .…….……… .…….……… . 165 The Dirhodium Alkyne Species ……………………………………………… … 166 7.1 Preliminary Analysis …………………………………… ………………… . 167 7.1.1 Experimental Section ………………………………… ………… .… . 167 7.1.2 Spectra Analysis………………………………………………………… 168 7.2 High resolution vibrational study of the fragmentation of (μ4-η2C2H5C2C2H5)Rh4(CO)8(μ-CO)2……………… 169 7.2.1 Experimental Section ……………………………….………………… 169 7.2.1.1 Experimental Setup…………………………… ……… … 170 7.2.1.2 Experimental Procedure ………………………… …… …… 170 7.2.2 Spectral Analysis ……………………………………………………… . 171 7.2.2.1 Rh4(CO)9(μ-CO)3 and (μ4-η2- alkyne)Rh4(CO)8(μ-CO)2… .…. 172 7.2.2.2 Spectra and DFT Analysis of (3-hexyne)Rh2(CO)6 … .… .…. 172 7.2.2.3 Spectra and DFT Analysis of (3-hexyne)Rh2(CO)5 … .… .…. 176 7.2.3 Relative Concentration ……………………… .… .… .… .… .…… 179 7.3 Low resolution vibrational study of the fragmentation of (μ4-η2alkyne)Rh4(CO)8(μ-CO)2, Alkyne= 1-heptyne, Phenyl-1-hexyne…… ……… 180 7.3.1 Experimental Section……………………………………………… .… 181 7.3.3.1 Experimental Design ………………………………….… .…. 181 7.3.3.2 Experimental Procedure ……………………………….… .…. 181 7.3.2 Spectra Analysis……………………………………………………… 182 7.3.2.1 Pure Components of the Phenyl-1-hexyne Experiment ………. 182 7.3.2.2 Pure Components of the 1-heptyne Experiment …… .………. 185 7.4 Kinetics of the (1-heptyne)Rh4(CO)8(μ-CO)2 Fragmentation……………… . 187 7.4.1 Experimental Section……………………………………………… . 187 7.4.1.1 Experimental Design……………………………………… 188 7.4.1.2 Experimental Procedure and Spectra Collection……………… 188 7.4.2 Spectra Analysis………………….…………………………………… . 189 vii 7.4.2.1 Relative Concentration…………………………… . 191 7.4.2.2 Unknown species structural assignments…………… . 192 7.4.2.3 Organometallics Real Concentration…………… 195 7.4.2.4 CO and 1-heptyne molar Concentration.…………… . 195 7.4.3 Kinetic and Mechanism of the Reaction……………………………… . 196 7.4.4 Thermodynamic and Apparent Eyring Activation Parameters………… . 199 7.5 Summary…………………………………………………………………… 201 The Reaction of Rh4(CO)9(μ-CO)3 with Enyne…………………….…………… 202 8.1 Reaction of Catalytic Precursor Rh4(CO)9(μ-CO)3 with Equivalent amounts of Enyne………………………………………………………… ……… . 202 8.1.1 Experimental Section…….…………………………………………… 203 8.1.1.1 Experimental Design………………………………………… . 203 8.1.1.2 Experimental Procedure…………………………………… … 203 8.1.2 Spectra Analysis.……………………………… .………………… .… 204 8.1.3 Unknown Species X………………………… .……………………… . 207 8.2 Reaction of Catalytic Precursor Rh4(CO)9(μ-CO)3 with Excess Enyne.……… 209 8.2.1 Experimental Section………………………………………………… …… . 209 8.2.1.1 Experimental Design………………………………………… . 209 8.2.1.1 Experimental Procedure……………………………………… 209 8.2.2 Spectra Analysis……………………………………………………… …… . 209 8.3 On-line FTIR monitoring of the Effect of Ultrasonic Irradiation on Homogenous Liquids ………………………….……………………………. 212 8.3.1 Background……………….….…………………………………………… 213 8.3.2 Experimental Setup ……………………………………………….….…… 214 8.3.3 Preliminary Experimental Results .……………………………………. 215 8.3.3.1 Experimental Design ……………………………………….…. 215 8.3.3.2 Experimental Procedure……………………………………… 215 8.3.3.3 Spectra Analysis……………………………………………… 216 8.4 Summary ………………………….……………………………………… . 218 Conclusion and Future Work …………………………… ………… …………. 219 9.1 Results on the Early Event of Pauson Khand Reaction ………………… .… 219 9.1.1 Experimental Work and Findings …….………………………………… 220 9.1.2 Implication of the Results …….….…………………………………… . 221 viii REFERENCES Cariati, F., V. Valenti and G. Venanzio. Structure of tetrairidium dodecacarbonyl from its vibrational spectrum. Inorg. Chim. Acta, 3(3), pp. 378-82. 1969. Carre, F. H., F. A. Cotton and B. A. Frenz. Preparation and structure of a new derivative of tetrarhodium dodecacarbonyl. Further refinement of the structure of tetracobalt dodecacarbonyl. Inorg. Chem., 15(2), pp. 380-7. 1976. Cao, H. S. R. Mundla and J. M. Cook. Studies on the Rh and Ir mediated tandem Pauson-Khand reaction. A new entry into the dicyclopenta[a,d]cyclooctene ring system. Tetrahedron Lett., 44(32), pp. 6165-6168. 2003. Chen, L. and M. Garland. Use of Entropy Minimization for the Preconditioning of Large Spectroscopic Data Arrays: Application to In Situ FT-IR Studies From the Unmodified Homogeneous Rhodium Catalyzed Hydroformylation Reaction. Appl. Spectrosc. 56 (11), pp. 1422-1428. 2002. Cetini, G., O. Gambino, R. Rossetti and E. Sappa. Acetylenic derivatives of metal carbonyls. I. Substitution reactions of Co2(CO)6C2RR' complexes. J. Organomet. Chem., 8(1), pp. 149-54. 1967. Chew, W., E. Widjaja and M. Garland. Band-Target Entropy Minimization (BTEM): An Advanced Method for Recovering Unknown Pure Component Spectra. Application to the FTIR Spectra of Unstable Organometallic Mixtures. Organometallics, 21(9), pp. 1982-1990. 2002. Chini, P. Hexacobalthexadecacarbonyl and its derivatives. Chem. Commun., pp. 440-1. 1967. Chini, P. and S. Martinengo. Synthesis of Rh4(CO)12 and Rh6(CO)16 at atmospheric pressure. Chem. Commun., (5), pp. 251-2. 1968. Chini, P. and S. Martinengo. Synthesis of rhodium carbonyl compounds at atmospheric pressure. III. Synthesis of Rh4(CO)12 and of Rh6(CO)16. Inorg. Chim. Acta, 3(2), pp. 315-18. 1969. Chini, P. and B. T. Heaton. Tetranuclear carbonyl clusters. Top. Curr. Chem., 71, pp. 1-70. 1977. Churchill, M. and J. P. Hutchinson. Crystal structure of tetrairidium dodecacarbonyl, Ir4(CO)12. An unpleasant case of disorder. Inorg. Chem., 17(12), pp. 3528-35. 1978. Cohen, M. A., D. R. Kidd amd T. L. Brown. Structures of dodecacarbonyltetracobalt and undecacarbonyl(trimethyl phosphite)tetracobalt in solution. J. Amer. Chem. Soc., 97(15), pp. 4408-9. 1975. Connolly, J. F. and G. A. Kandalic. Thermodynamic properties of dilute solutions of carbon monoxide in a hydrocarbon. J. Chem. Thermodyn., 6(12), pp. 1129-39. 1984. Corey, E. R., L. F. Dahl and W. Beck. Rh6(CO)16, and its identity with previously reported Rh4(CO)11. J. Amer. Chem. Soc., 85, pp. 1202-3. 1963. Corradini, P. Structure of tetracobalt dodecacarbonyl. J. Chem. Phys., 31, pp. 1676-7. 1959. Corradini, P. and A. Sirigu. Structure of tetracobalt dodecacarbonyl. Ricerca Scientifica, 36(3), pp. 188-90. 1966. Cornils, B. and W.A. Herrmann. Applied Homogeneous Catalysis with Organometallic 227 REFERENCES Compounds. Vol. 3, Section 3.3.7.1, p. 1241. Weinheim, Germany: Wiley-VCH Verlag GmbH. 2002b. Costa, M., G. Gervasio, D. Marabello and E. Sappa. The reaction of Co2(CO)8 and Co4(CO)12 with the dipropargylamine [(HC.tplbond.CCMe2)2NMe]. Synthesis and crystal structure of the complex Co4(CO)10(CO)[H2C:CC(Me)2N(Me)C(Me2)C(4C)]. J. Organomet. Chem., 656(1-2), pp. 57-62. 2002. Cotton, F. A. and R. R. Monchamp. High-resolution infrared spectra and structures of cobalt carbonyls. J. Chem. Soc., pp. 1882-5. 