Human telomerase reverse transcriptase (hTERT) overexpression modulates intracellular redox balance and protects cancer cells from apoptotic cell death

200 686 0
Human telomerase reverse transcriptase (hTERT) overexpression modulates intracellular redox balance and protects cancer cells from apoptotic cell death

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

HUMAN TELOMERASE REVERSE TRANSCRIPTASE (hTERT) OVEREXPRESSION MODULATES INTRACELLULAR REDOX BALANCE AND PROTECTS CANCER CELLS FROM ROS MEDIATED CELL DEATH INTHRANI D/O RAJA INDRAN (BSc. (Hons.), NUS) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARMENT OF PHYSIOLOGY YONG LOO LIN SCHOOL OF MEDICINE NATIONAL UNIVERSITY OF SINGAPORE 2009 ACKNOWLEDGEMENTS This thesis would not have been possible if not for the many special people who have stood by me and guided me along in my last four years. It gives me great pleasure to have this opportunity to thank these wonderful people. To Prof Shazib Pervaiz, I owe him special thanks for the unwavering faith he had placed in me especially when I was struggling in the initial phases of my project. His relentless encouragement, enthusiasm and knowledge have been truly inspiring and have added immense value to the calibre of this thesis. I will never forget the random little pep talks, the times spent in non intellectual pursuit discussing the special attributes of 3am and the reasonable and unreasonable grilling sessions we had during lab meetings. Thank you boss for these cherished times and for simply being there for me over the years. To Dr Prakash Hande, I extend my sincere thanks to him. I am truly grateful for the autonomy, freedom and timely advice he gave me in manoeuvring my project over the last four years. The efforts he expended in getting hold of the numerous plasmids and cell lines that I needed, helped open some of the crucial doors in my project. Thank you very much for all the support you have given me, sir. To my lab mates from both ROS Biology and Apoptosis lab and Genome Instability lab, all of you have made this journey an immensely memorable one with all your little quirks, random words of wisdom, motivation and constructive advice. I am privileged to have known all of you and am thankful for the valuable friendships that have been forged through the years. I will never forget our late nights in lab, our communal ranting against antibodies that never worked and our inspirational meal sessions. My special thanks to the class of 2005, Sinong, Chewy, Zhi Xiong, Greg, Lakshmi, Ai Kia, Swamy and Grace for having shared my happiness, frustrations, successes and failures and for being a huge source of support for me. Thank you all loads. I would also like to give special mention to Dr Jayshree and Kartini for taking care of the needs of the lab and being such patient and loving people whom I could turn to i anytime to relieve my frustrations. Together both of you have had a pseudo calming effect on the lab environment. In addition, I have also learnt and benefited largely from your immense wealth of scientific experience. Thank you very much. My special thanks also goes out to Dr Alan Premkumar and Dr Andrea Holmes for their kind guidance and resources that have largely shaped and developed my research ideas and inevitably contributed to the progress of my project. Thank you very much! To all my close friends Sharon, Gerry, Nurul, Ruben, Chandra, Soy, Waseem, Tahira Praveena, Prabha, Sajitha, and Vanitha thank you very much for you kindness, love and patience. Thank you for the lifts and company that have made my hour and a half long journeys between campus and home seem like nothing. Thank you for your unyielding support, the little random notes of encouragement and the colour you have added to my life. You guys are truly special and I love you all! Lastly, to my family, the people without whom, I would have never made it this far in life. To my most beloved parents, even in their toughest times, they only had words of love and encouragement for me. Their giving nature supersedes everything. To my Amma and Naina, thank you very much for