Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 169 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
169
Dung lượng
1,89 MB
Nội dung
MECHANISM AND CHARACTERISTICS OF PHOTOVOLTAIC RESPONSES IN SANDWICHED FERROELECTRIC PLZT THIN FILM DEVICES QIN MENG (B. Eng., Zhejiang University) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE (2009) i Acknowledgement I would like to express my heartfelt gratitude to my main supervisor Associate Professor Yung C. Liang and co-supervisor Senior Scientist Dr. Yao Kui, for giving me this precious opportunity to be a Ph.D. candidate of National University of Singapore (NUS) and to research work in the A*STAR Institute of Materials Research Engineering (IMRE) in this exciting field of ferroelectric thin film materials. I highly appreciate their patience, encouragement and support. I also would like to express my sincere gratitude to them for their academic guidance, constructive comments, and invaluable advice throughout the years. They managed to coach me through the whole Ph.D. research project. My Ph.D. project would not be possible without both of the supervisors. My scientific study would hardly be productive without the assistance from researchers at IMRE and the excellent research environment provided by IMRE. I would like to specially thank Mr. Lim Poh Chong, Ms. Lai Doreen, Ms. Shen Lu, Mr. Wang Weide and Mr. Chum Chan Choy for their technical assistance in the XRD, SEM, AFM, DC and RF sputtering experiments. I am also very grateful for all the fellow colleagues working in Dr. Yao Kui’s group, including Dr. Santiranja Shannigrahi, Ms. Gan Bee Keen, Dr. Tan Chin Yaw, Ms. Alicia Huang, Ms. Goh Poh Chin, Ms. Tan Sze Yu, Ms. Christina Tan, Mr. Chen Yifan, Mr. Luong Trung Dung, Mr. Ang Kai Yang, Mr. Chen Shuting, Ms. Li Xue and Mr. Ji Wei. I greatly appreciate the cooperation and discussion with them during my whole research work. ii In addition, I would like to greatly acknowledge the financial support from the postgraduate programme of National University Singapore during my Ph.D. study. Thanks also go to my parents for their encouragement, love, support and trust even though I am thousands of miles away from them. Finally, I would express my special thanks to my husband Liu Min, who is my everlasting source of happiness. None of this work would be possible without his endless support. Thus I dedicate this dissertation to my loving husband. iii Table of Contents CHAPTER INTRODUCTION . 1.1 1.2 1.2.1 1.2.2 1.2.3 1.3 1.4 FERROELECTRIC MATERIALS PHOTOVOLTAIC EFFECT IN FERROELECTRIC MATERIALS Interface-based and bulk-based photovoltaic effect . Photovoltaics in ferroelectric bulk ceramics Photovoltaics in ferroelectric PLZT-based thin films . 14 OBJECTIVES AND RESEARCH SCOPE 20 ORGANISATION OF THE THESIS . 22 CHAPTER SAMPLE FABRICATION AND CHARACTERISATION TECHNIQUES . 24 2.1 PREPARATION OF FERROELECTRIC THIN FILMS . 24 2.1.1 Chemical solution deposition . 24 2.1.2 DC/RF magnetron sputtering . 26 2.2 STRUCTURAL AND MICROSCOPIC CHARACTERISATIONS . 30 2.2.1 X-ray diffraction (XRD) 30 2.2.2 Field emission scanning electron microscope (SEM) . 34 2.2.3 Atomic force microscope (AFM) 37 2.3 ELECTRIC AND PHOTOVOLTAIC PROPERTY CHARACTERISATIONS 38 2.3.1 Dielectric property characterisation 38 2.3.2 Four point probe technique 40 2.3.3 Hall effect measurement . 42 2.3.4 Polarisation-electric field hysteresis loop characterisation . 44 2.3.5 Photovoltaic property characterisation 45 CHAPTER PHOTOVOLTAIC CHARACTERISTICS IN POLYCRYSTALLINE AND EPITAXIAL PLZT FERROELECTRIC THIN FILMS 47 3.1 3.2 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.4 INTRODUCTION 47 EXPERIMENTAL PROCEDURE 48 RESULTS AND DISCUSSION . 49 Structural and ferroelectric properties . 49 Characteristics of illuminated J-V curve and power conversion efficiency . 51 Effects of Schottky barrier and polarisation on photovoltaic responses 52 Effect of incident UV intensity on the photovoltaic responses 56 CONCLUSION 58 CHAPTER THICKNESS EFFECTS ON PHOTOCURRENT IN PLZT FERROELECTRIC THIN FILMS . 59 4.1 4.2 4.3 4.4 4.5 4.5.1 4.5.2 4.5.3 4.6 INTRODUCTION 59 EXPERIMENTAL PROCEDURE 61 MEASUREMENT RESULTS . 62 THEORETICAL MODEL 65 DISCUSSION . 75 Thickness-dependent photocurrent . 75 The effect of thickness-dependent depolarisation field on photocurrent 76 The effects of internal field and polarisation on photocurrent . 78 CONCLUSION 80 CHAPTER IMPROVED PHOTOVOLTAIC EFFICIENCY IN NANO-SCALED FERROELECTRIC THIN FILMS . 82 5.1 INTRODUCTION 82 5.2 EXPERIMENTAL PROCEDURE 83 5.3 RESULTS AND DISCUSSION . 85 5.3.1 Photovoltaic efficiency in sol-gel-derived polycrystalline and epitaxial films . 85 iv 5.3.2 Improved efficiency in sputtered epitaxial films . 91 5.3.3 Simulated high efficiency in nano-scaled ferroelectric thin films . 93 5.4 CONCLUSION 95 CHAPTER STABILITY OF PHOTOVOLTAGE AND TRAP OF LIGHT-INDUCED CHARGES IN FERROELECTRIC THIN FILMS . 97 6.1 6.2 6.3 6.4 6.4.1 6.4.2 6.5 INTRODUCTION 97 EXPERIMENTAL PROCEDURE 98 RESULTS 99 DISCUSSION . 102 The asymmetric photovoltage in electrodes-sandwiched thin film configuration . 102 Stability of photovoltage and trap of light-induced charges 106 CONCLUSION 111 CHAPTER PHOTOVOLTAIC MECHANISMS IN FERROELECTRIC THIN FILMS WITH SCREENING EFFECT 113 7.1 7.2 7.3 7.3.1 7.3.2 7.3.3 7.3.4 7.4 INTRODUCTION 113 THEORETICAL MODEL 115 DISCUSSION . 121 Photocurrent for PLZT thin films sandwiched between different electrode pairs 121 Effects from crystalline structure, polarisation and conductivity of electrodes . 123 Screening effect on electrode charge distribution and photocurrent . 124 Photovoltaic output in the ideal case: Ohmic contact and no screening effect 128 CONCLUSION 130 CHAPTER CONCLUSIONS 131 8.1 MAJOR FINDINGS 131 8.1.1 Schottky effect in photovoltaics of ferroelectric thin films 132 8.1.2 Thickness effect in photovoltaics of ferroelectric thin films . 132 8.1.3 Screening effect in photovoltaics of ferroelectric thin films . 133 8.1.4 Stability of photovoltage under multi-cycle UV illumination . 133 8.1.5 Improved photovoltaic efficiency in ferroelectric thin films . 134 8.2 CONTRIBUTIONS AND IMPLICATIONS 134 8.3 RECOMMENDATIONS FOR FUTURE WORK . 136 BIBLIOGRAPHY 140 APPENDIX (PUBLICATIONS) . 153 JOURNAL PAPERS 153 CONFERENCE PRESENTATIONS . 153 v List of Tables Table 2-1 Sputtering conditions for PLZT thin film, LSMO electrode and Au electrodes. 30 Table 2-2. Angle settings for XRD (111) plane φ-scan in cubic and quasi cubic perovskite crystals 33 Table 2-3. Correction factor for measurement using four point probe technique. s is probe distance. d is diameter of the circle or the side of a rectangle which is perpendicular to the probe line. a refers to second edge of rectangle 41 Table 3-1. Work function and interfacial Schottky barrier data of the polycrystalline and epitaxial PLZT thin films on different substrates. 