1960. Cotton, F. A. A solution to the structural dilemma of Co4(CO)12 based on valence tantomerism and steric nonrigidity. Inorg. Chem., 5(6), pp. 1083-5. 1966. Cotton, F. A., L. Kruczynski, B. L. Shapiro and L. F. Johnson. Direct evidence from carbon-13 nuclear magnetic resonance for intramolecular scrambling of carbonyl groups in a metal atom cluster carbonyl, tetrarhodium dodecacarbonyl. J. Amer. Chem. Soc., 94(17), pp. 6191-3. 1972. Cotton, F. A. and X. Feng. Density Functional Theory Study of Transition-Metal Compounds Containing Metal-Metal Bonds. 1. Molecular Structures of Dinuclear Compounds by Complete Geometry Optimization. J. Amer. Chem. Soc., 119(32), pp. 7514-7520. 1997. Cotton, F. A. and X. Feng. Density Functional Theory Study of Transition-Metal Compounds Containing Metal-Metal Bonds. 2. Molecular Structures and Vibrational Spectra of Dinuclear Tetracarboxylate Compounds of Molybdenum and Rhodium. J. Amer. Chem. Soc., 120(14), pp. 3387-3397. 1998. Cotton F. A. A half-century of nonclassical organometallic chemistry : a personal perspective. Inorg. Chem., 41(4), pp. 643-58. 2002. Cravotto, G. and P. Cintas. Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications. Chem. Soc. Rev., 35(2), pp. 180-196. 2006. Creighton, J. A. and B. T. Heaton. A vibrational spectroscopic study of dodecacarbonyltetrarhodium J. Chem. Soc., Dalton Trans., 7, pp 1498-500. 1981. Damoense, L., M. Datt, M. Green and C. Steenkamp. Recent advances in high-pressure infrared and NMR techniques for the determination of catalytically active species in rhodium- and cobaltcatalysed hydroformylation reactions. Coord. Chem. Rev., 248(21-24), pp. 2393-2407. 2004. De Bruin, T J. M., A. Milet, A. E. Greene and Y. Gimbert. Insight into the Reactivity of Olefins in the Pauson-Khand Reaction. J. Org. Chem., 69(4), pp. 1075-1080. 2004. De Bruin, T. J. M., and A. Milet, F. Robert, Y. Gimbert, A. E. Greene. Theoretical Study of the Regiochemistry-Determining Step of the Pauson-Khand Reaction. J. Amer. Chem. Soc., 123(29), pp. 7184-7185. 2001. Decker, Stephen A., O. Donini and M. Klobukowski. A Contribution to the Understanding of Carbonyl Migration in Mn2(CO)10 via the Pairwise Exchange Mechanism. J. Phys. Chem. A, 101(46), pp. 8734-8740. 1997. Dibenedetto, John A., D. W. Ryba and P. C. Ford. Reaction dynamics of photosubstitution intermediates of the triruthenium carbonyl cluster Ru3(CO)12 as studied by flash photolysis with 228 REFERENCES infrared detection. Inorg. Chem., 28(18), pp. 3503-7. 1989. Dickson, R. S. and P. J. Fraser. Transition metal complexes of substituted alkynes. VIII. Complexes of cobalt derived from 1,1,1-trifluorobut-2-yne. Aust. J. Chem., 23(12), pp. 2403-11. 1970. Doyama, K., T. Joh, S. Takahashi and T. Shiohara. Hydroformylation and hydrocarbonylation of enynes by rhodium carbonyl cluster: a new route to cyclic enones. Tetrahedron Lett., 27(37), pp. 4497-4500. 1986. Draper, S. M., M. Delamesiere, E. Champeil, B. Twamley, J. J. Byrne and C. Long. Novel acetylene-linked di-cobalt and tetra-cobalt carbonyl clusters. J. Organomet. Chem., 589(2), pp. 157-167. 1999. Eguchi, T. and B. T. Heaton. Comparative solid state and solution NMR structural and dynamic studies on tetra- and higher-nuclearity transition metal carbonyl clusters. J. Chem. Soc., Dalton Trans., 20, pp 3523-3530. 1990. Ehlers, A. W., Y. Ruiz-Morales, E. J. Baerends and T. Ziegler. Dissociation Energies, Vibrational Frequencies, and 13C NMR Chemical Shifts of the 18-Electron Species [M(CO)6]n (M = Hf-Ir, Mo, Tc, Ru, Cr, Mn, Fe). A Density Functional Study. Inorg. Chem., 36(22), pp. 5031-5036. 1997. Ellgen, P. C. Kinetics and mechanism of the reaction and dicobalt octacarbonyl and alkynes. Inorg. Chem., 11(4), pp. 691-5. 1972. Ernzerhof, M. and G. E. Scuseria. Assessment of the Perdew-Burke-Ernzerhof exchangecorrelation functional. J. Chem. Phys., 110(11), pp. 5029-5036. 1999. Evans, J., B. F. G. Johnson, J. Lewis, J. R. Norton and F. A. Cotton. Structure and dynamical properties of dodecacarbonyltetrarhodium in solution. Carbon-13 nuclear magnetic resonance study. Chem. Commun., (21), pp. 807-8. 1973. Evans, J., B. F. G. Johnson, J. Lewis and T. W. Matheson. Tetracobalt carbonyls in solution. J. Amer. Chem. Soc., 97(5), pp. 1245-7. 1975. Evans, J., B. F. G. Johnson, J. Lewis, T. W. Matheson and J. R. Norton. Carbon-13 nuclear magnetic resonance spectra of polynuclear carbonyls of cobalt and rhodium. J. Chem. Soc., Dalton Trans., 6, pp 626-34. 1978. Evans P. A. and J. E. Robinson. Regio- and diastereoselective tandem rhodium-catalyzed allylic alkylation/Pauson-Khand annulation reactions. J. Amer. Chem. Soc., 123(19), pp. 4609-10. 2001. Evans, P. A. Editor. Modern Rhodium-Catalyzed Organic Reactions. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. pp 215-140. 2005. Fan, L. and T. Ziegler. Application of density functional theory to infrared absorption intensity calculations on transition-metal carbonyls. J. Phys. Chem., 96(17), pp. 6937-41. 1992. Faulques, E., A. Leblanc, P. Molinie, M. Decoster, F. Conan and J. Sala-Pala. Monomer, Dimer, and Tetramer States in Molybdenum Complexes of Tetracyanoquinodimethane. J. Phys. Chem. B, 101(9), pp. 1561-1568. 1997. Farrar, D. H., E. V. Grachova, A. Lough, C. Patirana, A. J. Poe and S. P. Tunik. Ligand effects on the structures of Rh6(CO)15L clusters J. Chem. Soc., Dalton Trans., 13, pp. 2015-2019. 2001. 229 REFERENCES Farrugia, L. J. Dynamics and fluxionality in metal carbonyl clusters: some old and new problems. J. Chem. Soc., Dalton Trans., 11, pp. 1783-1792. 1997. Farrugia, L. J., D. Braga and F. Grepioni. A structural redetermination of Co4(CO)12: evidence for dynamic disorder and the pathway of metal atom migration in the crystalline phase. J. Organomet. Chem., 573(1-2), pp. 60-66. 1999. Farrugia, L. J. Structural redetermination of Rh4(CO)12 at 293 and 173 K and analysis of the thermal motion in relation to the dynamical behavior. J. Cluster Sci., 11(1), 39-53. 2000. Feng, J. and M. Garland. Unmodified Homogeneous Rhodium-Catalyzed Hydroformylation of Styrene. The Detailed Kinetics of the Regioselective Synthesis. Organometallics, 18, p. 417-427, 1999. Fielicke, A., G. Von Helden, G. Meijer, B. Simard, S. Denommee and D. M. Rayner. Vibrational Spectroscopy of CO in Gas-Phase Rhodium Cluster-CO Complexes. J. Amer. Chem. Soc., 125(37), pp. 11184-11185. 2003. Fielicke, A., G. von Helden, G. Meijer, D. B. Pedersen, B. Simard and D. M. Rayner. Size and charge effects on the binding of CO to small isolated rhodium clusters. J. Phys. Chem. B, 108(38), pp. 14591-14598. 2004. Fielicke, A., G. von Helden and G. Meije. Far-Infrared spectroscopy of isolated transition metal clusters. Eur. Phys. J. D, 34(1-3), pp. 83-88. 