your unconditional love and motivation all these years. To my sister, who has been one of the biggest pillars of strength in my life, thank you for shielding me, grooming me, inspiring me and for the confidence you placed in me. Watching you, I have learnt the true meaning of resilience. Thank you Ka! Also, special thanks to my Jega for his kind love, patience and understanding especially during some of my very stressful times. Thanks for being by my side. I love you all very much. ii TABLE OF CONTENTS Acknowledgements ii Table of contents iv Summary x List of figures xii List of abbreviations xv INTRODUCTION………………………………………………………… .1 1. CANCER.… …………………………………………………………………1 2. TELOMERES AND TELOMERASE…………………………………… .2 2.1. Telomeres and telomerase regulation….………………………………………4 2.1.1. Transcriptional regulation of hTERT. ……………………… …………… .5 2.1.2. Post transcriptional modification of hTERT………………… ……………7 2.2. Senescence and immortalization………………………………………………9 2.3. The non canonical roles of telomerase……………… ………………… ….12 3. REACTIVE OXYGEN SPECIES………………………………………….13 3.1. Different types of ROS …………………………………………………… 14 3.2. Sources of ROS ……… …………………… …………………………… .15 3.3. Functions of ROS…………………………………………………………….16 4. THE CELLULAR ANTIOXIDANT DEFENCES……………………… 18 4.1. Superoxide dismutases……….…………………………………………… 20 4.2. Catalase…………………………….……………………………………… .21 4.3. Glutathione and glutathione dependent enzymes….…………………………22 4.3.1. Glutathione …………………………… .………………………………… 22 iii 4.3.2. GSH synthesis.…………………………… .……………………………… 24 4.3.3. Glutathione reductase.…………………………… .…………………… ….25 4.3.4. Glutathione peroxidase.…………………………… .…………………….…26 4.4. Peroxiredoxins……………… ………………………………………………27 4.5. Thioredoxins……………………… ……………………………………… .29 5. hTERT AND ROS………… .…………………………………………… 30 5.1. Effects of oxidative stress on hTERT……………… ……………………….31 5.2. Effects of hTERT on oxidative stress…… ………………………………….33 6. CELL DEATH…………………………………………………………… 34 6.1. Necrosis…… .……………………………………………………………….35 6.2. Autophagy……………………………………………………………………36 6.3. Apoptosis…… ………………………………………………………………36 6.3.1. Type I – extrinsic or receptor mediated pathway…………………………….37 6.3.2. Type II – intrinsic or mitochondria mediated pathway…………………… 37 6.4. Influence of ROS on cell death signalling……………………………………38 6.5. Mitochondria membrane permeabilization….……………………………….41 6.6. Regulation of apoptosis by Bcl-2 family of protein………………………….43 7. CANCER THERAPY, ROS AND TELOMERASE…………………… .44 AIMS……………………………………………………………… .47 MATERIALS AND METHODS……….………………………………… .50 1. Cell Lines and plasmids…………………………………………………….…50 2. Antibodies…………………………………………………………………… 50 3. Chemicals………………………………………………………………….… 51 4. Cell culture…………………………………………………………………….51 iv 5. Plasmid information .………………………………………………………52 6. Amplification and purification of plasmids………………………………… .53 7. Transient transfection .……………………………………………………….55 8. Generation of stable clones……………… .……………………………… .56 9. Silencing……………………………… .…………………………………….56 10. Crystal Violet cell viability assay…………………………………………… 57 11. Analysis of DNA fragmentation by propidium iodide staining……………….57 12. Colony forming assay… .…………………………………………………….58 13. Assessment of intracellular ROS levels via CM-H2DCFDA staining……… .58 14. Assessment of mitochondrial O2.- levels via MitoSOX Red staining…………58 15. Assessment of mitochondrial membrane potential using DIOC6…………… 59 16. Assessment of intracellular reduced / oxidised glutathione levels……………59 17. Glutathione peroxidase assay… ………………………………………….… 62 18. Glutathione reductase assay……………………………………………… ….63 19. Assessment of telomerase activity using TRAP assay……………………… 64 20. Assessment of Cytochrome c oxidase activity……………………………… 65 21. Detection of hTERT gene expression by RT-PCR………………………… 66 22. Determination of protein expression by western blot analysis……………… 66 22.1. Buffers used for western blot analysis……………………………………….67 23. Isolation of mitochondrial and cytosolic fractions……………………………69 24. Isolation of nuclear and cytosolic fractions………………………………… .70 25. Measurements of protein concentration (Bradford Assay)………………… 70 26. Statistical analysis…………………………………………………………… 71 v RESULTS….