55 Table 4-1 Parameters used for curve fitting of polycrystalline Au/PLZT/Pt thin film. 74 Table 4-2 Parameters obtained from the curve fitting for the photocurrent in PLZT thin films under different light intensities 74 Table 5-1. Linear fitting data for thickness-dependent photovoltage in sol-gel-derived polycrystalline and epitaxial PLZT thin films .87 Table 6-1 Linear fitting slope b, calculated Neff and ΔV according to Fig. 6-9, experimental ΔV data of the positively and negatively poled Au/PLWZT/Pt thin film. 109 Table 7-1 Parameters and data for the numerical simulations for PLZT thin films .122 vi List of Figures Fig. 1-1. PZT unit cell: (1) Perovskite-type lead zirconate titanate (PZT) unit cell in the symmetric cubic state above the Curie temperature. (2) Tetragonally distorted unit cell below the Curie temperature. Fig. 1-2. Ferroelectric polarisation-electric field (P–E) hysteresis loop. Circles with arrows represent the polarisation state of the material at the indicated fields. The symbols are explained in the text. (Data source: Ref. [1]) .4 Fig. 1-3. Schematic illustration of physical mechanism of photovoltaic effect in ferroelectrics. .7 Fig. 1-4. Schematic illustration of physical mechanism of conventional interfacebased photovoltaic effect, wherein the internal field E only exists in a very thin depletion layer at the junction but not the entire bulk region of the material Fig. 2-1. Flow chart for the preparation of the precursor solutions of 0.5 mol% WO3 doped (Pb0.97La0.03)(Zr0.53Ti0.48)O3 thin films. .26 Fig. 2-2. Illustration of DC sputtering system. Target (cathode) and substrate (anode) are placed on two parallel electrodes inside a chamber filled with inert gas (Ar) [81]. 27 Fig. 2-3. The magnetron sputtering system. Magnets are mounted behind the target with North pole in the central part and South pole in the outer ring. The magnetic field lines point from the North pole to the South pole [81]. .28 Fig. 2-4. An unbalanced magnetron system, the outer magnet North poles are stronger than the inner magnet South poles therefore the field lines stretch further into the vacuum chamber [87]. .29 Fig. 2-5. XRD gonio scan measurements come down to measuring distances between planes with plane X-ray waves (wavelength of a few tenths of nanometer). When the Bragg condition nλ=2dsinθ is satisfied, a peak will be measured [91] 31 Fig. 2-6. Illustration of XRD setup for φ-scan and pole-figure measurements. The Xray source and detector are fixed, and the sample rotates around φ angle from 0° to 360° in both measurements. ψ is fixed in the φ-scan but rotates from 0° to 90° in the pole figure measurement 32 vii Fig. 2-7. Illustration of the angle ψ between (100) plane and (111) plane in a tetragonal lattice. The in-plane and out-of-plane lattice parameter is a and c respectively. .33 Fig. 2-8. Illustration of XRD rocking curve scan (ω-scan). ki and kf is the incident and diffracted x-ray vector respectively, and ∆k = ki - kf. The magnitude and orientation of both ki and kf are fixed, i.e. vary the orientation of ∆k relative to sample normal while maintaining its magnitude. The sample is rocked over a very small angular range during the ω-scan .34 Fig. 2-9. Schematic diagram of SEM .36 Fig. 2-10. Excitation volume and escape zone of various SEM signals in a material surface struck by incident electron beam .36 Fig. 2-11. Schematic diagram of AFM. .37 Fig. 2-12. Schematic of four point probe configuration. .41 Fig. 2-13 Configuration of (a) resistivity and (b) Hall effect measurement. .43 Fig. 2-14. Sawyer-Tower circuit for measurement of ferroelectric polarisation. The circuit includes an oscilloscope, a signal generator, a reference capacitor and the sample of ferroelectric capacitor 45 Fig. 2-15. Experimental setup for photovoltaic measurements. 46 Fig. 3-1. Gonio-scan XRD patterns of chemical-solution-derived (a) polycrystalline PLZT 3/52/48 film on Pt/Ti/SiO2/Si substrate and (b) epitaxial PLZT 3/52/48 film on Nb:STO substrate. The inset in (b) is the 3D (111)-plane pole figure of the epitaxial PLZT film. .50 Fig. 3-2. Ferroelectric polarisation-electric field (P-E) hysteresis loops for the chemical-solution-derived (a) polycrystalline and (b) epitaxial PLZT thin films. 50 Fig. 3-3. Experimental results of (a) illuminated J-V curves and (b) corresponding terminal voltage dependence of light-to-electricity power conversion efficiency for a 196-nm-thick polycrystalline PLZT thin film in different polarisation states .52 Fig. 3-4. Experimental results of (a) illuminated J-V curves and (b) corresponding terminal voltage dependence of light-to-electricity power conversion efficiency for a 180-nm-thick epitaxial PLZT thin film in different polarisation states .53 viii Fig. 3-5. (a) Illuminated J-V curves of a positively poled 45-nm-thick epitaxial PLZT thin film on Nb:STO under different incident UV intensities; (b) Light-intensity dependence of short circuit photocurrent; (c) Light-intensity dependence of maximum light-to-electricity conversion efficiency .57 Fig. 4-1. XRD gonio scan (θ-2θ scan) pattern of the sol-gel-derived Au/PLZT/Pt thin film annealed at 700 °C for 10 63 Fig. 4-2. Dielectric constant and dielectric loss of a sol-gel-derived polycrystalline Au/PLZT/Pt thin film annealed at 700 °C for 10 min. 63 Fig. 4-3. P-E hysteresis loop of a sol-gel-derived polycrystalline Au/PLZT/Pt thin film annealed at 700°C for 10 .64 Fig. 4-4. Experimental results of short circuit photocurrent vs. light intensity for solgel derived polycrystalline Au/PLZT/Pt films with different thicknesses (0.26, 0.54, 1.05, and 1.50 μm, respectively). Short circuit photocurrent was found to be linear with the incident light intensity for each different film thickness. 64 Fig. 4-5. The structure of the PLZT thin film sandwiched between the top and bottom electrodes and the mechanism of the photocurrent generation 66 Fig. 4-6. In short circuit steady state, electron and hole concentrations along depth in the polycrystalline Au/PLZT/Pt film under different light intensities .73 Fig. 4-7. Experimental data and fitting curves for thickness dependence of short circuit photocurrent under different light intensities for the polycrystalline Au/PLZT/Pt thin films. 73 Fig. 4-8. Experimental and simulation results of the thickness dependence of short circuit photocurrent Jsc epitaxial Au/PLZT/Nb:STO thin films (the epitaxial film was prepared using chemical solution deposition as described in Chapter 3). .74 Fig. 4-9. Fitting curves of thickness-dependent photocurrent in PLZT thin films in consideration of a constant depolarisation field and a thickness-dependant depolarisation field in Eq. (4.23). 