2005. Fielicke, A., C. Ratsch, G. Von Helden and G. Meijer. Isomer selective infrared spectroscopy of neutral metal clusters. J. Chem. Phys., 122(9), pp. 1-4. 2005. Flint, E. B., K. S. Suslick. The Temperature of Cavitation. Science, 253, pp. 1397-1399. 1991. Folga, E. and T. Ziegler. A density functional study on the strength of the metal bonds in Co2(CO)8 and Mn2(CO)10 and the metal-hydrogen and metal-carbon bonds in R-Mn(CO)5 and RCo(CO)4. J. Amer. Chem. Soc., 115(12), pp. 5169-76. 1993. Ford, P. C., J. S. Bridgewater and B. Lee. Time-resolved infrared spectroscopy in studies of organometallic excited states and reactive intermediates. Photochem. Photobiol. 65(1), pp. 57-64. 1997. Fukushima S., K. Y. Takeuchi, S. Yamashita, K. Uetsuki, S. Shirakawa, M. Suzuki, K. Furuta, R. Noyori, H. Sasaki, Y. Kikuchi, T. Kita, T. Yamori, J. Sawada, M. Kojima, A. Hazato, S. Kurozumi and M. Fukushima M. Antitumor activity, optimum administration method and pharmacokinetics of 13,14-dihydro-15-deoxy-deoxy-Delta7 -prostaglandin A1 methyl ester (TEI9826) integrated in lipid microspheres (Lipo TEI-9826). Anti-cancer drugs, 12(3), pp. 221-34. 2001. Fukushima, S., S. Kishimoto, Y. Takeuchi and M. Fukushima. Preparation and evaluation of o/w type emulsions containing antitumor prostaglandin. Advanced Drug Delivery Rev., 45(1), pp. 65-75. 2000. Fuji, K., T. Morimoto, K. Tsutsumi and K. Kakiuchi. Catalytic asymmetric Pauson-Khand-type reactions of enynes with formaldehyde in aqueous media. Tetrahedron Lett., 45(50), pp. 91639166. 2004. Garland, M. Low Temperature Homogenous Catalytic Hydroformylation with Mixed Cobalt and Rhodium Carbonyls as Catalyst Precursors. Ph.D. Thesis, ETH-Zurich. 1988. 230 REFERENCES Garland, M., and P. Pino. Kinetics of the formation and hydrogenolysis of acylrhodium tetracarbonyl. Organometallics, 10(6), pp. 1693-704. 1991. Garland, M., I. T. Horvath, G. Bor and P. Pino. Thermodynamic parameters for the formation of cobalt-rhodium heptacarbonyl and cobalt-rhodium octacarbonyl. Organometallics, 10(3), pp. 55967. 1991. Garland, M. and G. Bor. Infrared spectroscopic studies on metal carbonyl compounds. 24. Observation of the infrared spectrum of an acylrhodium tetracarbonyl during the hydroformylation of olefins with rhodium-containing catalyst precursors. Inorg. Chem., 28(3), pp. 410-13. 1989. Garland, M. In Mechanisms in Homogeneous Catalysis: A Spectroscopic Approach; Heaton, B., Ed. Wiley-VCH: Weinheim, Germany. pp. 157. 2005. Gibson, S. E. and A. Stevenazzi. The Pauson-Khand reaction: The catalytic age is here! Angew. Chem. Int. Eng., 42(16), pp. 1800-1810. 2003. Gibson, S. E., S. E. Lewis and N. Mainolfi. Transition metal-mediated routes to cyclopentenones. J. Organomet. Chem., 689(24), pp. 3873-3890. 2004. Gibson, S. E., N. Mainolfi, S. B. Kalindjian and P. T. Wright. A cyclobutadiene equivalent in the catalytic Pauson-Khand reaction. Angew. Chem. Int. Eng., 43(42), pp. 5680-5682. 2004. Gibson, S. E., C. Johnstone and A. Stevenazzi. A stable catalyst of the Pauson-Khand annelation. Tetrahedron, 58(24), pp. 4937-4942. 2002. Gimbert, Y., D. Lesage, A. Milet, F. Fournier, A. E. Greene and J. C. Tabet. On Early Events in the Pauson-Khand Reaction. Org. Lett., 5(22), pp. 4073-4075. 2003. Geis, O. and H. G. Schmalz. New developments in the Pauson-Khand reaction. Angew. Chem. Int. Eng., 37(7), pp. 911-914. 1998. Gervasio, G., R. Rossetti and P. L. Stanghellini. Vibrational study and crystal structure of (acetylene)decacarbonyltetracobalt, (C2H2)Co4(CO)8(CO)2. Organometallics, 4(9), pp. 1612-19. 1985. Gordon, C. M., M. Kiszka, I. R. Dunkin, W. J. Kerr, J. S. Scott and J. Gebicki. Elucidating the mechanism of the photochemical Pauson-Khand reaction: matrix photochemistry of (phenylacetylene)hexacarbonyldicobalt. J. Organomet. Chem., 554(2), pp. 147-154. 1998. Gonzalez-Blanco, O. and V. Branchadell. Density functional study of the Fe-CO bond dissociation energies of Fe(CO)5. J. Chem. Phys., 110(2), pp. 778-783. 1999. Greenfield, H., H. W. Sternberg, R. A. Friedel, J. H. Wotiz, R. Markby and I. Wender. Acetylenic dicobalt hexacarbonyls. Organometallic compounds derived from alkynes and dicobalt octacarbonyl. J. Amer. Chem. Soc., 78, pp. 120-4. 1956. Grigorien, I.S. and E.Z. Meilikhov. (eds.) Handbook of Physical Quantities. Boca Raton: CRC Press, Inc. 1997. Haas, H. and R. K. Sheline. Structure of Co4(CO)12 in solution. J. Inorg. Nucl. Chem., 29(3), pp. 693-8. 1967. 231 REFERENCES Haji, S. and C. Erkey. Investigation of rhodium catalyzed hydroformylation of ethylene in supercritical carbon dioxide by in situ FTIR spectroscopy. Tetrahedron, 58(20), pp. 3929-3941. 2002. Hanlan, L. A. and G. A. Ozin. Synthesis using transition metal diatomic molecules. Dirhodium octacarbonyl and diiridium octacarbonyl. J. Amer. Chem. Soc., 96(20), pp. 6324-9. 1974. Haynes, A. In Mechanisms in Homogeneous Catalysis. A Spectroscopic Approach. B. Heaton (Ed) Wiley, 2005. Hay, P. J. and W. R. Wadt. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms scandium to mercury. J. Chem. Phys., 82(1), pp. 270-83. 1985. Hay, P. J. and W. R. Wadt. Ab initio effective core potentials for molecular calculations. Potentials for potassium to gold including the outermost core orbitals. J. Chem. Phys., 82(1), pp. 299-310. 1985. Heaton, B. T., J. Jonas, T. Eguchi and G. A. Hoffman. Carbon-13 NMR study of rhodium carbonyl clusters under high pressures of carbon monoxide/hydrogen. J. Chem. Soc., Chem. Commun., (7), pp. 331-2. 1981. Heaton, B. T., L. Longhetti, D. M. P. Mingos, C. E. Briant, P. C. Minshall, B. R. C. Theobald, L. Garlaschelli and U. Sartorelli. Structural studies of Rh4(CO)12 derivatives in solution and in the solid state. J. Organomet. Chem., 213(1), pp. 333-50. 1981. Heaton, B. T., L. Strona, R. D. Pergola, L. Garlaschelli, U. Sartorelli and I. H. Sadler. Multinuclear magnetic resonance studies on [Rh4(CO)12-xLx] [L = P(OPh)3, x = 1-4]. J. Chem. Soc., Dalton Trans., 1, pp 173-5. 1983. Heaton, B. T., C. Jacub, I. S. Podkorytov and S. P. Tunik. CO Fluxionality in Rh4(CO)12 and Rh6(CO)16. (in press) Hieber, W. and H. Lagally. Metal carbonyls. XLV. Rhodium in the system of metal carbonyls. Z. anorg. allgem. Chem., 251, pp. 96-113. 1943. Herrmann, W. A., Applied Homogeneous Catalysis with Organometallic Compounds, Edited By, B. Cornils, W. A. Herrmann 2002 pp 1241-1251 Hicks, F. A., N. M. Kablaoui and S. L. Buchwald. Titanocene-Catalyzed Cyclocarbonylation of Enynes to Cyclopentenones. J. Amer. Chem. Soc., 118(39), pp. 9450-9451. 1996. Hicks, F. A. N. M. Kablaoui and S. L. Buchwald. Scope of the Intramolecular TitanoceneCatalyzed Pauson-Khand Type Reaction. J. Amer. Chem. Soc., 121(25), pp. 5881-5898. 1999. Hoffman, D. M., R. Hoffmann and C. R. Fisel. Perpendicular and parallel acetylene complexes. J. Amer. Chem. Soc., 104(14), pp. 3858-75. 