Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 159 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
159
Dung lượng
3,75 MB
Nội dung
THE ROLE OF GRIM-19 IN XENOPUS EMBRYO DEVELOPMENT CHEN YONG (M.Med Wuhan Univ.) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY INSTITUTE OF MOLECULAR AND CELL BIOLOGY NATIONAL UNIVERSITY OF SINGAPORE 2006 Acknowledgements Acknowledgments I would like to express my sincere gratitude to my supervisor, Dr Xinmin Cao, for providing me with the opportunity to pursue my Ph.D research work in her laboratory I am grateful to Dr Xinmin Cao for her guidance and support throughout my graduate studies I am thankful to my graduate supervisory committee, Drs Alan G Porter, Walter Hunziker and Yun-jin Jiang for their constructive suggestions and critical comments I would especially like to thank Dr Jianlin Fu, Wai Hong Yuen and all the other staff in the transgenic frog facility for providing excellent technical support and an ideal working environment for animal model generation and phenotype analysis I also thank Ke Guo, Jie Li and Zeng Qi for histological analysis, and Chee Peng Ng for EM I am grateful to Drs Alirio J Melendez and Farazeela Bte Mohod Ibrahim in the Department of Physiology, National University of Singapore, and Dr Andrew L Miller in the Department of Biology, Hong Kong University of Science and Techlology, for helpful discussion, technical assistance and collaboration in the area of calcium signaling I also thank Dr Katherine E Yutzey in the Children’s Hospital Research Foundation, Cincinnati, OH, for providing Nkx 2.5 promoter constructs Thanks also go to all past and present members of the CXM laboratory for their discussion, good suggestions, technical assistance and friendship I am deeply grateful to Xing Chen and John Tng for their critical comments on my thesis writing Finally, my deepest appreciation goes to my parents and my wife for their consistent love, support and encouragement through out the years i List of publications List of Publications Chen Y, Yuen W., Fu J., Huang G., Melendez A J., Ibrahim F.B., Lu H., and Cao X Mitochondrial respiratory chain controls intracellular calcium signaling and NFAT activity essential for heart formation in Xenopus Mol Cell Biol (under revision) Emerald B.S.*, Chen Y.*, Zhu T., Zhu Z., Lee K.O., Gluckman P.D and Lobie P.E (2007) alpha CP1 mediates stabilization of hTERT mRNA by autocrine human growth hormone J Bio Chem (Published online on 2006 Nov 3) * Authors contributed equally to this work Huang G., Chen Y., Lu H., and Cao X (2006) Coupling mitochondrial respiratory chain to cell death: an essential role of mitochondrial complex I in the interferon-beta and retinoic acid-induced cancer cell death Cell Death Differ (Published online on 2006 Jul 7) Zhang X., Zhu T., Chen Y., Mertani H.C., Lee K.O., and Lobie P.E (2003) Human growth hormone-regulated HOXA1 is a human mammary epithelial oncogene J Biol Chem 278, 7580-7590 ii Table of Contents Table of Contents Acknowledgements……………………………………………………………………….i List of Publications……………………………………………………………………….ii Table of Contents………………………………………………………………… …….iii Summary……………………………………………………………………………… viii Abbreviation……………………………………………………………………….…… x List of Figures and Tables………………………………………………………… … xiv Chapter General introduction………………………………….…………………… …1 1.1.Mitochondria respiratory chain…………………………………… ………………2 1.1.1 Oxidative phosphorylation……………………………………………………2 1.1.2 Components of MRC……………………… ……………………………….4 1.1.2.1 NADH:ubiquinone oxidoreductase (Complex I)…………………………5 1.1.2.2 Succinate:ubiquinone oxidoreductase ( complex II)………………….… 1.1.2.3 Ubiquinol:cytochrome c oxidoreductase (Complex III)……………….…7 1.1.2.4 Cytochrome c oxidase (Complex IV)……………………………….