77 Fig. 4-10. The relationship between short circuit photocurrent and internal electric field at different film thicknesses under UV illumination (0.60 mW/cm2) predicted by Eq. (4.21). The data used are listed in Table 4-1 and Table 4-2. The inset figure is the enlarged part of the curves at very low field region. .79 Fig. 4-11. The relationship between short circuit photocurrent and remnant polarisation at different film thicknesses under UV illumination (0.60 mW/cm2) ix predicted by Eq. (4.21). The data used are listed in Table 4-1 and Table 4-2. The inset figure is the enlarged part of the curves in very low polarisation region. .80 Fig. 5-1. Schematic illustration of physical mechanism of photovoltaic effect in a ferroelectric. .83 Fig. 5-2. XRD Gonio-scan pattern of the epitaxial PLZT thin film grown on single crystal Nb:STO substrate; the inset figure is the rocking curve of the PLZT (200) peak and the 3D XRD pole figure of PLZT (111) plane 85 Fig. 5-3. Experimental and linear fitting results of the thickness-dependent open circuit photovoltage Voc for sol-gel-derived (a) polycrystalline and (b) epitaxial PLZT thin films in different polarisation states. 87 Fig. 5-4. Experimental and simulation results of the thickness dependence of short circuit photocurrent Jsc in the sol-gel-derived (a) polycrystalline and (b) epitaxial PLZT thin films in different polarisation states .88 Fig. 5-5. Experimental and calculated results of the thickness dependence of maximum power conversion efficiency ηmax for the sol-gel-derived (a) polycrystalline and (b) epitaxial PLZT thin films in different polarisation states 89 Fig. 5-6. Experimental results of (a) illuminated J-V curves and (b) terminal voltage dependences of power conversion efficiencies at different incident UV intensities for a 68-nm-thick sputtered epitaxial PLZT thin film sandwiched between top LSMO and bottom Nb:STO electrodes. .92 Fig. 5-7. Simulation results of the thickness-dependent short circuit photocurrent and maximum power conversion efficiency for the epitaxial PLZT film in the nanoscale thickness range ~ 100 nm (using the ferroelectric parameters P ~ 30 µC cm-2, quantum efficiency β ~ 90%, top and bottom interfacial space charge density Neff1 ~ 2×1020 cm-3 and Neff2 ~ 1×1020 cm-3, carrier mobility µ ~ 100 cm2 V-1s-1, and carrier lifetime τ ~ 200 ps). After replacing the ferroelectric mobility and lifetime data with the Si parameters (carrier mobility µ ~1500 cm2 V-1s-1 and lifetime τ ~ 10 µs), the corresponding simulation results are also shown for reference. 94 Fig. 6-1. Schematic illustration of the PLWZT thin films in the (a) sandwich electrode configuration with inter-electrode distance of 0.706 µm and (b) in-plane electrode configuration with inter-electrode distance of 10 µm 98 Fig. 6-2. XRD patterns of sol-gel derived PLWZT thin film on (a) Pt/Ti/SiO2/Si substrate and (b) YSZ/Si3N4/SiO2/Si substrate. .100 Fig. 6-3. Photovoltage response in the multi-cycle UV illumination before poling, and after positive and negative poling for the Au/PLWZT/Pt thin film electrode- x films promising for another type of photovoltaic applications – optical image storage or optical memory. In the optical memory, each bit of information of an optical image is stored as polarisation state in each element of the ferroelectric thin film; and then the stored information is read out as the polarisation-induced photovoltage or photocurrent signal under UV light illumination. It is worth trying to develop the UV sensor/detector, or optical memory devices for applications in the future work if high quality epitaxial PLZT thin films can be obtained at a lower cost and photovoltaic performance can be further improved. 139 Bibliography [1] D. Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics, Rep. Prog. Phys. Vol. 61, pp. 1267-1324, 1998. [2] J. Baborowski, N. Ledermann, P. Muralt, and D. Schmitt, Simulation and characterization of piezoelectric micromachined ultrasonic transducers (pMUTs) based on PZT/SOI membranes, Int. J. Comput. Eng. Sci. Vol. 4, pp. 471-475, 2003. [3] J. J. Bernstein, S. L. Finberg, K. Houston, L. C. Niles, H. D. Chen, L. E. Cross, K. K. Li, and K. Udayakumar, Micromachined high frequency ferroelectric sonar transducers, IEEE Trans. Ultrason. Ferroelectr. Freq. Control Vol. 44, pp. 960-969, 1997. [4] R. Aigner, RF-MEMS filters manufactured on silicon: key facts about bulkacoustic-wave technology, IEEE 2003 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems Digest of Papers, pp. 157-161, 2003. [5] A. M. Flynn, L. S. Tavrow, S. F. Bart, R. A. Brooks, D. J. Ehrlich, K. R. Udayakumar, and L. E. Cross, Piezoelectric micromotors for microrobots, J. Microelectromech. Syst. Vol. 1, pp. 44-51, 1992. [6] M. A. Dubois and P. Muralt, PZT thin film actuated elastic fin micromotor, IEEE Trans. Ultrason. Ferroelectr. Freq. Control Vol. 45, pp. 1169-1177, 1998. [7] V. E. Demidov, B. A. Kalinikos, S. F. Karmanenko, A. A. Semenov, and P. Edenhofer, Electrical tuning of dispersion characteristics of surface electromagnetic-spin waves propagating in ferrite-ferroelectric layered structures, IEEE Trans. Microwave Theory Tech. Vol. 51, pp. 2090-2096, 2003. [8] H. H. Fiallo, J. P. Dougherty, S. J. Jang, R. E. Newnham, and L. A. Carpenter, Transmission properties of metal-semiconductor-relaxor microstrip lines, IEEE Trans. Microwave Theory Tech. Vol. 42, pp. 1176-1182, 1994. [9] S. Gevorgian, S. Abadei, H. Berg, and H. Jacobsson, MOS varactors with ferroelectric films, 2001 IEEE MTT-S International Microwave Symposium Digest, Vol. 2, pp. 1195-1198, 2001. [10] Q. X. Jia, J. R. Groves, P. Arendt, Y. Fan, A. T. Findikoglu, S. R. Foltyn, H. Jiang, and F. A. Miranda, Integration of nonlinear dielectric barium strontium titanate with polycrystalline yttrium iron garnet, Appl. Phys. Lett. Vol. 74, pp. 1564-1566, 1999. 