1982. Horvath, I.T., L. Zsolnai and G. Huttner. Regiospecific reactions of cobalt-rhodium mixed-metal clusters. Unprecedented, facile and reversible tetranuclear-dinuclear transformations involving diphenylacetylene and/or carbon monoxide. Organometallics, 5(1), pp. 180-2. 1986. Houston, P. L., Chemical Kinetics and Reaction Dynamis, McGRAW-HILL International Edition, 2001. 232 REFERENCES Ingleson, M. J., S. K. Brayshaw, M. F. Mahon, G. D. Ruggiero and A. S. Weller. Dihydrogen Complexes of Rhodium: [RhH2(H2)x(PR3)2]+ (R = Cy, iPr; x = 1, 2). Inorg. Chem., 44(9), pp. 3162-3171. 2005. Iwashita, Y. and F. Tamura. Rhodium tolane complex and cyclotrimerization of substituted acetylenes catalyzed by transition metal complexes. Bull. Chem. Soc. Jpn., 43(5), pp. 1517-20. 1970. Iwashita, Y., F. Tamura and A. Nakamura. Spectroscopic studies on coordinated acetylene. Inorg. Chem., 8(5), pp. 1179-83. 1969. Ivanov, S. A., N. de Silva, M. A. Kozee, R. V. Nichiporuk and L. F. Dahl. Synthesis and Structural/Theoretical (DFT) Analysis of the Geometrically Unprecedented Au-Pt Cluster, Pt7(CO)8(PPh3)4(4-AuPPh3)2: Structure-to-Synthesis Appraisal Concerning Its Formation. J. Cluster Sci., 15(2), pp. 233-261. 2004. Jacobsen, H. and T. Ziegler. Octacarbonyl Diiron. A Density Functional Study. J. Amer. Chem. Soc., 118(19), pp. 4631-5. 1996. Jeannin, Y. Literature highlights. 32. Alkynes and organometallic chemistry. Transition Met. Chem., 18(1), pp. 122-8. 1993. Jeong, N.; B. K. Sung, J. S. Kim, S. B. Park, S. D. Seo, J. Y. Shin, K. Y. In and Y. K. Choi. Pauson-Khand-type reaction mediated by Rh(I) catalysts. Pure Appl. Chem., 74(1), pp. 85-91. 2002. Jeong, N. B. K. Sung, Y. K. Choi. Rhodium(I)-Catalyzed Asymmetric Intramolecular PausonKhand-Type Reaction. J. Amer. Chem. Soc., 122(28), pp. 6771-6772. 2000. Jeong, N. and S. H. Hwang. Catalytic intermolecular Pauson - Khand reactions in supercritical ethylene. Angew. Chem. Int. Eng., 39(3), pp. 636-638. 2000. Jeong, N. Transition Metals for Organic Synthesis. Wiley-VCH, Germany, pp 560-577. 1998. Jeong, N. Rhodium(I)-catalyzed intramolecular Pauson-Khand reaction. Organometallics, 17(17), pp. 3642-3644. 1988. Jeong, N., S. H. Hwang, Y. Lee and Y. K. Chung. Catalytic version of the Intramolecular PausonKhand Reaction. J. Amer. Chem. Soc., 116(7), pp. 3159-60. 1994. Jiang, L. and Q. Xu. Experimental and Theoretical Evidence for the Formation of Zinc Tricarbonyl in Solid Argon. J. Amer. Chem. Soc., 127(25), pp. 8906-8907. 2005. Johnson, B. F. G The structures of simple binary carbonyls. J. Chem. Soc., Chem. Commun., (6), pp. 211-13. 1976. Johnson, B. F. G. and R. E. Benfield. Structures of binary carbonyls and related compounds. Part 1. A new approach to fluxional behavior. J. Chem. Soc., Dalton Trans., 11, pp. 1554-68. 1978. Jonah, D.A. A New Correlation for Henry’s Constant for the Solubility if Gases in Liquids. Fluid Phase Equilibria. 15, p. 173. 1983. 233 REFERENCES Jonas, J. Nuclear magnetic resonance measurements at high pressure. Rev. Sci. Instrum., 43(4), pp. 643-9. 1972. Jonas, V. and W. Thiel. Theoretical study of the vibrational spectra of the transition-metal carbonyl hydrides HM(CO)5 (M = Mn, Re), H2M(CO)4 (M = Fe, Ru, Os), and HM(CO)4 (M = Co, Rh, Ir). J. Chem. Phys., 105(9), pp. 3636-3648. 1996. Jonas, V. and W. Thiel. Density Functional Study of the Vibrational Spectra of Octahedral Transition-Metal Hexacarbonyls: Neutral Molecules (M = Cr, Mo, W) and Isoelectronic Ions (M = V, Nb, Ta; M = Mn, Re; M = Fe, Ru, Os; M = Co, Rh, Ir; M = Pt; M = Au). Organometallics, 17(3), pp. 353-360. 1998. Jonas, V. and W. Thiel. Symmetry Force Fields for Neutral and Ionic Transition Metal Carbonyl Complexes from Density Functional Theory. J. Phys. Chem. A, 103(10), pp. 1381-1393. 1999. Jonas, J., D. L. Hasha, W. J. Lamb, G. A. Hoffman and T. Eguchi. High-resolution probe for NMR measurements at high pressures and high fields. J. Magn. Reson., 42(1), pp. 169-72. 1981. Jordi, L., S. Ricart, J. M. Vinas and J. M. Moreto. The Pauson-Khand Reaction on Enynes Bearing a Pentacarbonylmetal (Cr, W) Carbene Tether. Organometallics, 16(13), pp. 2808-2818. 1997. Kepert, D. L. and S. C. Williams. A comment on the structures of the dodecacarbonyls of cobalt, rhodium and iridium. J. Organomet. Chem., 217(2), pp. 235-45. 1981. Kesmodel, L. L., R. C. Baetzold and G. A. Somorjai. The surface structure and bonding of (2×2) acetylene overlayers on platinum (111): LEED intensity analysis. Surf. Sci., 66(1), pp. 299-320. 1977. Pauson, P. L., I. U. Khand, G. R. Knox, and W. E. Watts. Cobalt-induced cleavage reaction and a new series of arenecobalt carbonyl complexes. J. Chem. Soc., Chem. Commun., 1, pp. 36. 1971. Khand, I. U., G. R. Knox, P. L. Pauson and W. E. Watts. Organocobalt complexes. I. Arene complexes derived from dodecacarbonyltetracobalt. J. Chem. Soc., Perkin Trans. 1, 9, pp. 975-7. 1973. Khand, I. U., G. R. Knox, P. L. Pauson, W. E. Watts and M. I. Foreman. Organocobalt complexes. II. Reaction of acetylenehexacarbonyl dicobalt complexes, (RC2R1)Co2(CO)6, with norbornene and its derivatives. J. Chem. Soc., Perkin Trans. 1, 9, pp. pp. 977-81. 1973. Kim, D. H., S. U. Son and Y. K. Chung. Facile Synthetic Access to Multisubstituted Benz[f]indenones and Their Application as Ligands to the First Synthesis of Group(IV) Metallocene Complexes. Org. Lett., 5(17), pp. 3151-3153. 2003. Kim, J. W. and Y. K. Chung. Pauson-Khand reaction catalyzed by Co4(CO)12. Synthesis, 2, pp. 142-144. 1998. Kindermann, M., V. Nagel, P. Scholz, C. Hahn, R. Taube and W. Kiefer. Difference of olefin coordination in mono- and di-cationic organometallic rhodium(I) and palladium(II) complexes studied by Raman spectroscopy. J. Mol. Struct., 482-483, pp. 53-57. 1999. Koga. Y., T. Kobayashi and K. Narasaka, Rhodium-catalyzed intramolecular Pauson-Khand reaction. Chem. Lett., 3, pp. 249-250. 1998. Kobayashi, T., Y. Koga and K. Narasaka. The rhodium-catalyzed Pauson-Khand reaction. J. Organomet. Chem., 624(1-2), pp. 73-87. 2001. 234 REFERENCES Kondo, T.N. Suzuki, T. Okada and T. Mitsudo. First Ruthenium-Catalyzed Intramolecular Pauson-Khand Reaction of alkenynes. J. Amer. Chem. Soc., 119(26), pp. 6187-6188. 1997. Krafft, M. E., L. V. R. Bonaga, J. A. Wright and C. Hirosawa. Cobalt Carbonyl-Mediated Carbocyclizations of Enynes: Generation of Bicyclooctanones or Monocyclic Alkenes. J. Org. Chem., 67(4), pp. 1233-1246. 2002. Krafft, M. and L. V. R. Bonaga. Dodecacarbonyltetracobalt catalysis in the thermal PausonKhand reaction. Angew. Chem. Int. Eng., 39(20), pp. 3676-3680. 