……9 1.1.2.5 ATP synthase (Complex V)………………………………………………9 1.1.3 MRC diseases………………………………………………… ……………10 1.1.4 GRIM19 - a subunit of MRC complex 1……………………………………13 1.2 Intracellular calcium signaling ……………………………… …………………15 1.2.1 Regulation of calcium mobilization ……………………………………… 16 1.2.1.1 Calcium ON mechanism……………… ………………………………17 1.2.1.2 Calcium OFF mechanism……………… …………… ………………20 iii Table of Contents 1.2.2 Calcium-calcineurin-NFAT signalling pathway ……………………………23 1.2.2.1 Structure and function of calcineurin……………………………………24 1.2.2.2 Structure and function of NFAT…………………………………… …25 1.2.3 Role of NFAT in cardiogenesis…………………………… ………………28 1.3 Cardiogenesis………… …………………………………………………………31 1.3.1 Molecular pattern in cardiaogenesis…………… ………………………….32 1.3.2 The role of Nkx2.5 in cardiogenesis ……………………………………… 37 1.3.3 Transcriptional regulation of Nkx2.5 ……………………………………….39 1.4 Rationale of this thesis ………………………………………… ……………….41 Chapter Material and Methods…………………………………………………………43 2.1 Materials …………………………………………………………………… …44 2.2 Constructtion of plasmids…………………………………… …………… …44 2.3 Cell culture ……………………………………………………………… …… 45 2.4 Preparation of DH5α Escherichia coli competent cells…………………… … 45 2.5 DNA transformation ……………………………………………………………46 2.6 LIPOFECTAMINE™ DNA transfection………………………………… …46 2.7 Xenopus embryo manipulation …………………………………………… …47 2.8 Isolation of cDNA clones of Xenopus laevis GRIM-19………… ……… …48 2.8.1 Prepare Xenopus tropicalis GRIM-19 cDNA probe………… ……… .48 2.8.2 Screening of Xenopus laevis oocyte cDNA library………… ……… …48 2.9 QuikChange™ Site-Directed Mutagenesis………… …………………… …49 2.10 Prepare RNA probe or caped mRNA by in vitro transcription……………… 50 2.11 Whole-mount in situ hybridization………… ……… …51 iv Table of Contents 2.12 Histological analysis ………… ……… …52 2.13 Transmission electron microscopy… …53 2.14 In vitro transcription and translation… …53 2.15 Si RNA… …54 2.16 Western blotting… …54 2.17 Intracellular calcium measurement… …55 2.18 Luciferase reporter assay… …56 2.19 RT-PCR… …56 2.20 Electrophoretic mobility shift assay (EMSA) … …57 2.21 Mitochondrial complex I oxidative phosphorylation assay……………………58 2.22 Whole-mount in situ TUNEL staining…………………………………………59 2.23 Statistical Analysis…………………………………………………………… 59 Chapter Mitochondrial respiratory chain complex I is essential for heart formation in Xenopus……………………………………………………………………….60 3.1 Introduction……………………………………………………………………….61 3.2 Results…………………………………………………………………………….64 3.2.1 Cloning and expression pattern of XGRIM-19 in Xenopus laevis……………64 3.2.2 Knockdown of XGRIM-19 impairs MRC complex I activity in Xenopus embryos.………………………………………………………………….….66 3.2.3 Knockdown of XGRIM-19 causes heart defect in Xenopus embryos……… 69 3.2.4 Knockdown of XGRIM-19 down-regulates cardiac gene expression and NFAT activity……………………………………………………………………….74 v Table of Contents 3.2.5 Constitutively activated NFATc4 rescues the heart defect in XGRIM-19 KD embryos …………………………………………………………………….78 3.2.6 NFATc4 rescues the defects of sarcomere formation in the heart muscles… 80 3.2.7 Knockdown of XGRIM-19 or NDUFS3 impairs calcium mobilization and calcium-induced NFAT activity…………………………………………… 82 3.3 Discussion………………………………………………………………………….87 Chapter NFAT regulated Nkx2.5 expression in transcriptional level…………………91 4.1 Introduction………………………………………………………………….……92 4.2 Results…………………………………………………………………………….95 4.2.1 Constitutively active NFATc4 rescued Nkx2.5 expression in GRIM-19 KD Xenopus embryos………………………………………………………………95 4.2.2 Nkx2.5 gene expression is NFAT dependent during RA-induced cardiac differentiation of P19 cells…………………………………………………….96 4.2.3 Predicted conserved NFAT and its cofactor binding elements are localized in the promoter region of Nkx2.5 genes.