140 [11] M. Okuyama, T. Usuki, Y. Hamakawa and T. Nakagawa, Epitaxial growth of ferroelectric PLZT thin film and their optical properties, Appl. Phys. Vol. 21, pp. 339-343, 1980. [12] H. Adachi, T. Kawaguchi, K. Setsune, K. Ohji and K. Wasa, Electro-optic effects of (Pb,La)(Zr,Ti)O3 thin films prepared by RF planar magnetron sputtering, Appl. Phys. Lett. Vol. 42, pp. 867-868, 1983. [13] P. Poosanaas, K. Tonooka, K. Uchino, Photostrictive actuators, Mechatronics, Vol. 10, pp. 467-487, 2000. [14] N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, and T. Yamada, and S. Streiffer, Ferroelectric thin films: Review of materials, properties, and applications, J. Appl. Phys. Vol. 100, pp. 051606/1-051606/46, 2006. [15] M. Schreiter, R.Bruchhaus, D.Pitzer, and W. Wersing, Sputtering of selfpolarized PZT films for IR-detector arrays, IEEE, pp. 181-185, 1998. [16] R. E. I. Schropp, R. Carius, and G. Beaucarne, Amorphous silicon, microcrystalline silicon, and thin-film polycrystalline silicon solar cells, MRS Bulletin Vol. 32, pp. 219-223, 2007. [17] Z. Fan and A. Javey, Solar cells on curtains, Nat. Mater. Vol. 7, pp. 835-836, 2008. [18] F. Dimroth and S. Kurtz, High-efficiency multijunction solar cells, MRS Bulletin Vol. 32, pp. 230-235, 2007. [19] W. Wong, X. Wang, Z. He, A. B. Djurisic, C. Yip, K. Cheung, H. Wang, C. S. K. Mak, and W. Chan, Metallated conjugated polymers as a new avenue towards high-efficiency polymer solar cells, Nat. Mater. Vol. 6, pp. 521-527, 2007. [20] U. Bach, D. Lupo, P. Comte, J. E. Moser, F.Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature Vol. 395, pp. 583-585, 1998. [21] J. Bisquert, The two sides of solar energy, Nature Photonics Vol. 2, pp. 648649, 2008. [22] P. S. Brody, Ferroelectric ceramic devices, United States Patent, no. 4051465, 1977. [23] P. S. Bordy, Semiconductor-ferroelectric nonvolatile memory using anomalous high photovoltages in ferroelectric ceramics, Appl. Phys. Lett. Vol. 38, pp. 153-155, 1981. 141 [24] B. Houlier and F. Micheron, Photoinduced charge-transfer process in PLZT ceramics, J. Appl. Phys. Vol. 50, pp. 343-345, 1979. [25] D. G. Choi, S. R. Kim, and S. K. Choi, Nonsteady-state photovoltaic current and photoinduced domain switching in poled (Pb0.85La0.15)TiO3 and BaTiO3 ferroelectric ceramics, Jpn. J. Appl. Phys. Vol. 38, pp. 1394-1397, 1999. [26] P. S. Brody, Large polarization-dependent photovoltages in ceramic BaTiO3 + wt.% CaTiO3, Solid State Communications, Vol. 12, pp. 673-676, 1973. [27] V. M. Fridkin, Photoferroelectrics, Springer, Berlin, 1979. [28] W. Kraut, and R. von Baltz, Anomalous bulk photovoltaic effect in ferroelectrics: A quadratic response theory, Phys. Rev. B Vol. 19, pp. 15481554, 1979. [29] R. von Baltz, and W. Kraut, Theory of the bulk photovoltaic effect in pure crystals, Phys. Rev. B Vol. 23, pp. 5590-5596, 1981. [30] R. von Baltz, and W. Kraut, Bulk photovoltaic effect in pure pyro- and piezoelectrics, Phys. Lett. Vol. 79A, pp. 364-366, 1980. [31] G. Chanussot, and A. M. Glass, A bulk photovoltaic effect due to electronphonon coupling in polar crystals, Phys. Lett. Vol. 59A, pp. 405-407, 1976. [32] G. Dalba, Y. Soldo, F. Rocca, V. M. Fridkin, and Ph. Sainctavit, Giant bulk photovoltaic effect under linearly polarized x-ray synchrotron radiation, Phys. Rev. Lett. Vol. 74, pp. 988-991, 1995. [33] M. Ichiki, Y. Morikawa, T. Nakada, and R. Maeda, Photovoltaic properties of lead zirconate titanate ceramics in a layered film structure design, Ceram. Int. Vol. 30, pp. 1831-1834, 2004. [34] J. Carnicero, O. Caballero, M. Carrascosa, and J. M. Cabrera, Superlinear photovoltaic currents in LiNbO3: analyses under the two-centre model, Appl. Phys. B Vol. 79, pp. 351-358, 2004. [35] L. Pinitilie, M. Alexe, A. Pignolet, and D. Hesse, Bi4Ti3O12 ferroelectric thin film ultraviolet detectors, Appl. Phys. Lett. Vol. 73, pp. 342-344, 1998. [36] C. S. Tu, F. T. Wang, R. R. Chien, V. H. Schmidt, C. M. Hung, and C. T. Tseng, Dielectric and photovoltaic phenomena in tungsten-doped Pb(Mg1/3Nb2/3)1-xTixO3 crystal, Appl. Phys. Lett. Vol. 88, pp. 032902/1032902/8, 2006. [37] A. M. Glass, D. von der Linde, and T. J. Negran, High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3, Appl. Phys. Lett. Vol. 25, pp. 233-235, 1974. 142 [38] V. M. Fridkin, Bulk photovoltaic effect in noncentrosymmetric crystals, Crystallogr. Rep. Vol. 46, pp. 654-658, 2000. [39] K. Tonooka, P. Poosanaas, and K. Uchino, Mechanism of the bulk photovoltaic effect in ferroelectrics, SPIE proceeding, Vol. 3324, pp. 224-232, 1998. [40] S. S. Li, Semiconductor Physical Electronics, Plenum Press, New York and London, 1993. [41] A. G. Chynoweth, Surface Space-Charge Layers in Barium Titanate, Phys. Rev. Vol. 102, pp. 705-714, 1956. [42] F. S. Chen, Optically Induced Change of Refractive Indices in LiNbO3 and LiTaO3, J. Appl. Phys. Vol. 40, pp. 3389-3396, 1969. [43] P. S. Brody, High voltage photovoltaic effect in barium titanate and lead titanate-lead zirconate ceramics, J. Solid State Chem. Vol. 12, pp.193-200, 1975. [44] K. Nonaka, M. Akiyama, T. Hagio and A. Takase, Bulk photovoltaic effect in reduced/ oxidized lead lanthanum titanate zirconate ceramics, Jpn. J. Appl. Phys. Vol. 34, pp. 2344-2349, 1995. [45] P. Poosanaas and K. Uchino, Photostrictive effect in lanthanum-modified lead zirconate titanate ceramics near the morphotropic phase boundary, Mater. Chem. Phys, Vol. 61, pp. 36-41, 1999. [46] K. Nonaka, M. Akiyama, T. Hagio, and A. Takase, Fabrication and Properties of Pb(Zr,Ti)O3-based ceramics for photostrictors, Ferroelectrics Vol. 239, pp. 273-280, 2000. [47] S. Y. Chu, Z. Ye, and K. Uchino, Impurity doping effect on photostriction in PLZT ceramics, Adv. Perform. Mater. Vol. 1, pp. 129-143, 1994. [48] P. Poosanaas, A. Dogan, A. V. Prasadarao, S. Komarneni, and K. Uchino, Photostriction of sol-gel processed PLZT ceramics, J. Electroceram. Vol. 1, pp. 105-111, 1997. [49] K. Nonaka, M. Akiyama, A. Takase, T. Baba, K. Yamamoto, and H. Ito, Nonstoichiometry effects and their additivity on anomalous photovoltaic efficiency in lead zirconate titanate, Jpn. J. Appl. Phys. Vol. 34, pp. 53805385, 1995. [50] K. Nonaka, M. Akiyama, C. N. Xu, and T. Hagio, Enhanced photovoltaic response in lead lanthanum zirconate-titanate ceramics with A-site deficient composition for photostrictor application, Jpn. J. Appl. Phys. Vol. 39, pp. 5144-5145, 2000. 143 [51] P. Poosanaas, A. Dogan, S. Thakoor, and K. Uchino, Influence of sample thickness on the performance of photostrictive ceramics, J. Appl. Phys. Vol. 84, pp. 1508-1512, 1998. [52] S. R. Kim, and S. K. Choi, Effects of grain size and doping on photovoltaic current in (Pb1-xLax)TiO3 ferroelectric ceramics, Ferroelectr. Lett. Vol. 31, pp. 63-72, 2004. [53] R. Schwartz, Chemical solution deposition of perovskite thin films, Chem. Mater. Vol. 9, pp. 2325-2340, 1997. [54] K. Yao, B. K. Gan, M. Chen, and S. Shannigrahi, Large photo-induced voltage in a ferroelectric thin film with in-plane polarization, Appl. Phys. Lett. Vol. 87, pp. 212906/1-212906/3, 2005. [55] S. Shannigrahi and K. Yao, Effects of WO3 dopant on the structure and electrical properties of Pb0.97La0.03(Zr0.52Ti0.48)O3 thin films, Appl. Phys. Lett. Vol. 86, pp. 092901/1-092901/3, 2005. [56] M. Ichiki, R. Maeda, Y. Morikawa, Y. Mabune, T. Nakada, and K. Nonaka, Photovoltaic effect of lead lanthanum zirconate titanate in a layered film structure design, Appl. Phys. Lett. Vol. 84, pp. 