2000. Kramarz, K. W., R. J. Klingler, D. E. Fremgen, J. W. Rathke. Toroid NMR probes for the in situ examination of homogeneous cobalt hydroformylation catalysts at high pressures and temperatures. Catal. Today, 49(4), pp. 339-352. 1999. Krueerke, U., W. Huebel and G. Vanhee. Organometallic complexes. VIII. Reactions of cobalt carbonyl compounds with alkynes. Chem. Ber., 94, pp. 2829-56. 1961. Krupenya, D. V., E. O. Danilov, M. A. J. Rodgers and S. P. Tunik. Reaction Intermediates in the Solution Photochemistry of a Tetrarhodium Carbonyl Cluster: FTIR Structural Characterization and Transient Kinetics. J. Phys. Chem. A, 107(42), pp. 8867-8871. 2003. Lauher, J. W. A surface force field model for the molecular mechanics simulation of ligand structures in transition-metal carbonyl clusters. J. Amer. Chem. Soc., 108(7), pp. 1521-31. 1986. Lee, B. Y., Y. K. Chung, N. Jeong, Y. Lee and S. H. Hwang. (Indenyl)cobalt(I)-Catalyzed Cocyclization of Alkyne, Alkene, and Carbon Monoxide to Cyclopentenones. J. Amer. Chem. Soc., 116(19), pp. 8793-4. 1994. Lee, N. Y. and Y. K. Chung. Synthesis of cyclopentenones: the new catalytic cocyclization reaction of alkyne, alkene, and carbon monoxide employing catalytic Co(acac)2 and NaBH4. Tetrahedron Lett., 37(18), pp. 3145-3148. 1996. Leung, P. C. and P. Coppens. Experimental charge density study of dicobalt octacarbonyl and comparison with theory. Acta Crystallogr., Sect. B: Struct. Sci ., B39(5), pp. 535-42. 1983. Li, C., E. Widjaja, W. Chew, M. Garland. Rhodium tetracarbonyl hydride: the elusive metal carbonyl hydride. Angew. Chem. Int. Eng., 41(20), pp. 3786-3789. 2000. Li, C., E. Widjaja and M. Garland. Spectral reconstruction of in situ FTIR spectroscopic reaction data using band-target entropy minimization (BTEM): application to the homogeneous rhodium catalyzed hydroformylation of 3,3-dimethylbut-1-ene using Rh4(CO)12. J. Catal., (2003), 213(2), pp. 126-134. 2003. Li, C., L. Guo and M. Garland. Homogeneous Hydroformylation of Ethylene Catalyzed by Rh4(CO)12. The Application of BTEM to Identify a New Class of Rhodium Carbonyl Spectra: RCORh(CO)3(C2H4). Organometallics, 23(9), pp. 2201-2204. 2004. Li, C., E. Widjaja and M. Garland. The Rh4(CO)12-Catalyzed Hydroformylation of 3,3Dimethylbut-1-ene Promoted with HMn(CO)5. Bimetallic Catalytic Binuclear Elimination as an Origin for Synergism in Homogeneous Catalysis. J. Amer. Chem. Soc., 125(18), pp. 5540-5548. 2003. Li, C., E. Widjaja and M. Garland. Rh4(CO)12-Catalyzed Hydroformylation of Cyclopentene Promoted with HMn(CO)5. Another Example of Rh4(CO)12/HMn(CO)5 Bimetallic Catalytic Binuclear Elimination. Organometallics, 23(17), pp. 4131-4138. 2004. 235 REFERENCES Liu, G., R. Volken and M. Garland. Unmodified Rhodium-Catalyzed Hydroformylation of Alkenes Using Tetrarhodium Dodecacarbonyl. The Infrared Characterization of 15 Acyl Rhodium Tetracarbonyl Intermediates. Organometallics, 18(17), pp. 3429-3436. 1999. Liu, G., and M Garland. Liquid-Phase Reaction of Monosubstituted and Disubstituted Alkynes with Tetrarhodium Dodecacarbonyl under CO and CO/H2 Mixtures. In-Situ IR Spectroscopic Characterization of 20 New Alkyne-Rhodium Complexes. Organometallics, 18(17), pp. 34573467. 1999. Luche, J. Synthetically useful sonochemical reactions in solution. Ultrason. Sonochem., 3(3), pp. S215-S221. 1996. Lutz, M. B. Findeis, M. Haukka, R. Graff, P. Roland, A. Tapani and L .H. Gade. Metal-metal bonds between group 12 metals and tin: structural characterization of the complete series of SnM-Sn (M = Zn, Cd, Hg) heterodimetallic complexes. Eur. J. Chem., 8(14), pp. 3269-3276. 2002. Lucken, E. A. C., K. Noack and D. F. Williams. Cobalt-59 nuclear magnetic resonance of organocobalt compounds. J. Chem. Soc., Chem. Commun., pp. 148-54. 1967. Ma, G., M. Maliarik, L. Sun and J. Glaser. Novel porphyrin-thallium-platinum complex with "naked" metal-metal bond: multinuclear NMR characterization of [(tpp)Tl-Pt(CN)5]2- and [(thpp)Tl-Pt(CN)5]2- in solution. Inorg. Chim. Acta, 357(14), pp. 4073-4077. 2004. Macchi, P. and A. Sironi, Chemical bonding in transition metal carbonyl clusters: complementary analysis of theoretical and experimental electron densities. Coord. Chem. Rev., 238-239, pp. 383-412. 2003. Mainardi, D. S. and P. B. Balbuena. Hydrogen and Oxygen Adsorption on Rhn (n = 1-6) Clusters. J. Phys. Chem. A, 107(48), pp. 10370-10380. 2003. Mastrorilli, P., C. F. Nobile, R. Paolillo and G. P. Suranna. Catalytic Pauson-Khand reaction in ionic liquids. J. Mol. Catal. A: Chem., 214(1), pp. 103-106. 2004. Malinowski, E. Factor Analysis in Chemistry, 3rd edition, Wiley-Interscience, 2002 Masel, R. I. Chemical Kinetics and Catalysis, John Wiley & Sons, INC., Publications, 2001. Mason, Timothy J. Sonochemistry. Oxford University Press. 1999. Massick, S. M., J. G. Rabor, S. Elbers, J. Marhenke, S. Bernhard, J. R. Schoonover and P. C. Ford. Time-Resolved Infrared Spectroscopic Study of Reactive Acyl Intermediates Relevant to Cobalt-Catalyzed Carbonylations. Inorg. Chem., 39(14), pp. 3098-3106. 2000. Massick, S. M., T. Buettner and P. C. Ford. Activation Parameters for the Reactive Intermediates Relevant to Carbonylation Catalysts Based on Cobalt Carbonyls. Inorg. Chem., 42(2), pp. 575580. 2003. Marrero J., A. D. Rodriguez, P. Baran, R. G. Raptis, J. A. Sanchez, E. Ortega-Barria and T. L. Capson. Bielschowskysin, a gorgonian-derived biologically active diterpene with an unprecedented carbon skeleton. Org. Lett., 6(10), pp. 1661-4. 2004. McCellan, A. Tables of Experimental Dipole moments, Vol. 1, San Francisco. Ed W. H. Freeman, pp. 28, 220. 1963. 236 REFERENCES McKee, M. L. and S. D. Worley. An ab Initio Study of the Interaction of Rhodium with Dinitrogen and Carbon Monoxide. J. Phys. Chem. A, 101(30), pp. 5600-5603. 1997. McNeill, E. A. and F. R. Scholer. Molecular structure of the gaseous metal carbonyl hydrides of manganese, iron, and cobalt. J. Amer. Chem. Soc., 99(19), pp. 6243-9. 1977. Mineva, T., N. Russo and H. Freund. CO Interaction with Small Rhodium Clusters from Density Functional Theory: Spectroscopic Properties and Bonding Analysis. J. Phys. Chem. A, 105(47), pp. 10723-10730. 2001. Moigno, D., W. Kiefer, B. Callejas-Gaspar, J. Gil-Rubio and H. Werner. Metal-carbon vibrational modes as a probe of the trans influence in vinylidene and carbonyl rhodium(I) complexes. New J. Chem. 25(11), pp. 1389-1397. 2001. Muetterties, E. L. Molecular metal clusters. Science, 196(4292), pp. 839-48. 1977. Mukai, C., F. Inagaki, T. Yoshida and S. Kitagaki. Rh(I)-catalyzed ring-closing reaction of allenynes: selective construction of cycloheptene, bicyclo[5.3.0]decadienone, and bicyclo[5.2.0]nonene frameworks. Tetrahedron Lett., 45(21), pp. 4117-4121. 2004. Mukai C., I. Nomura and S. Kitagaki. Efficient construction of the bicyclo[5.3.0]decenone skeleton based on the Rh(I)-catalyzed allenic Pauson-Khand reaction. J. Org. Chem., 68(4), pp. 1376-85. 