………………………………… …… 100 4.2.4 NFATc4 interacted with NFAT binding elements in Nkx2.5 gene promoter.103 4.2.5 NFATc4 up-regulates Nkx2.5 expression on transcriptional level……… …106 4.3 Discussion…………………………… ……………………………………….110 Chapter General discussion………………………………… ………………………114 5.1 GRM-19 knocking-down Xenopus as a model for studying the MRC functions in early embryonic development……………………………………………… ….115 5.2 MRC activity is crucial for triggering intracellular calcium mobilization and NFAT activity……………………………………………………………………………116 vi Table of Contents 5.3 NFAT is a transcriptional regulator of Nkx2.5…………………… ……………117 5.4 A model of regulation of heart development by MRC……………………… …118 References………………………………………………………………………………121 vii Summary Summary The mitochondrial respiratory chain (MRC) plays a crucial role in cellular energy production, which is needed for cell division, movement, secretion, and activation of signaling pathways MRC mutations cause diseases with multi-system disorders including encephalopathies, myopathies and cardiomyopathies, which occur in per 10,000 live births in humans (Triepels et al., 2001) Depletion of MRC activity results in severe abnormalities in embryo development and leads to embryonic lethality (Huang et al., 2004; Larsson et al., 1998) The lack of an adequate animal model imposes limits on our current understanding of molecular processes in MRC-dependent embryonic development and the pathogenesis of these MRC diseases To address this issue, GRIM19, a newly identified MRC complex I subunit, was knocked down in Xenopus embryos The embryos exhibited typical phenotypes associated with mitochondrial diseases including retarded growth, mitochondrial proliferation, and moderately serious levels of neural, eye, and muscle tissue disorders However, the most striking phenotype exhibited is that of defective heart formation This can be rescued by reintroduction of human GRIM-19 mRNA The heart tube failed to loop in most of GRIM19 knocked-down embryos, and the expression of several cardiac markers such as Nkx2.5 and its downstream gene, MLC2, and cardiac actin, were also reduced Upon further investigation, we found that the activity of NFAT, a family of transcription factors that contributes to early organ development, was down-regulated in GRIM-19 knockdown embryos Furthermore, expression of a constitutively active form of mouse NFATc4 in these embryos could restore normal heart development NFAT activity is controlled by viii Summary the calcium-dependent phosphatase protein, calcineurin, which suggests that calcium signaling may be disrupted by GRIM-19 knockdown Indeed, both the calcium response and calcium-induced NFAT activity were impaired in cell lines of knocked-down GRIM19, and NDUFS3, another complex I subunit We also showed that NFAT can rescue expression of Nkx2.5 in GRIM-19 knocked-down embryos; NFAT binds on directly Nkx2.5 promoter and up-regulates Nkx2.5 transcription Our data demonstrates the essential role of the MRC in heart formation and sheds light on the signal transduction and gene expression cascades involved in this process ix References Hiroi,Y., Kudoh,S., Monzen,K., Ikeda,Y., Yazaki,Y., Nagai,R., and Komuro,I (2001) Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation Nat Genet 28, 276-280 Hirst,J., Carroll,J., Fearnley,I.M., Shannon,R.J., and Walker,J.E (2003) The nuclear encoded subunits of complex I from bovine heart mitochondria Biochim Biophys Acta 1604, 135-150 Hoey,T., Sun,Y.L., Williamson,K., and Xu,X (1995) Isolation of two new members of the NF-AT gene family and functional characterization of the NF-AT proteins Immunity 2, 461-472 Hogan,P.G., Chen,L., Nardone,J., and Rao,A (2003) Transcriptional regulation by calcium, calcineurin, and NFAT Genes Dev 17, 2205-2232 Horsley,V and Pavlath,G.K (2002) NFAT: ubiquitous regulator