395-397, 2004. [57] M. Ichiki, R. Maeda, Y. Morikawa, Y. Mabune, T. Nakada, and K. Nonaka, Preparation and photovoltaic properties of lead lanthanum zirconate titanate in design of multilayers, Jpn. J. Appl. Phys. Vol. 44, pp. 6927-6933, 2005. [58] A. Kholkin, O. Boiarkine, and N. Setter, Transient photocurrents in lead zirconate titanate thin films, Appl. Phys. Lett. Vol. 72, pp. 130-132, 1998. [59] L. Pintilie, I. Vrejoiu, G. Le Rhun, and M. Alexe, Short-circuit photocurrent in epitaxial lead zirconate-titanate thin films, J. Appl. Phys. Vol. 101, pp. 064109/1-064109/8, 2007. [60] M. Ichiki, H. Furue, T. Kobayashi, Y. Morikawa, T. Nakada, C. Endo, K. Nonaka, and R. Maeda, Photovoltaic effect of ferroelectric PLZT in a layered and preferentially oriented film, Proc. of SPIE, Vol. 6035, pp. 1-8, 2006. [61] P. S. Brody and B. J. Rod, Decay of remnant polarization in ferroelectric films using polarization-dependent photovoltages, Integr. Ferroelectr. Vol. 3, pp. 245-257, 1993. [62] A. Matsumura, Y. Kamaike, T. Horiuchi, M. Shimizu, T. Shiosaki, and K. Matsushige, Thermal effects in properties of photovoltaic currents of Pb(Zr,Ti)O3 thin films, Jpn. J. Appl. Phys. Vol. 34, pp. 5258-5262, 1995. [63] Y. S. Yang, S. J. Lee, S. Yi, B. G. Chae, S. H. Lee, H. J. Joo, and M. S. Jang, Schottky barrier effects in the photocurrent of sol-gel derived lead zirconate titanate thin film capacitors, Appl. Phys. Lett. Vol. 76, pp. 774-776, 2000. 144 [64] V. K. Yarmarkin, B. M. Gol’tsman, M. M. Kazamin, and V. V. Lemanov, Barrier photovoltaic effects in PZT ferroelectric thin films, Physics of the solid state, Vol. 42, pp. 522-527, 2000. [65] J. Junquera, and P. Ghosez, Critical thickness for ferroelectricity in perovskite ultrathin films, Nature Vol. 422, pp. 506-508, 2003. [66] D. D. Fong, G. B. Stephenson, S. K. Streiffer, J. A. Eastman, O. Auciello, P. H. Fuoss, and C. Thompson, Ferroelectricity in ultrathin perovskite films, Science Vol. 304, pp. 1650-1653, 2004. [67] N. A. Spaldin, Fundamental size limits in ferroelectricity, Science Vol. 304, pp. 1606-1607, 2004. [68] G. Liu, and C. W. Nan, Thickness dependence of polarization in ferroelectric perovskite thin films, J. Phys. D: Appl. Phys. Vol. 38, pp. 485-589, 2005. [69] R. R. Mehta, B. D. Silverman and J. T. Jacobs, Depolarization fields in thin ferroelectric films, J. Appl. Phys. Vol. 44, pp. 3379-3385, 1973. [70] I. P. Batra, P. Wurfel, and B. D. Silverman, Phase transition, stability, and depolarization field in ferroelectric thin films, Phys. Rev. B Vol. 8, pp. 32573265, 1973. [71] I. P. Batra, P. Wurfel, and B. D. Silverman, New type of first-order phase transition in ferroelectric thin films, Phys. Rev. Lett. Vol. 30, pp. 384-387, 1973. [72] M. D. Glinchuk, B. Y. Zaulychny, and V. A. Stephanovich, Depolarization field in thin ferroelectric films with account of semiconductor electrodes, Ferroelectr. Vol. 316, pp. 1-6, 2005. [73] M. Ichiki, Y. Morikawa, T. Nakada, Electrical properties of ferroelectric lead lanthanum zirconate titanate as an energy transducer for application to electrostatic-optical motor, Jpn. J. Appl. Phys. Vol. 41, pp. 6993-6996, 2002. [74] M. Ichiki, H. Furue, T. Kobayashi, and R. Maeda, Y. Morikawa, T. Nakada, and K. Nonaka, Photovoltaic properties of (Pb,La)(Zr,Ti)O3 films with different crystallographic orientations, Appl. Phys. Lett. Vol. 87, pp. 222903/1-222903/3, 2005. [75] K. D. Budd, S, K. Dey, and D. A. Payne, Sol-gel processing of PbTiO3, PbZrO3, PZT, and PLZT thin films, Brit. Ceram. Soc. Proc. Vol. 36, pp. 107121, 1985. [76] S, K. Dey, K. D. Budd, and D. A. Payne, Thin-film ferroelectrics of PZT of sol-gel processing, IEEE Trans. Ultrason. Ferroelectr. Freq. Control Vol. 35, pp. 80-81, 1988. 145 [77] A. L. Kholkin, K. G. Brooks, D. V. Taylor, S. Hiboux and N. Setter, Selfpolarization effect in Pb(Zr,Ti)O3 thin films, Integr. Ferroelectr. Vol. 22, pp. 525-533, 1998. [78] V. P. Afanasjev, A. A. Petrov, I. P. Pronin, E. A. Tarakanov, E. Ju. Kaptelov and J. Graul, Polarization and self-polarization in thin PbZr1-xTixO3 (PZT) films, J. Phys.: Condens. Matter Vol. 13, pp. 8755-8763, 2001. [79] G. E. Pike, W. L. Warren, D. Dimos, B. A. Tuttle, R. Ramesh, J. Lee, V. G. Keramidas and J. T. Evans, Voltage offsets in (Pb,La)(Zr,Ti)O3, Appl. Phys. Lett. Vol. 66, pp. 484-486, 1995. [80] R. Bruchhaus, D. Pitzer, R. Primig, W. Wersing and Y. Xu, Deposition of selfpolarized PZT films by planar multi-target sputtering, Integr. Ferroelectr. Vol. 14, pp. 141-149, 1997. [81] G. Hass, and M. H. Francombe, Physics of Thin Films: Advances in Research and Development, New York, Academic Press, pp. 82-84, c1963-c1994. [82] J. R. Groza, J. F. Shackelford, E. J. Lavernia, and M. T. Powers, Materials processing handbook, CRC press, pp. 8-10, 2007. [83] R. K. Waltz, Planar magnetron sputtering, J. Vac. Sci. Technol. Vol. 15, pp. 179-187, 1978. [84] S. M. Rossnagel, Magnetron plasma deposition processes, in S. M. Rossnagel, J. J. Cuomo, W. D. Westwood (eds), Handbook of plasma processing technology, Noyes Publ, Park Ridge, New Jersy, 1990. [85] J. A. Thornton, High rate sputtering techniques, Thin Solid Films, Vol. 80, pp. 1-11, 1981. [86] Y. Pauleau, Chemical physics of thin film deposition processes for micro- and nano-technologies, Kluwer Academic Publishers, Dordrecht and Boston, p. 328, 2002. [87] http://www.pvd-coatings.co.uk/theory-of-pvd-coatings-unbalancedmagnetron.htm [88] K. Wasa, M. Kitabatake, and H. Adachi, Thin film materials technology: sputtering of compound materials, Norwich, N.Y., William Andrew Pub.; Heidelberg, Springer, pp. 148-150, 2004. [89] V. S. Ramachandran and J. J. Beaudoin, Handbook of analytical techniques in concrete science and technology, Norwich, N.Y., Noyes Publications, Chapter 8, 1999. [90] H.F. Franzen, and C. Y. Ng, Physical chemistry of solids: basic principles of symmetry and stability of crystalline solids, Singapore, World Scientific, Chapter 8, 1994. 146 [91] http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/imgqua/bragglaw.gif [92] R. F. Egerton, Physical principles of electron microscopy: an introduction to TEM, SEM, and AEM (New York, NY, Springer, 2005. [93] D. N. John, Nanoscale characterization of surfaces and interfaces (Weinheim, VCH, 1994. [94] M. Grossmann, O. Lohse, D. Bolten, U. Boettger, T. Schneller, and R. Waser, The interface screening model as origin of imprint in PbZrxTi1-xO3 thin films, I. Dopant, illumination, and bias dependence, J. Appl. Phys. Vol. 92, pp. 26802687, 2002. [95] K. Amanuma, T. Mori, T. Hase, T. Sakuma, A. Ochi, and Y. Miyasaka, Ferroelectric properties of sol-gel derived Pb(Zr,Ti)O3 thin films, Jpn. J. Appl. Phys. Vol. 32, pp. 4150-4153, 1993. [96] J. F. Combs, and M. P. Albert, Diameter correction factors for the resistivity measurement of semiconductor slices, Semicond. Prod. Vol. 6, pp. 26-27, 1963. [97] M. P. Albert, and J. F. Combes, Correction factors of radial resistivity gradient evaluations of semiconductor slices, IEEE. Trans. Electron Devices, Vol. 11, pp. 148-151, 1964. [98] L. J. Swartzendruber, Four-point probe measurements of non-uniformities in semiconductor sheet resistivity, Solid State Electron, Vol. 7, pp. 412-422, 1964. [99] M. A. Logan, Sheet resistivity measurements on rectangular surfaces – general solutions for four-point probe conversion factors, Bell. System. Tech. J. Vol. 46, pp. 2277-2322, 1967. [100] R. C. Dorf, The electrical engineering handbook. 