2003. Mukai C., I. Nomura, K. Yamanishi and M. Hanaoka. Rh(I)-catalyzed intramolecular allenic Pauson-Khand reaction: construction of a bicyclo[5.3.0]dec-1,7-dien-9-one skeleton. Org. Lett., 4(10), pp. 1755-8. 2002. Murakami, M., K. Itami and Y. Ito. Rhodium-Catalyzed Asymmetric [4 + 1] Cycloaddition. J. Amer. Chem. Soc., 119(12), pp. 2950-2951. 1997. Noack, K. Temperature effect on the infrared spectrum of di-cobalt-octacarbonyl and evidence for an isomer without carbonyl bridges. Spectrochim. Acta, 19(11), pp. 1925-31. 1963. Noack, K. Isomeric dicobalt octacarbonyls. II. The enthalpy and entropy differences between the two isomeric dicobalt octacarbonyls. HeIv. Chim. Acta, 47(4), pp. 1064-7. 1964. Noack, K. Infrared high-pressure cell. Spectrochim. Acta, Part A, 24(12), pp. 1917-20. 1968. Oldani, F. and G. Bor. Fundamental metal carbonyl equilibriums. II. A quantitative study of the equilibrium between dirhodium octacarbonyl and tetrarhodium dodecacarbonyl under carbon monoxide pressure. J. Organomet. Chem., 246(3), pp. 309-24. 1983. Ong, L. R., E. Widjaja, R. Stanforth and M. Garland. Fourier transform Raman spectral reconstruction of inorganic lead mixtures using a novel band-target entropy minimization (BTEM) method. J. Raman Spectrosc., 34(4), pp. 282-289. 2003. J. C. Owrutsky and A. P. Baronavski. Ultrafast infrared study of the ultraviolet photodissociation of Mn2(CO)10. J. Chem. Phys., 105(22), pp. 9864-9873. 1996. Ozin, G. and A. J. L. Hanlan. Rhodium and iridium atom chemistry: binary carbonyls of rhodium and iridium. Inorg. Chem., 18(8), pp. 2091-101. 1979. 237 REFERENCES Pagenkopf, B. L. and T. Livinghouse. Photochemical Promotion of the Intramolecular PausonKhand Reaction. A New Experimental Protocol for Cobalt-Catalyzed [2 + + 1] Cycloadditions. J. Amer. Chem. Soc., 118(9), pp. 2285-6. 1996. Park, B. K., M. A. Miah, H. Kang, K. Lee, Y. Cho, D. G. Churchill, S. Park, M. Choi and J. T. Park. Ortho Phosphorylation of PPh3 To Give a Diphosphine and Formation of a "Butterfly" Structure on a Tetrairidium Framework. Organometallics, 24(4), pp. 675-679. 2005. Park, K. H., S. U. Son and Y. K. Chung. Pauson-Khand reactions catalyzed by entrapped rhodium complexes. Tetrahedron Lett., 44(14), pp. 2827-2830. 2003. Pauson, P. L. The Khand reaction. A convenient and general route to a wide range of cyclopentenone derivatives. Tetrahedron, 41(24), pp. 5855-60. 1985. Pepermans, H., C. Hoogzand and P. Geerlings. A reinvestigation of the isomerization of alkyne dicobalt hexacarbonyl complexes by the perpendicular-to-parallel twist of the alkyne: influence of the induced carbonyl reorientations. J. Organomet. Chem., 306(3), pp. 395-405. 1986. Perdew, J. P. and Y. Wang. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B: Condens. Matter, 46, pp. 947. 1992. Perdew, J. P., K. Burke and M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 77(18), pp. 3865-3868. 1996. Pericas, M. A., J. Balsells, J. Castro, I. Marchueta, A. Moyano, A. Riera, J. Vazquez and X. Verdaguer. Toward the understanding of the mechanism and enantioselectivity of the PausonKhand reaction. Theoretical and experimental studies. Pure Appl. Chem., 74(1), pp. 167-174. 2002. Petrie, S. and R. Stranger. DFT and Metal-Metal Bonding: A Dys-Functional Treatment for Multiply Charged Complexes? Inorg. Chem., 43(8), pp. 2597-2610. 2004. Pollak, C., A. Rosa and E. J. Baerends. Cr-CO Photodissociation in Cr(CO)6: Reassessment of the Role of Ligand-Field Excited States in the Photochemical Dissociation of Metal-Ligand Bonds. J. Amer. Chem. Soc., 119(31), pp. 7324-7329. 1997. Prausnitz, J. M., R. N. Lichtenthaler and E. G. Azevedo. Molecular Thermodynamics of FluidPhase Equilibria, 3rd Ed, New Jersey, Prentice Hall. 62. 1999. Rausch, B. J. and R. Gleiter. Twofold Pauson-Khand reaction of acyclic and cyclic diynes with ethylene. Tetrahedron Lett., 42(9), pp. 1651-1653. 2001 Rautenstrauch, V., P. Megard, J. Conesa and W. Kuester. 2-Pentyl-2-cyclopenten-1-one from catalytic Pauson-Khand reactions. Angew. Chem. Int. Eng., 102(12), pp. 1441-3, 1990. Ray, A. K. and S. K. Gupta. Mathematical Methods in Chemical and Enviromental Engineering, 2nd Edition, Thomson, 2003. Richens, D. T. Ligand substitution reactions at inorganic centers. Chem. Rev., 105(6), pp. 19612002. 2005. Rigby, W., R. Whyman and K. Wilding. High pressure spectrophotometric cell. Sci. Instrum., 3(7), pp. 572-3. 1970. Robert, F., A. Milet, Y. Gimbert, D. Konya and A. E. Greene. Regiochemistry in the Pauson- 238 REFERENCES Khand Reaction: Has a Trans Effect Been Overlooked? J. Amer. Chem. Soc., 123(23), pp. 53965400. 2001. Roberts, S. M., M. Santoro, S. Gabriella and S. Eugene. The emergence of the cyclopentenone prostaglandins as important, biologically active compounds. J. Chem. Soc., Perkin Trans. 1, 15, pp. 1735-1742. 2002. Roberts, Y. V., B. F. F. G. Johnson and R. E. Benfield. The ligand polyhedral model and its application to the fluxional behavior of M4(CO)12-n (M = Co, Rh, Ir; n = 1, 2, 4) clusters. Inorg. Chim. Acta, 229(1-2), pp. 221-7. 1995. Rosa, A., G. Ricciardi, E. J. Baerends and D. J. Stufkens. Density Functional Study of Ground and Excited States of Mn2(CO)10. Inorg. Chem., 34(13), pp. 3425-32. 1995. Rosa, A., G. Ricciardi, E. J. Baerends and D. J. Stufkens. Density Functional Study of the Photodissociation of Mn2(CO)10. Inorg. Chem., 35(10), pp. 2886-97. 1996. Rosa, A., A. W. Ehlers, E. J. Baerends, J. G. Snijders and G. te Velde. Basis Set Effects in Density Functional Calculations on the Metal-Ligand and Metal-Metal Bonds of Cr(CO)5-CO and (CO)5Mn-Mn(CO)5. J. Phys. Chem., 100(14), pp. 5690-6. 1996. Schmid, T. M. and G. Consiglio. Mechanistic and stereochemical aspects of the asymmetric cyclocarbonylation of 1,6-enynes with rhodium catalysts. Chem. Commun., (20), pp. 2318-2319. 2004. Schore, N. E. and M. C. Croudace. Preparation of bicyclo[3.3.0]oct-1-en-3-one and bicyclo[4.3.0]non-1(9)-en-8-one via intramolecular cyclization of enynes. J. Org. Chem., 46(26), pp. 5436-8. 1981. Shannon, C. E. Mathematical Theory of Communication. Bell System Technical Journal, 379, pp. 623. 1948. Shibata, T., N. Toshida and K. Takagi. Rhodium Complex-Catalyzed Pauson-Khand-Type Reaction with Aldehydes as a CO Source. J. Org. Chem., 67(21), pp. 7446-7450. 2002. Shriver, D. F. and M. A. Drezdzon. The Manipulation of Air-Sensitive Compounds. Wiley, New York, 1986. Sin, S. Y., E. Widjaja, L. E. Yu and M. Garland. Application of FT-Raman and FTIR measurements using a novel spectral reconstruction algorithm. J. Raman Spectrosc., 34(10), pp. 795-805. 2003. Sly, W. G. The molecular configuration of dicobalt hexacarbonyl diphenylacetylene. J. Amer. Chem. Soc. 81, pp. 18-20. 