of cell differentiation and adaptation J Cell Biol 156, 771-774 Huang,G., Chen,Y., Lu,H., and Cao,X (2006) Coupling mitochondrial respiratory chain to cell death: an essential role of mitochondrial complex I in the interferon-beta and retinoic acid-induced cancer cell death Cell Death Differ Huang,G., Lu,H., Hao,A., Ng,D.C., Ponniah,S., Guo,K., Lufei,C., Zeng,Q., and Cao,X (2004) GRIM-19, a cell death regulatory protein, is essential for assembly and function of mitochondrial complex I Mol Cell Biol 24, 8447-8456 Hubbard,M.J and Klee,C.B (1989) Functional domain structure of calcineurin A: mapping by limited proteolysis Biochemistry 28, 1868-1874 127 References Hurlstone,A.F., Haramis,A.P., Wienholds,E., Begthel,H., Korving,J., Van Eeden,F., Cuppen,E., Zivkovic,D., Plasterk,R.H., and Clevers,H (2003) The Wnt/beta-catenin pathway regulates cardiac valve formation Nature 425, 633-637 Kirby,D.M., Crawford,M., Cleary,M.A., Dahl,H.H., Dennett,X., and Thorburn,D.R (1999) Respiratory chain complex I deficiency: an underdiagnosed energy generation disorder Neurology 52, 1255-1264 Kispert,A., Vainio,S., Shen,L., Rowitch,D.H., and McMahon,A.P (1996) Proteoglycans are required for maintenance of Wnt-11 expression in the ureter tips Development 122, 3627-3637 Kissinger,C.R., Parge,H.E., Knighton,D.R., Lewis,C.T., Pelletier,L.A., Tempczyk,A., Kalish,V.J., Tucker,K.D., Showalter,R.E., Moomaw,E.W., and (1995) Crystal structures of human calcineurin and the human FKBP12-FK506-calcineurin complex Nature 378, 641-644 Klee,C.B., Ren,H., and Wang,X (1998) Regulation of the calmodulin-stimulated protein phosphatase, calcineurin J Biol Chem 273, 13367-13370 Komuro,I and Izumo,S (1993) Csx: a murine homeobox-containing gene specifically expressed in the developing heart Proc Natl Acad Sci U S A 90, 8145-8149 Kuhl,M., Sheldahl,L.C., Park,M., Miller,J.R., and Moon,R.T (2000) The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape Trends Genet 16, 279-283 128 References Kuisk,I.R., Li,H., Tran,D., and Capetanaki,Y (1996) A single MEF2 site governs desmin transcription in both heart and skeletal muscle during mouse embryogenesis Dev Biol 174, 1-13 Kuo,C.T., Morrisey,E.E., Anandappa,R., Sigrist,K., Lu,M.M., Parmacek,M.S., Soudais,C., and Leiden,J.M (1997) GATA4 transcription factor is required for ventral morphogenesis and heart tube formation Genes Dev 11, 1048-1060 Larsson,N.G., Wang,J., Wilhelmsson,H., Oldfors,A., Rustin,P., Lewandoski,M., Barsh,G.S., and Clayton,D.A (1998) Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice Nat Genet 18, 231-236 Le Deist,F., Hivroz,C., Partiseti,M., Thomas,C., Buc,H.A., Oleastro,M., Belohradsky,B., Choquet,D., and Fischer,A (1995) A primary T-cell immunodeficiency associated with defective transmembrane calcium influx Blood 85, 1053-1062 Lee,Y.M., Park,T., Schulz,R.A., and Kim,Y (1997) Twist-mediated activation of the NK4 homeobox gene in the visceral mesoderm of Drosophila requires two distinct clusters of E-box regulatory elements J Biol Chem 272, 17531-17541 LEIGH,D (1951) Subacute necrotizing encephalomyelopathy in an infant J Neurol Neurosurg Psychiatry 14, 216-221 Lewis,R.S (2001) Calcium signaling mechanisms in T lymphocytes Annu Rev Immunol 19, 497-521 Li,Q.Y., Newbury-Ecob,R.A., Terrett,J.A., Wilson,D.I., Curtis,A.R., Yi,C.H., Gebuhr,T., Bullen,P.J., Robson,S.C., Strachan,T., Bonnet,D., Lyonnet,S., Young,I.D., Raeburn,J.A., 129 References Buckler,A.J., Law,D.J., and Brook,J.D (1997) Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family Nat Genet 15, 21-29 Liao,X.S., Small,W.C., Srere,P.A., and Butow,R.A (1991) Intramitochondrial functions regulate nonmitochondrial citrate synthase (CIT2) expression in Saccharomyces cerevisiae Mol Cell Biol 11, 38-46 Liberatore,C.M., Searcy-Schrick,R.D., Vincent,E.B., and