3rd edition, Sensors, nanoscience, biomedical engineering, and instrument, Boca Raton, CRC/Taylor & Francis, p. 1186, 2006. [101] R. Waser, U. Böttger, and S. Tiedke, Polar Oxides: Properties, Characterization, and Imaging, Weinheim, Wiley-VCH, pp. 55-57, 2004. [102] J. F. Scott, Device physics of ferroelectric thin-film memories, Jpn. J. Appl. Phys. Vol. 38, pp. 2272-2274, 1999. [103] J. F. Scott, Ferroelectric memories, Berlin, Springer, 2000. [104] J. Robertson, W. L. Warren and B. A. Tuttle, Band states and shallow hole traps in Pb(Zr,Ti)O3 ferroelectrics, J. Appl. Phys. Vol. 77, pp. 3975-3980, 1995. 147 [105] W. L. Warren, J. Robertson, D. Dimos, B. A. Tuttle, G. E. Pike, and D. A. Payne, Pb displacements in Pb(Zr,Ti)O3 perovskites, Phys. Rev. B Vol. 53, pp. 3080-3087, 1996. [106] Y. S. Yang, J. P. Kim, S. H. Lee, H. J. Joo, and M. S. Jang, Space charge effects in the photocurrent spectrum of ferroelectric Pb(Zr,Ti)O3 thin films, J. Korean Phys. Soc. Vol. 35, pp. S1168-1171, 1999. [107] L. Pintilie, I. Pintilie, Ferroelectrics: new wide-gap materials for UV detection, Mater. Sci. Engin. B Vol. 80, pp. 388-391, 2001. [108] M. Ichiki, Y. Morikawa, T. Nakada, R. Maeda, Photovoltaic properties of lead lanthanum zirconate titanate ceramics in a layered film structure design, Ceram. Int. Vol. 30, pp. 1831-1834, 2004. [109] A. Zomorrodian, N. J. Wu, Y. Song, S. Stahl, A. Ignatiev, E. Brady Trexler and C. A. Garcia, Micro photo detector fabricated of ferroelectric-metal heterostructures, Jpn. J. Appl. Phys. Vol. 44, pp. 5105-6108, 2005. [110] K. Nonaka, M. Akiyama, T. Hagio and A. Takase, Effect of Pb/(Zr+Ti) Molar Ratio on the Photovoltaic Properties of Lead Zirconate-titanate Ceramics, J. Euro. Ceram. Soc. Vol. 19, pp. 1143-1148, 1999. [111] M. Qin, K. Yao, Y. C. Liang, and B. K. Gan, Stability of photovoltage and trap of light-induced charges in ferroelectric WO3-doped (Pb0.97La0.03)(Zr0.52Ti0.48)O3 thin films, Appl. Phys. Lett. Vol. 91, pp. 092904/1-092904/3, 2007. [112] M. Qin, K. Yao, Y. C. Liang and S. Shannigrahi, Thickness effects on photoinduced current in ferroelectric (Pb0.97La0.03)(Zr0.52Ti0.48)O3 thin films, J. Appl. Phys. Vol. 101, pp. 014104/1-014104/8 , 2007. [113] J. Robertson and C. W. Chen, Schottky barrier heights of tantalum oxide, barium strontium titanate, lead titanate, and strontium bismuth tantalite, Appl. Phys. Lett. Vol. 74, pp. 1168-1170, 1999. [114] M. Qin, K. Yao, Y. C. Liang, and B. K. Gan, Stability and magnitude of photovoltage in ferroelectric (Pb0.97La0.03)(Zr0.52Ti0.48)O3 thin films in multicycle UV light illumination, Integr. Ferroelectr. Vol. 95, pp. 105-116, 2007. [115] B. Nagaraj, T. Wu, S. B. Ogale, T. Venkatesan, and R. Ramesh, Interface Characterization of All-Perovskite Oxide Field Effect Heterostructures, J. Electroceram. Vol. 8, pp. 233-241, 2004. [116] L. Pintilie, M. Lisca, and M. Alexe, Lead-based ferroelectric compounds: insulators or semiconductors? Integr. Ferroelectr. Vol. 73, pp. 37-48, 2005. [117] M. Razeghi, A. Rogalskj, Semiconductor ultraviolet detectors, J. Appl. Phys. Vol. 79, pp. 7433-7473, 1996. 148 [118] R. H. Bube, Photoconductivity of Solids, New York, John Wiley and Sons, 1960. [119] J. C. Maurya, A. V. Dixit, Vardhireddy Manorama and S. V. Bhoraskar, Effect of reduction of PLZT on carrier lifetime determined by EBIC, Solid State Commun. Vol. 64, pp. 1235-1240, 1987. [120] P. C. Juan, H. C. Chou, J. Y. M. Lee, The effect of electrode material on the electrical conduction of metal-Pb(Zr0.53Ti0.47)O3-metal thin film capacitors, Microelectronics Reliability Vol. 45, pp. 1003-1006, 2005. [121] Y. P. Jiang, X. G. Tang, Q. X. Liu, Q. Li, and A. L. Ding, Optical properties of Pb(Zr0.53Ti0.47)O3 thin films on Pt-coated Si substrates measured by spectroscopic ellipsometry in the UV-vis-NIR region, Mater. Sci. Engineer. B 137, pp. 304-309, 2007. [122] S. Yang, Y. Zhang, and D. Mo, A comparison of the optical properties of amorphous and polycrystalline PZT thin films deposited by the sol-gel method, Mater. Sci. Engineer. B Vol. 127, pp. 117-122, 2006. [123] S. Yang, D. Mo, and X. Tang, Spectroscopic ellipsometry studies of amorphous PZT thin films with various Zr/Ti stoichiometries, J. Mater. Sci, Vol. 37, pp. 3841-3845, 2002. [124] S. B. Majumder, Y. N. Mohapatra, and D. C. Agrawal, Optical and microstructural characterization of sol-gel derived cerium-doped PZT thin films, J. Mater. Sci. Vol. 32, pp. 2141-2150, 1997. [125] S. Gottschalk, H. Hahn, and A. G. Balogh, W. Puff, H. Kungl and M. J. Hoffmann, A positron lifetime study of lanthanum and niobium doped Pb(Zr0.6Ti0.4)O3, J. Appl. Phys. Vol. 96, pp. 7464-7470, 2004. [126] C. Touzi, A. Rebey, and B. Eljani, Influence of metal properties and photodiode parameters on the spectral response of n-GaN Schottky photodiode, Microelectronics Journal Vol. 33, pp. 961-965, 2002 [127] T. Tybell, C. H. Ahn, and J. M. Triscone, Ferroelectricity in thin perovskite films, Appl. Phys. Lett. Vol. 75, pp. 856-858, 1999. [128] C. H. Ahn, K. M. Rabe, and J. M. Triscone, Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures, Science Vol. 303, pp. 488-491, 2004. [129] Y. S. Yang, S. J. Lee, S. H. Kim, B. G. Chae, M. S. Jang, Ferroelectricity and electric conduction characteristics of Sr-modified lead zirconate titanate thin film capacitors, Jpn. J. Appl. Phys. Vol. 36, pp. 749-753, 1997. [130] A. S. S. Camargo, C. Jacinto, L. A. O. Nunes, T. Catunda, D. Garcia, E. R. Botero, J. A. Eiras, Effect of Nd3+ concentration quenching in highly doped 149 lead lanthanum zirconate titanate transparent ferroelectric ceramics, J. Appl. Phys. Vol. 101, pp. 053111/1-053111/4, 2007. [131] B. Z. Li, Z. Q. Zheng, J. W. Yang, K. W. Li, H. Jiang, X. S. Chen, A. T. Wang, J. P. Xie, H. Ming, Optical transition probability of Nd3+ ions doped in ferroelectric PLZT for active electro-optical applications, Chin. Phys. Lett. Vol. 22, pp. 80/1-80/3, 