1959. Son S. U., K. H. Park and Y. K. Chung. Cobalt nanoparticles on charcoal: a versatile catalyst in the Pauson-Khand reaction, hydrogenation, and the reductive Pauson-Khand reaction. Org. Lett., 4(22), pp. 3983-6. 2002. Sosa, C., J. Andzelm, B. C. Elkin, E. Wimmer, K. D. Dobbs and D. A. Dixon. A local density functional study of the structure and vibrational frequencies of molecular transition-metal compounds. J. Phys. Chem., 96(16), pp. 6630-6. 1992. Srikrishna, A. and D. H. Dethe. Enantiospecific First Total Synthesis and Assignment of Absolute Configuration of the Sesquiterpene (-)-Cucumin H. Org. Lett., 5(13), pp. 2295-2298. 2003. 239 REFERENCES Stanghellini, P. L. and R. Rossetti. Infrared frequencies and intensities of the vibrational modes of alkynes coordinated on metal carbonyl clusters. Inorg. Chem., 29(11), pp. 2047-52. 1990. Stephens, P. J., F. J. Devlin, C. F. Chabalowski and M. J. Frisch. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem., 98(45), pp. 11623-7. 1994. Stuntz, G. F. Ph. D. thesis, University of Illinois, 1974. Sugihara, T., M. Yamada, H. Ban, M. Yamaguchi and C. Kaneko. Rate enhancement of the Khand-Pauson reaction by primary amines. Angew. Chem. Int. Eng., 36(24), pp. 2801-2804. 1997. Suslick, K. S., E. B. Flint and J. A. Jensen. The kinetics of molybdenum hexacarbonyl substitution monitored by Fourier transform infrared spectrophotometry: A physical chemistry experiment. J. Chem. Educ., 64(6), pp. 547-9. 1987. Suslick, K. S. and E. B. Edward. Sonoluminescence of non-aqueous liquids. Nature, 330(6148), pp. 553-5. 1987. Sweany, R. L and T. L. Brown. Matrix isolation spectra of the thermal and photochemical decomposition products of dicobalt octacarbonyl. Inorg. Chem., 16(2), pp. 421-4. 1977. Sweany, R. and T. L. Brown. Infrared spectra of matrix-isolated dicobalt octacarbonyl. Evidence for the third isomer. Inorg. Chem., 16(2), pp. 415-21. 1977. Szilagyi, R. K. and G. Frenking. Structure and Bonding of the Isoelectronic Hexacarbonyls [Hf(CO)6]2-, [Ta(CO)6]-, W(CO)6, [Re(CO)6]+, [Os(CO)6]2+, and [Ir(CO)6]3+: A Theoretical Study. Organometallics, 16(22), pp. 4807-4815. 1997. Trost, B. M. The atom economy: a search for synthetic efficiency. Science, 254(5037), pp. 14717. 1991. Tunik, S. P., V. R. Krym, G. L. Starova, A. B. Nikol'skii, I. S. Podkorytov, S. Ooi, M. Yamasaki and M. Shiro. Dark and photochemical reactions of Co3Rh(CO)12 with diphenylacetylene. Crystal and molecular structure of the Co3Rh(CO)2(CO)8(PhC2Ph) cluster. J. Organomet. Chem., 481(1), pp. 83-8. 1994. Van O., G. Scott, M. M. Bruendl and J. M. Cook. The Livinghouse catalytic approach to the tandem Pauson-Khand reaction. Entry into the parent ring systems of dicyclopenta[a,f]pentalene and dicyclopenta[a,e]pentalene. Tetrahedron Lett., 39(37), pp. 6649-6650. 1998. Vidal, J. L. and W. E. Walker. Rhodium carbonyl cluster chemistry under high pressure of carbon monoxide and hydrogen. 3. Synthesis, characterization, and reactivity of HRh(CO)4. Inorg. Chem., 20(1), pp. 249-54. 1981. Viviente, E. M., P. S. Pregosin and D. Schott. In Mechanisms in Homogeneous Catalysis. A Spectroscopic Approach. B. Heaton (Ed) Wiley, 2005. von Philipsborn W. Probing organometallic structure and reactivity by transition metal NMR spectroscopy. Chem. Soc. Rev., 28(2), pp. 95-105. 1999. Watson, W. H., B. Poola and M. G. Richmond. Dimethyl Acetylenedicarboxylate (dmad) Reactivity with the Mixed-Metal Cluster Co2Rh2(CO)12: Facile Cluster Fragmentation and Highly Specific Metal Redistribution to Give the Butterfly Cluster Co3Rh(CO)10(dmad) and the Planar 240 REFERENCES Cluster CoRh3(CO)9(dmad)3. Organometallics, 24(19), pp. 4687-4690. 2005. Weber, W. A. and B. C. Gates. Hexarhodium Clusters in NaY Zeolite: Characterization by Infrared and Extended x-ray Absorption Fine Structure Spectroscopies. J. Phys. Chem. B, 101(49), pp. 10423-10434. 1997. Wei, C. H. and L. F. Dahl. Molecular structures of triiron dodecacarbonyl and tetracobalt dodecacarbonyl. J. Amer. Chem. Soc., 88(8), pp. 1821-2. 1966. Wei, C. H., G. R. Wilkes and L. F. Dahl. Crystal structure of twinned tetrarhodium dodecacarbonyl. J. Amer. Chem. Soc., 89(18), pp. 4792-3. 1967. Wei, C. H. Structural analyses of tetracobalt dodecacarbonyl and tetrarhodium dodecacarbonyl. Crystallographic treatments of a disordered structure and a twinned composite. Inorg. Chem., 8(11), pp. 2384-97. 1969. Wender, P. A., N. M. Deschamps and T. J. Williams. Intermolecular dienyl Pauson-Khand reaction. Angew. Chem. Int. Eng., 43(23), pp. 3076-3079. 2004. Wender, P. A., G. G. Gamber, M. J. C. Scanio. Serial [5+2]/[4+2] cycloadditions: facile, preparative, multi-component syntheses of polycyclic compounds from simple, readily available starting materials. Angew. Chem. Int. Eng., 40(20), pp. 3895-3897. 2001. Wender, P. A., A. J. Dyckman, C. O. Husfeld, M. J. C. Scanio. A New and Practical Five-Carbon Component for Metal-Catalyzed [5 + 2] Cycloadditions: Preparative Scale Syntheses of Substituted Cycloheptenones. Org. Lett., 2(11), pp. 1609-1611. 2000. Went, M. J. Synthesis and reactions of polynuclear cobalt-alkyne complexes. Adv. Organomet. Chem., 41, pp. 69-125. 1997. Widjaja, E., C. Li and M. Garland. Semi-Batch Homogeneous Catalytic In-Situ Spectroscopic Data. FTIR Spectral Reconstructions Using Band-Target Entropy Minimization (BTEM) without Spectral Preconditioning. Organometallics, 21(9), pp. 1991-1997. 2002. Widjaja, E., C. Li, W. Chew and M. Garland. Band-target entropy minimization. A robust algorithm for pure component spectral recovery. Application to complex randomized mixtures of six components. Anal. Chem., 75(17), pp. 4499-4507. 2003. Widjaja, E., N. Crane, T. Chen, M. D. Morris, M. A. Ignelzi and B. R. McCreadie. Band-target entropy minimization (BTEM) applied to hyperspectral Raman image data. Appl. Spectrosc. 57(11), pp. 1353-1362. 2003. Widjaja, E., C. Li and M. Garland. Algebraic system identification for a homogeneous catalyzed reaction: application to the rhodium-catalyzed hydroformylation of alkenes using in situ FTIR spectroscopy. J. Catal., 223(2), pp. 278-289. 2004. Wilkes, G. R. Ph.D. Thesis, University of Wisconsin, Madison, Wis., 1965. Williams, S. D. and E. E. Edwards. Scalar relativistic study of the structure of rhodium acetate. Int. J. Molecular Sci., 5(2), pp. 67-74. 2004. Whyman, R. Dirhodium octacarbonyl. J. Chem. Soc., Chem. Commun., 1970, 18, pp. 1194-5. 1970. 241 REFERENCES Whyman, R. Techniques for the measurement of infrared spectra under high pressures. Lab. Methods Infrared Spectrosc., 149-64, pp. 363-4. 1972. Whyman, R. Tetranuclear and dinuclear phosphine- and arsine-substituted rhodium carbonyls. J. Chem. Soc., Dalton Trans., 13, pp 1375-81. 