Yutzey,K.E (2002) Nkx-2.5 gene induction in mice is mediated by a Smad consensus regulatory region Dev Biol 244, 243-256 Lien,C.L., McAnally,J., Richardson,J.A., and Olson,E.N (2002) Cardiac-specific activity of an Nkx2-5 enhancer requires an evolutionarily conserved Smad binding site Dev Biol 244, 257-266 Lien,C.L., Wu,C., Mercer,B., Webb,R., Richardson,J.A., and Olson,E.N (1999) Control of early cardiac-specific transcription of Nkx2-5 by a GATA-dependent enhancer Development 126, 75-84 Lin,Q., Schwarz,J., Bucana,C., and Olson,E.N (1997) Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C Science 276, 1404-1407 Lints,T.J., Parsons,L.M., Hartley,L., Lyons,I., and Harvey,R.P (1993) Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants Development 119, 419-431 Liu,J., Albers,M.W., Wandless,T.J., Luan,S., Alberg,D.G., Belshaw,P.J., Cohen,P., MacKintosh,C., Klee,C.B., and Schreiber,S.L (1992) Inhibition of T cell signaling by 130 References immunophilin-ligand complexes correlates with loss of calcineurin phosphatase activity Biochemistry 31, 3896-3901 Liu,J., Farmer,J.D., Jr., Lane,W.S., Friedman,J., Weissman,I., and Schreiber,S.L (1991) Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes Cell 66, 807-815 Liu,L., Hammar,K., Smith,P.J., Inoue,S., and Keefe,D.L (2001) Mitochondrial modulation of calcium signaling at the initiation of development Cell Calcium 30, 423433 Lopez-Rodriguez,C., Aramburu,J., Jin,L., Rakeman,A.S., Michino,M., and Rao,A (2001) Bridging the NFAT and NF-kappaB families: NFAT5 dimerization regulates cytokine gene transcription in response to osmotic stress Immunity 15, 47-58 Lopez-Rodriguez,C., Aramburu,J., Rakeman,A.S., and Rao,A (1999) NFAT5, a constitutively nuclear NFAT protein that does not cooperate with Fos and Jun Proc Natl Acad Sci U S A 96, 7214-7219 Lufei,C., Ma,J., Huang,G., Zhang,T., Novotny-Diermayr,V., Ong,C.T., and Cao,X (2003) GRIM-19, a death-regulatory gene product, suppresses Stat3 activity via functional interaction EMBO J 22, 1325-1335 Luo,Y., Ferreira-Cornwell,M., Baldwin,H., Kostetskii,I., Lenox,J., Lieberman,M., and Radice,G (2001) Rescuing the N-cadherin knockout by cardiac-specific expression of Nor E-cadherin Development 128, 459-469 131 References Lyons,I., Parsons,L.M., Hartley,L., Li,R., Andrews,J.E., Robb,L., and Harvey,R.P (1995) Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5 Genes Dev 9, 1654-1666 Macian,F., Lopez-Rodriguez,C., and Rao,A (2001) Partners in transcription: NFAT and AP-1 Oncogene 20, 2476-2489 Masuda,E.S., Naito,Y., Tokumitsu,H., Campbell,D., Saito,F., Hannum,C., Arai,K., and Arai,N (1995) NFATx, a novel member of the nuclear factor of activated T cells family that is expressed predominantly in the thymus Mol Cell Biol 15, 2697-2706 McCormack,J.G and Denton,R.M (1993) The role of intramitochondrial Ca2+ in the regulation of oxidative phosphorylation in mammalian tissues Biochem Soc Trans 21 ( Pt 3), 793-799 McKinsey,T.A., Zhang,C.L., and Olson,E.N (2002) MEF2: a calcium-dependent regulator of cell division, differentiation and death Trends Biochem Sci 27, 40-47 Mohun,T.J., Leong,L.M., Weninger,W.J., and Sparrow,D.B (2000) The morphology of heart development in Xenopus laevis Dev Biol 218, 74-88 Molkentin,J.D., Lin,Q., Duncan,S.A., and Olson,E.N (1997) Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis Genes Dev 11, 1061-1072 Molkentin,J.D., Lu,J.R., Antos,C.L., Markham,B., Richardson,J., Robbins,J., Grant,S.R., and Olson,E.N (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy Cell 93, 215-228 132 References Monaghan,A.P., Kioschis,P., Wu,W., Zuniga,A., Bock,D., Poustka,A., Delius,H., and Niehrs,C (1999) Dickkopf genes are co-ordinately expressed in mesodermal lineages Mech Dev 87, 45-56 Montalvo,G.B., Artalejo,A.R., and