2005. [132] G. Herranz, M. Basletic, M. Bibes, R. Ranchal, A. Hamzic, H. Jaffres, E. Tafra, K. Bouzehouane, E. Jacquit, J. P. Contour, A. Barthelemy, A. Fert, High-spin polarized Co-doped (La,Sr)TiO3 thin films on high-mobility SrTiO3 substrates, J. Magnetism Magnetic Mater. Vol. 310, pp. 2111-2113, 2007. [133] M. P. Jong, V. A. Dediu, C. Taliani, W. R. Salaneck, Electronic structure of La0.7Sr0.3MnO3 thin films for hybrid organic/inorganic spintronics applications, J. Appl. Phys. Vol. 94, pp. 7292-7296, 2003. [134] S. Majumdar, H. S. Majumdar, R. Laiho, R. Osterbacka, Comparing small molecules and polymer for future organic spin-valves, J. Alloys Compounds Vol. 423, pp. 169-171, 2006. [135] I. Stolichnov and A. Tagantsev, Space-charge influenced-injection model for conduction in Pb(ZrxTi1-x)O3 thin films, J. Appl. Phys. Vol. 84, pp. 3216-3225, 1998. [136] L. Pintilie and M. Alexe, Metal-ferroelectric-metal heterostructures with Schottky contacts. I. Influence of the ferroelectric properties, J. Appl. Phys. Vol. 98, pp. 124103/1-124103/8, 2005. [137] Y. Masuda and T. Nozaka, Investigation into electrical conduction mechanisms of Pb(Zr,Ti)O3 thin-film capacitors with Pt, IrO2 and SrRuO3 top electrodes, Jpn. J. Appl. Phys. Vol. 43, pp. 6576-6580, 2004. [138] T. P. Juan, S. Chen, and J. Y. Lee, Temperature dependence of the current conduction mechanisms in ferroelectric Pb(Zr0.53,Ti0.47)O3 thin films, J. Appl. Phys. Vol. 95, pp. 3120-3125, 2004. [139] K. Watanabe, A. J. Hartmann, R. N. Lamb, and J. F. Scott, Electronic characteristics of the SrBi2Ta2O9-Pt junction, J. Appl. Phys. Vol. 84, pp. 21702175, 1998. [140] T. K. Kundu, and J. Y. M. Lee, Temperature dependence of electrical conduction in Pb(Zr,Ti)O3 thin films, Ferroelectr. Vol. 328, pp. 53-58, 2005. [141] J. Robertson and C. W. Chen, Schottky barrier heights of tantalum oxide, barium strontium titanate, lead titanate, and strontium bismuth tantalate, Appl. Phys. Lett. Vol. 74, pp. 1168-1170, 1999. 150 [142] M. Dawber, J. F. Scott, and A. J. Hartmann, Effect of donor and acceptor dopants on Schottky barrier heights and vacancy concentrations in barium strontium titanate, J. Euro. Ceram. Soc. Vol. 21, pp. 1633-1636, 2001. [143] A. M. Cowley and S. M. Sze, Surface states and barrier height of metalsemiconductor systems, J. Appl. Phys. Vol. 36, pp. 3212-3220, 1965. [144] W. L. Warren and D. Dimos, Photoinduced hysteresis changes and charge trapping in BaTiO3 dielectrics, Appl. Phys. Lett. Vol. 64, pp. 866-868, 1994. [145] I. Baturin, N. Menou, V. Shur, C. Muller, D. Kuznetsov, J. L Hodeau, A. Sternberg, Influence of irradiation on the switching behavior in PZT thin films, Mater. Sci. Engineering, B Vol. 120, pp. 141-145, 2005. [146] A. L. Kholkin, S. O. Lakovlev, and J. L. Baptista, Direct effect of illuminaiton on ferroelectric properties of lead zirconate titanate thin films, Appl. Phys. Lett. Vol. 79, pp. 2055-2057, 2001. [147] T. M. Batirov, D. Dimos, E. Doubovik, R. Djalalov, and V. M. Fridkin, On the mechanism of the photodomain effect in ferroelectrics, JETP Lett. Vol. 71, pp. 318-321, 2000. [148] D. Dimos, W. L. Warren, M. B. Sinclair, B. A. Tuttle, and R. W. Schwartz, Photoinduced hysteresis changes and optical storage in (Pb,La)(Zr,Ti)O3 thin films and ceramics, J. Appl. Phys. Vol. 76, pp. 4305-4315, 1994. [149] W. L. Warren, D. Dimos, B. A. Tuttle, R. D. Nasby, and G. E. Pike, Electronic domain pinning in Pb(Zr,Ti)O3 thin films and its role in fatigue, Vol. 65, pp. 1018-1020, 1994. [150] N. Menou, A. M. Castagnos, Ch. Muller, J. Johnson, D. J. Wouters, I. Baturin, and V. Ya. Shur, Failure analysis of FeCAPs. Electrical behaviour under synchrotron x-ray irradiation, Integr. Ferroelectr. Vol. 61, pp. 89-95, 2004. [151] G. Suchaneck, W. M. Lin, G. Gerlach, F. Ahamed, and G. Subramanyam, UVinduced changes of the polarization profile of Pb(Zr,Ti)O3 thin films, Integr. Ferroelectr. Vol. 73, pp. 75-82, 2005. [152] J. C. Shin, J. Park, C. S. Hwang, and H. J. Kim, Dielectric and electrical properties of sputter grown (Ba,Sr)TiO3 thin films, J. Appl. Phys. Vol. 86, pp. 506-512, 1999. [153] J. D. Baniecki, T. Shioga, K. Kurihara, and N. Kamehara, Investigation of the importance of interface and bulk limited transport mechanisms on the leakage current of high dielectric constant thin film capacitors, J. Appl. Phys. Vol. 94, pp. 6741-6748, 2003. [154] C. L. Jia, V. Nagarajan, J. Q. He, L. Houben, T. Zhao, R. Ramesh, K. Urban and R. Waser, Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films, Nature Materials Vol. 6, pp. 64-69, 2007. 151 [155] A. K. Tagantsev, M. Landivar, E. Colla, K. G. Brooks, and N. Setter, Depletion, depolarization effects and switching in ferroelectric thin films, Science and technology of electroceramic thin films, edited by O. Auciello and R. Waser, Kluwer Academic Publishers, Dordrecht/Boston/London, 1995. [156] T. Mihara, H. Yoshimori, H. Watanabe and C. A. Pas de Araujo, Origin of depolarization in sol-gel ferroelectric Pb(Zr0.4Ti0.6)O3 thin-film capacitors, Jpn. J. Appl. Phys. Vol. 33, pp. L1703-L1706, 1994. [157] P. Dey, T. K. Nath, M. L. N. Goswami, and T. K. Kundu, Room temperature ferroelectric and ferromagnetic properties of multiferroics xLa0.7Sr0.3MnO3-(1x)ErMnO3 (weight percent x=0.1, 0.2) composites, Appl. Phys. Lett. Vol. 90, pp. 162510/1-162510/3, 2007. [158] P. Stoller, V. Jacobsen, and V. Sandoghdar, Measurement of the complex dielectric constant of a single gold nanoparticle, Optics Lett. Vol. 31, pp. 2474-2476, 2006. [159] J. H. Hao, Z. Luo and J. Gao, Effects of substrate on the dielectric and tunable properties of epitaxial SrTiO3 thin films, J. Appl. Phys. Vol. 100, pp. 114107/1-114107/5, 2006. [160] T. M. Shaw, S. Trolier-McKinstry, P. C. McIntyre, Properties of ferroelectric films at small dimensions, Annu. Rev. Mater. Sci. Vol. 30, pp. 263-298, 2000. [161] Y. K. Kim, H. Morioka, R. Ueno, S. Yokoyama, and H. Funakubo, Domain structure control of (001)/(100)-oriented epitaxial Pb(Zr,Ti)O3 films grown on (100)cSrRuO3/ (100)SrTiO3 substrates, Appl. Phys. Lett. Vol. 86, pp. 212905/1-212905/3, 2005. [162] T. Choi, S. Lee, Y. J. Choi, V. Kiryukhin, S. W. Cheong, Switchable ferroelectric diode and photovoltaic effect in BiFeO3, Science Vol. 324, pp. 63-66, 2009. 152 Appendix (Publications) Journal papers 1. Meng Qin, Kui Yao, Yung C. Liang, and Santiranjan Shannigrahi, Thickness effects on photoinduced current in ferroelectric (Pb0.97La0.03)(Zr0.52Ti0.48)O3 thin films, Journal of Applied Physics, Vol. 101, pp. 014104/1-014104/8, 2007. 2. Meng Qin, Kui Yao, and Yung C. Liang, Photo induced current in (Pb0.97La0.03)(Zr0.52Ti0.48)O3 thin films of different thicknesses, Integrated Ferroelectrics, Vol. 88, pp. 58-67, 2007. 