1972. Whyman, R. In Laboratory Methods in Vibrational Spectroscopy, 3rd ed; Willis H.A.; van der Maas, J.H. and R.G.J. Miller (Eds.) Wiley: New York, Chapter 12. 1987. Whyman, R. Let's watch homogeneous catalysis. Chemtech, 21(7), pp. 414-19. 1991. Xie, Y. R. B. King and H. F. Schaefer. Vibrational frequencies of the homoleptic cobalt carbonyls: Co4(CO)12 and Co6(CO)16. Acta, Part A, 61A(7), pp. 1693-1699. 2005. Yamanaka, M. and E. Nakamura. Density Functional Studies on the Pauson-Khand Reaction. J. Amer. Chem. Soc., 123(8), pp. 1703-1708. 2001. Yanagisawa, S., T. Tsuneda and K. Hirao. An investigation of density functionals: The first-row transition metal dimer calculations. J. Chem. Phys., 112(2), pp. 545-553. 2000. Yeh, M. P., W. Tsao, J. Ho, C. Tai, D. Chiou, and L. Tu. Rhodium(I)-Catalyzed Intramolecular Cyclohexadienyl Pauson-Khand Reaction: Facile Approach to Tricarbocycles. Organometallics, 23(4), pp. 792-799. 2004. Zhang, J., X. Sun, M. Poliakoff and M. W. George. Study of the reaction of Rh(acac)(CO)2 with alkenes in polyethylene films under high-pressure hydrogen and the Rh-catalyzed hydrogenation of alkenes. J. Organomet. Chem., 678(1-2), pp. 128-133. 2003. Zhang, J., M. Poliakoff and M. W. George. Rhodium-Catalyzed Hydroformylation of Alkenes Using in Situ High-Pressure IR and Polymer Matrix Techniques. Organometallics, 22(8), pp. 1612-1618. 2003. Zhou, M. and L. Andrews. Infrared Spectra of RhCO+, RhCO, and RhCO- in Solid Neon: A Scale for Charge in Supported Rh(CO) Catalyst Systems. J. Amer. Chem. Soc., 121(39), pp. 91719175. 1999. Zhu, B., W. Zhang, Q. Zhao, Z. Bian, B. Hu, Y. Zhang, Y. Yin and J. Sun. Synthesis, characterization of new Rh-Co mixed-metal clusters and reactions of clusters containing [Rh2Co2C2] core with 1-alkynes and/or carbon monoxide. J. Organomet. Chem., 650(1-2), pp. 181-187. 2002. Ziegler, T. Approximate density functional theory as a practical tool in molecular energetics and dynamics. Chem. Rev., 91(5), pp. 651-67. 1991. 242 [...]... expertise in handling and analyzing the latter cluster and to the fact that it has been used to mediate PK reaction In particular, this study will focus on (i) understanding the catalytic precursor, (ii) the reaction of the precursor with various alkynes where the nature of the intermediates formed and their rate of formation will be investigated using in- situ spectroscopy For the Rh4(CO)12 mediated PK reaction, ... understanding of the reaction mechanism, which to date remains largely due unsupported, due to the absence of mechanistic studies on the reaction The main objective of the current dissertation is to study the pre-catalytic steps of the Rh4(CO)12 mediated Pauson Khand reaction which is an important step towards understanding the entire reaction mechanism and the catalytic cycle of the reaction Consequently,... improvement of the PK reaction conditions is needed in order to bring the idea of “Commercialized PK reaction closer to reality However, optimization of the reaction and the developing of adequate protocols † The main underlying assumption is that Rhodium chemistry is analogous to that of cobalt, which is a good starting point but not entirely correct 3 CHAPTER 1 INTRODUCTION requires a sound understanding of. .. certain obstacles have not been fully resolved by the introduction of the rhodium based catalytic precursors, in particular the high temperature requirements and the lengthy reaction times which can be as long as 60 hours (Kobayashi, et al., 2001) 1.1 Problem Statement: Missing Links in the Early Events of Rh4(CO)12 PK Reaction Although the detailed mechanism of the cobalt mediated PK reaction remains... O Scheme 1.1 The general form of (a) intramolecular and (b) intermolecular metal mediated Pauson Khand Reaction Despite the great economical potential the Pauson Khand (PK) reaction holds, to date it has not been commercialized largely due to harsh condition required or/and low yields obtained 1 CHAPTER 1 INTRODUCTION The early generation of PK reactions was mediated by cobalt and these reactions were... structure and (ii) spectroscopic assignments of its vibrational spectrum have been reported 2 CHAPTER 1 INTRODUCTION Unfortunately and to the best of the author’s knowledge, similar studies on the early events of the PK reaction mediated by rhodium based catalytic precursors have not been reported/attempted The current dissertation will investigate the early events of Rh4(CO)12 mediated PK reaction Rh4(CO)12... Kobs[(μ4-η2-1-heptyne)Rh4(CO)8(µ-CO)2][heptyne][CO]-1 In chapter 8, a study of the reaction of the catalytic precursor with enyne, C≡C-C-C-CC=C, resulted in the identification of a new class of butterfly clusters namely (1heptenyne)Rh4(CO)7(µ-CO)2 with both the alkyne and the alkene moiety from the same x substrate coordinating to rhodium Furthermore, the earlier observed intermediates namely the butterfly cluster and the dinuclear rhodium... are the specific targets that the current thesis will be addressing Target 1: Investigate the catalyst precursor Rh4(CO)12, in particular its geometry and fluxionality in solution along with studying its transformations under various gas partial pressures Target 2: Studying the reaction of the Rh4(CO)12 with alkynes in an attempt to characterize the intermediates involved and the mechanism of their... hand, the second dinuclear rhodium species (II) (alkyne)Rh2(CO)6 have not been observed yet despite the fact that its analogue (alkyne)Co2(CO)6 have been identified for more the 50 years (Sly, 1959) All of these missing links listed above were the main driving force in carrying out most of the research conducted in this thesis 1.2 Thesis Objectives From the discussion above, one can see that further... Entropy change of a reaction s Number of species T Temperature in Kelvin T1× z Transformation matrix U ∞ v CO V ν s×E Matrix of left singular vector Partial molar volume of the dissolved CO gas at infinite dilution Total volume of a reaction mixture Atomic matrix xiii VT Transposed matrix of the right singular vector xs mole fraction of chemical species s z Number of meaningful right singular vector . SUMMARY The current dissertation studied the pre-catalytic events involved in the Rh 4 (CO) 9 (µ- CO) 3 mediated Pauson Khand reaction using in- situ spectroscopy. In particular, the investigation. NATIONAL UNIVERSITY OF SINGAPORE 2006 IN- SITU SPECTROSCOPY OF THE EARLY EVENTS IN THE RHODIUM MEDIATED PAUSON KHAND REACTION. AYMAN. 2.1.1 Early Pauson Khand reactions……… ………… ………………… …. 9 2.1.2 Reaction Mechanism for the Pauson Khand Reaction ………… …. 10 2.1.3 Cobalt catalyzed Pauson Khand Reaction ……….…………………

Ngày đăng: 14/09/2015, 13:04

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w