Gilabert,J.A (2006) ATP from subplasmalemmal mitochondria controls Ca2+-dependent inactivation of CRAC channels J Biol Chem 281, 35616-35623 Morin,S., Charron,F., Robitaille,L., and Nemer,M (2000) GATA-dependent recruitment of MEF2 proteins to target promoters EMBO J 19, 2046-2055 Morris,A.A., Leonard,J.V., Brown,G.K., Bidouki,S.K., Bindoff,L.A., Woodward,C.E., Harding,A.E., Lake,B.D., Harding,B.N., Farrell,M.A., Bell,J.E., Mirakhur,M., and Turnbull,D.M (1996) Deficiency of respiratory chain complex I is a common cause of Leigh disease Ann Neurol 40, 25-30 Morrisey,E.E., Ip,H.S., Lu,M.M., and Parmacek,M.S (1996) GATA-6: a zinc finger transcription factor that is expressed in multiple cell lineages derived from lateral mesoderm Dev Biol 177, 309-322 Morrisey,E.E., Ip,H.S., Tang,Z., Lu,M.M., and Parmacek,M.S (1997) GATA-5: a transcriptional activator expressed in a novel temporally and spatially-restricted pattern during embryonic development Dev Biol 183, 21-36 Musaro,A., McCullagh,K.J., Naya,F.J., Olson,E.N., and Rosenthal,N (1999) IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1 Nature 400, 581-585 133 References Nieuwkoop, P.D and Faber, J (1994) Normal Table of Xenopus laevis Garland Publishing Inc, New York, USA Newmeyer,D.D and Ferguson-Miller,S (2003) Mitochondria: releasing power for life and unleashing the machineries of death Cell 112, 481-490 Olson,E.N (2001) Development The path to the heart and the road not taken Science 291, 2327-2328 Olson,E.N (2006) Gene regulatory networks in the evolution and development of the heart Science 313, 1922-1927 Olson,E.N and Srivastava,D (1996) Molecular pathways controlling heart development Science 272, 671-676 Olson,E.N and Williams,R.S (2000) Calcineurin signaling and muscle remodeling Cell 101, 689-692 Pandur,P., Lasche,M., Eisenberg,L.M., and Kuhl,M (2002) Wnt-11 activation of a noncanonical Wnt signalling pathway is required for cardiogenesis Nature 418, 636-641 Parekh,A.B (2003) Store-operated Ca2+ entry: dynamic interplay between endoplasmic reticulum, mitochondria and plasma membrane J Physiol 547, 333-348 Park,J., Takeuchi,A., and Sharma,S (1996) Characterization of a new isoform of the NFAT (nuclear factor of activated T cells) gene family member NFATc J Biol Chem 271, 20914-20921 134 References Peng,S.L., Gerth,A.J., Ranger,A.M., and Glimcher,L.H (2001) NFATc1 and NFATc2 together control both T and B cell activation and differentiation Immunity 14, 13-20 Plageman,T.F., Jr and Yutzey,K.E (2005) T-box genes and heart development: putting the "T" in heart Dev Dyn 232, 11-20 Putney,J.W., Jr and Bird,G.S (1993) The signal for capacitative calcium entry Cell 75, 199-201 Rahman,S., Blok,R.B., Dahl,H.H., Danks,D.M., Kirby,D.M., Chow,C.W., Christodoulou,J., and Thorburn,D.R (1996) Leigh syndrome: clinical features and biochemical and DNA abnormalities Ann Neurol 39, 343-351 Ranger,A.M., Grusby,M.J., Hodge,M.R., Gravallese,E.M., de la Brousse,F.C., Hoey,T., Mickanin,C., Baldwin,H.S., and Glimcher,L.H (1998) The transcription factor NF-ATc is essential for cardiac valve formation Nature 392, 186-190 Rao,A., Luo,C., and Hogan,P.G (1997) Transcription factors of the NFAT family: regulation and function Annu Rev Immunol 15, 707-747 Reecy,J.M., Li,X., Yamada,M., DeMayo,F.J., Newman,C.S., Harvey,R.P., and Schwartz,R.J (1999) Identification of upstream regulatory regions in the heart-expressed homeobox gene Nkx2-5 Development 126, 839-849 Reecy,J.M., Yamada,M., Cummings,K., Sosic,D., Chen,C.Y., Eichele,G., Olson,E.N., and Schwartz,R.J (1997) Chicken Nkx-2.8: a novel homeobox gene expressed in early heart progenitor cells and pharyngeal pouch-2 and -3 endoderm Dev Biol 188, 295-311 135 References Reifers,F., Walsh,E.C., Leger,S., Stainier,D.Y., and Brand,M (2000) Induction