3. Meng Qin, Kui Yao, Yung C. Liang, and Bee Keen Gan, Stability of photovoltage and trap of light-induced charges in ferroelectric WO3-doped (Pb0.97La0.03)(Zr0.52Ti0.48)O3 thin films, Applied Physics Letters, Vol. 91, pp. 092904/1-092904/3, 2007. 4. Meng Qin, Kui Yao, Yung C. Liang, and Bee Keen Gan, Stability and magnitude of photovoltage in ferroelectric (Pb0.97La0.03)(Zr0.52Ti0.48)O3 thin films in multicycle UV light illumination, Integrated Ferroelectrics, Vol. 95, pp. 105-116, 2007. 5. Meng Qin, Kui Yao, and Yung C. Liang, High efficient photovoltaics in nanoscale ferroelectric thin films, Applied Physics Letters, Vol. 93, pp. 122904/1122904/3, 2008. 6. Meng Qin, Kui Yao, and Yung C. Liang, Photovoltaic characteristics in polycrystalline and epitaxial (Pb0.97La0.03)(Zr0.52Ti0.48)O3 ferroelectric thin films sandwiched between different top and bottom electrodes, Journal of Applied Physics, Vol. 105, pp. 061624/1-061624/8, 2009. 7. Meng Qin, Kui Yao, and Yung C. Liang, Photovoltaic mechanisms in ferroelectric thin films with the effects of the electrodes and interfaces, Applied Physics Letters, Vol. 95, pp. 022912/1-022912/3, 2009. Conference presentations 1. Meng Qin, Kui Yao, and Yung C. Liang, Thickness dependence of photo induced current in (Pb0.97La0.03)(Zr0.52Ti0.48)O3 thin films, 18th International Symposium on Integrated Ferroelectrics (ISIF 2006), Hawaii, USA, 2006. 2. Meng Qin, Kui Yao, Yung C. Liang, and Bee Keen Gan, Stability of photovoltage in PLZT thin films under multi-cycle UV illumination, 19th International Symposium on Integrated Ferroelectrics (ISIF 2007), Bordeaux, France, 2007. 153 3. Meng Qin, Kui Yao, and Yung C. Liang, Sol-gel derived highly-oriented (Pb0.97La0.03)(Zr0.52Ti0.48)O3 ferroelectric thin films, 20th International Symposium on Integrated Ferroelectrics (ISIF 2008), Singapore, 2008. 4. Meng Qin, Kui Yao, and Yung C. Liang, Photovoltaic responses in sol-gelderived epitaxial (Pb0.97La0.03)(Zr0.52Ti0.48)O3 ferroelectric thin films with different film thickness, 20th International Symposium on Integrated Ferroelectrics (ISIF 2008), Singapore, 2008. 154 [...]... 18 of understanding and systematic characterisation for photovoltaic outputs in ferroelectric thin films (including polycrystalline and epitaxial thin films) In addition, the mechanisms for the Schottky effect, thickness effect and screening effect have not been clarified yet for the photovoltaics in ferroelectric thin films up to now Moreover, as a consequence of interfacial effects, the stability of. .. useful information for the choice of film dimension and/ or electrodes in the photovoltaic ferroelectric device design In addition, the investigation of stability issue of photovoltaic response in the multi-cycle UV illumination should enhance the understanding of interfacial effect in ferroelectric thin films It may also come to be useful for photovoltaic stability improvement in ferroelectric thin film. .. better understanding of photovoltaic effect in PLZT ferroelectric thin films in the aspect of various interfacial effects – thickness effect, Schottky effect and screening effect The proposed theoretical models that take interfacial effects into account should be useful for predicting photovoltaic outputs in PLZT ferroelectric thin films with different film thicknesses and electrode materials, and they... ceramics to thin films in the 1990s Among all the ferroelectric thin films, PZT is the most promising candidate among ferroelectric materials for photovoltaic 14 applications because of its outstanding ferroelectric and photovoltaic properties Photovoltaic studies to date on ferroelectric thin films have mainly focused on the PZT family Some photovoltaic properties in PZT bulk ceramics and thin films were... Photovoltaics in ferroelectric PLZT- based thin films With the advancement in the processing of complex ferroelectric thin films and the technology to integrate them onto silicon wafers (i.e the development of chemical deposition and physical deposition methods for ferroelectric thin films) in the 1980s [53], the research attention on ferroelectric- based photovoltaics gradually shifted from bulk ceramics to thin. .. illuminated I-V characteristic and light-to-electricity power conversion efficiency) in PLZT ferroelectric thin films To study the stability of photovoltage response under multi-cycle UV light illumination, and examine how the interfacial effect influences the stability performance of photovoltage in ferroelectric thin films To improve photovoltaic power conversion efficiency in PLZT ferroelectric thin. .. wireless energy transfer in microelectromechanical systems (MEMS) [33-36] So far, photovoltaics in ferroelectrics, especially in thin films, have still been undergoing investigation, and the underlying physical mechanism of ferroelectric- based photovoltaics is the main focusing point The physical mechanism of photovoltaic effect in ferroelectrics is still uncertain at present In the early years, a few... effects bring much difficulty to the photovoltaic study in ferroelectric thin films, because it means that the phenomenological and analytical theories developed for bulk ferroelectric photovoltaics in the early years are not applicable to ferroelectric thin films In ferroelectric thin films, interfacial effects play important roles in determining the photovoltaic output However, with regard to the interfacial... of the thin film, interfacial effect significantly influences the stability of the photovoltaic output Nevertheless, the interface-effect-induced stability issue in ferroelectric thin films has not been given much attention Obviously, addressing the stability issue and clarifying the underlying physical mechanisms are also critical tasks for the photovoltaic applications in ferroelectric thin films... existence of interfacial effects (including Schottky effect, thickness/size effect and screening effect) makes photovoltaics in ferroelectric thin films more complicated than those in bulk ceramics Compared with the small dimension of the bulk region of the film, the ferroelectric- electrode interface or an interfacial layer also occupies a considerable volume in the whole volume of ferroelectric thin film . effect in photovoltaics of ferroelectric thin films 132 8.1.3 Screening effect in photovoltaics of ferroelectric thin films 133 8.1.4 Stability of photovoltage under multi-cycle UV illumination. i MECHANISM AND CHARACTERISTICS OF PHOTOVOLTAIC RESPONSES IN SANDWICHED FERROELECTRIC PLZT THIN FILM DEVICES QIN MENG (B. Eng., Zhejiang University). photovoltage in electrodes -sandwiched thin film configuration 102 6.4.2 Stability of photovoltage and trap of light-induced charges 106 6.5 CONCLUSION 111 7 CHAPTER 7 PHOTOVOLTAIC MECHANISMS IN FERROELECTRIC