and differentiation of the zebrafish heart requires fibroblast growth factor (fgf8/acerebellar) Development 127, 225-235 Riley,P.R., Gertsenstein,M., Dawson,K., and Cross,J.C (2000) Early exclusion of hand1deficient cells from distinct regions of the left ventricular myocardium in chimeric mouse embryos Dev Biol 227, 156-168 Rizzuto,R., Pinton,P., Carrington,W., Fay,F.S., Fogarty,K.E., Lifshitz,L.M., Tuft,R.A., and Pozzan,T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses Science 280, 1763-1766 Robinson,B.H (1998) Human complex I deficiency: clinical spectrum and involvement of oxygen free radicals in the pathogenicity of the defect Biochim Biophys Acta 1364, 271-286 Ross,R.S., Navankasattusas,S., Harvey,R.P., and Chien,K.R (1996) An HF-1a/HF1b/MEF-2 combinatorial element confers cardiac ventricular specificity and established an anterior-posterior gradient of expression Development 122, 1799-1809 Salomon,B and Bluestone,J.A (2001) Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation Annu Rev Immunol 19, 225-252 Saneyoshi,T., Kume,S., Amasaki,Y., and Mikoshiba,K (2002) The Wnt/calcium pathway activates NF-AT and promotes ventral cell fate in Xenopus embryos Nature 417, 295299 136 References Sater,A.K and Jacobson,A.G (1989) The specification of heart mesoderm occurs during gastrulation in Xenopus laevis Development 105, 821-830 Schneider,V.A and Mercola,M (2001) Wnt antagonism initiates cardiogenesis in Xenopus laevis Genes Dev 15, 304-315 Schott,J.J., Benson,D.W., Basson,C.T., Pease,W., Silberbach,G.M., Moak,J.P., Maron,B.J., Seidman,C.E., and Seidman,J.G (1998) Congenital heart disease caused by mutations in the transcription factor NKX2-5 Science 281, 108-111 Schroeder,K.E., Condic,M.L., Eisenberg,L.M., and Yost,H.J (1999) Spatially regulated translation in embryos: asymmetric expression of maternal Wnt-11 along the dorsalventral axis in Xenopus Dev Biol 214, 288-297 Schubert,W., Yang,X.Y., Yang,T.T., Factor,S.M., Lisanti,M.P., Molkentin,J.D., Rincon,M., and Chow,C.W (2003) Requirement of transcription factor NFAT in developing atrial myocardium J Cell Biol 161, 861-874 Schultheiss,T.M., Burch,J.B., and Lassar,A.B (1997) A role for bone morphogenetic proteins in the induction of cardiac myogenesis Genes Dev 11, 451-462 Schultheiss,T.M., Xydas,S., and Lassar,A.B (1995) Induction of avian cardiac myogenesis by anterior endoderm Development 121, 4203-4214 Schultz,B.E and Chan,S.I (2001) Structures and proton-pumping strategies of mitochondrial respiratory enzymes Annu Rev Biophys Biomol Struct 30, 23-65 137 References Schwartz,R.J and Olson,E.N (1999) Building the heart piece by piece: modularity of ciselements regulating Nkx2-5 transcription Development 126, 4187-4192 Searcy,R.D., Vincent,E.B., Liberatore,C.M., and Yutzey,K.E (1998) A GATA-dependent nkx-2.5 regulatory element activates early cardiac gene expression in transgenic mice Development 125, 4461-4470 Sepulveda,J.L., Belaguli,N., Nigam,V., Chen,C.Y., Nemer,M., and Schwartz,R.J (1998) GATA-4 and Nkx-2.5 coactivate Nkx-2 DNA binding targets: role for regulating early cardiac gene expression Mol Cell Biol 18, 3405-3415 Shaw,J.P., Utz,P.J., Durand,D.B., Toole,J.J., Emmel,E.A., and Crabtree,G.R (1988) Identification of a putative regulator of early T cell activation genes Science 241, 202205 Shenolikar,S (1994) Protein serine/threonine phosphatases new avenues for cell regulation Annu Rev Cell Biol 10, 55-86 Shimoyama,M., Hayashi,D., Takimoto,E., Zou,Y., Oka,T., Uozumi,H., Kudoh,S., Shibasaki,F., Yazaki,Y., Nagai,R., and Komuro,I (1999) Calcineurin plays a critical role in pressure overload-induced cardiac hypertrophy Circulation 100, 2449-2454 Sikkink,R., Haddy,A., MacKelvie,S., Mertz,P., Litwiller,R., and Rusnak,F (1995) Calcineurin subunit interactions: mapping the calcineurin B binding domain on calcineurin A Biochemistry 34, 8348-8356 Smeitink,J and van den,H.L (1999) Human mitochondrial complex I in health and disease Am J Hum Genet 64, 1505-1510 138 References Srivastava,D., Thomas,T., Lin,Q., Kirby,M.L., Brown,D., and Olson,E.N (1997) Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND Nat Genet 16, 154-160 Sue,C.M and Schon,E.A (2000) Mitochondrial respiratory chain diseases and mutations in nuclear DNA: a promising start? Brain Pathol 10, 442-450 Tanaka,M., Chen,Z., Bartunkova,S., Yamasaki,N., and Izumo,S (1999a) The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development Development 126, 1269-1280 Tanaka,M., Wechsler,S.B., Lee,I.W., Yamasaki,N., Lawitts,J.A., and Izumo,S (1999b) Complex modular cis-acting elements regulate expression of the cardiac specifying homeobox gene Csx/Nkx2.5 Development 126, 1439-1450 Timmerman,L.A., Clipstone,N.A., Ho,S.N., Northrop,J.P., and Crabtree,G.R (1996) Rapid shuttling of NF-AT in discrimination of Ca2+ signals and immunosuppression Nature 383, 837-840 Triepels,R.H., van den Heuvel,L.P., Trijbels,J.M., and Smeitink,J.A (2001) Respiratory chain complex I deficiency Am J Med Genet 106, 37-45 Tsuboi,T., da,S., X, Holz,G.G., Jouaville,L.S., Thomas,A.P., and Rutter,G.A (2003) Glucagon-like peptide-1 mobilizes intracellular Ca2+ and stimulates mitochondrial ATP synthesis in pancreatic MIN6 beta-cells Biochem J 369, 287-299 Tzahor,E and Lassar,A.B (2001) Wnt signals from the neural tube block ectopic cardiogenesis Genes Dev 15, 255-260 139 References Wallace,D.C (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine Annu Rev Genet 39, 359-407 WARBURG,O (1956) On the origin of cancer cells Science 123, 309-314 Watanabe,Y., Perrino,B.A., Chang,B.H., and Soderling,T.R (1995) Identification in the calcineurin A subunit of the domain that binds the regulatory B subunit J Biol Chem 270, 456-460 Watanabe,Y., Perrino,B.A., and Soderling,T.R (1996) Activation of calcineurin A subunit phosphatase activity by its calcium-binding B subunit Biochemistry 35, 562-566 Wu,H., Naya,F.J., McKinsey,T.A., Mercer,B., Shelton,J.M., Chin,E.R., Simard,A.R., Michel,R.N., Bassel-Duby,R., Olson,E.N., and Williams,R.S (2000) MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type EMBO J 19, 1963-1973 Xu,X., Yin,Z., Hudson,J.B., Ferguson,E.L., and Frasch,M (1998) Smad proteins act in combination with synergistic and antagonistic regulators to target Dpp responses to the Drosophila mesoderm Genes Dev 12, 2354-2370 Yamada,M., Revelli,J.P., Eichele,G., Barron,M., and Schwartz,R.J (2000) Expression of chick Tbx-2, Tbx-3, and Tbx-5 genes during early heart development: evidence for BMP2 induction of Tbx2 Dev Biol 228, 95-105 Yamagishi,H., Yamagishi,C., Nakagawa,O., Harvey,R.P., Olson,E.N., and Srivastava,D (2001) The combinatorial activities of Nkx2.5 and dHAND are essential for cardiac ventricle formation Dev Biol 239, 190-203 140 References Yelon,D., Ticho,B., Halpern,M.E., Ruvinsky,I., Ho,R.K., Silver,L.M., and Stainier,D.Y (2000) The bHLH transcription factor hand2 plays parallel roles in zebrafish heart and pectoral fin development Development 127, 2573-2582 141 ... (>0.3µM) inhibits the opening of InsP3Rs Thus, during the onset of InsP3Rs opening, the release of Ca2+ increases the sensitivity of InsP3Rs, resulting in a rapid rise in Ca2+ levels Once the Ca2+... to the low-affinity sites of calcineurin B and affects the conformation change of both CnB and the regulatory domain of CnA, resulting in the exposure of the calmodulin-binding domain (Sikkink... al., 199 5) The Ca2+/calmodulin then bind to the CaM-binding domain and causes further conformational changes The conformation change in the flexible CaM-binding domain displaces the auto-inhibitory