…………….……….……………………………………… 72 1. hTERT AND ROS CAN CROSS REGULATE EACH OTHER … .72 1.1. hTERT expression and activity is regulated by H2O2 in a dose dependant manner…….……………………………………………………….…………72 1.2. hTERT localization can be modulated by exposure to ROS…………… .74 1.3. Transient hTERT overexpression can modulate intracellular ROS levels……………………………………………………….……………… 76 1.4. Transient hTERT overexpression resists the increase in intracellular ROS levels following treatment with H2O2………… .………………………… .79 1.5. Transient hTERT overexpression resists the increase in intracellular ROS induction following treatment with the ROS inducing compound C1……….82 1.6. Generation of stable hTERT overexpressing cells and verification of hTERT expression and activity in stable clones .84 1.7. Stable hTERT overexpression reduces basal intracellular ROS…………… 86 1.8. Stable hTERT overexpression blocks intracellular ROS induction following treatment with H2O2 or C1.…… .………………………….…….89 1.9. Stable hTERT overexpression alters hTERT expression and localization patterns……………………………………………………………………….92 2. UNRAVELING THE MECHANISMS BY WHICH hTERT EXPRESSION MODULATES INTRACELLULAR REDOX STATUS………………………………………………………………… 94 2.1. Assessment of critical antioxidant defences………………………………….94 2.1.1. Assessment of intracellular SOD and Catalase expression following hTERT overexpression………… …………………………………….….…95 2.1.2. Assessment of intracellular Peroxiredoxin and Thioredoxin levels following hTERT overexpression… .… ……… ……………….…………98 2.1.3. hTERT overexpression increases the rate of regeneration of Peroxiredoxins from the hyperoxidised forms ……………………….…100 2.1.4. hTERT overexpressing cells maintain a higher intracellular GSH/GSSG ratio following H2O2 treatment………………………………………… .…102 2.1.5. hTERT overexpressing cells maintain higher intracellular mitochondrial GSH levels following H2O2 treatment………………… 104 vi 2.1.6. hTERT overexpression results in earlier and sustained induction of GCLC levels following H2O2 treatment.……………………… ………… 106 2.1.7. hTERT overexpression results in differential regulation of Glutathione dependant enzymatic activities……….……………………………….… .107 2.2. hTERT overexpression results in improved mitochondrial function……….110 2.2.1. hTERT localizes to the mitochondria…………………………………….…110 2.2.2. hTERT expression increases Cytochrome c oxidase activity………………112 3. THE EFFECTS OF hTERT EXPRESSION IN AN ALTERNATIVE MODEL; SH-SY5Y CELLS ………………………………… ………….114 3.1. Studying the influence of hTERT expression in SH-SY5Y Cells …… .114 3.1.1. hTERT silencing in SH-SY5Y cells potentiate the increase in intracellular ROS levels following treatment with H2O2 ………………… .114 3.1.2. hTERT silencing reduces the rate of Peroxiredoxin regeneration from the hyperoxidised form in SH-SY5Y cells…………………………….……118 3.1.3. hTERT silencing results in reduced GSH/GSSG ratios in SH-SY5Y cells following H2O2 treatment .…………………………………………………118 4. hTERT EXPRESSION IMPAIRS ROS INDUCED CHANGES IN INTECELLULAR MILIEU AND PROTECTS FROM CELL DEATH…………………………………………… 120 4.1. Induction of cytosolic acidification by H2O2 and C1 is reduced in hTERT overexpressing Cells…………………………………………….….120 4.2. Mitochondrial Bax translocation and release of pro-apoptogenic factors is partially inhibited in hTERT overexpressing cells…… ………… .124 4.3. Dissipation of the mitochondrial membrane potential (m) is reduced in hTERT overexpressing cells… .…………………………………… .126 4.4. hTERT overexpression can protect cells from H2O2 induced cell death .130 4.5. hTERT overexpression can protect cells from C1 induced cell death…… .135 vii DISCUSSION…………………………………………………………….…138 1. THE USE OF DIFFERENT MODELS IN THIS STUDY…… .…138 1.1. The use of HeLa cell Line and the limitations in telomerase biology…… 138 1.2. The use of transient and stable transfection models in this study……… …139 1.3. The use of H2O2 and C1 as tools to investigate the relationship between hTERT and ROS and the different time points at which the investigations were performed.………………….………………………….………………141 2. ESTABLISHING THE RELATIONSHIP BETWEEN hTERT AND ROS………………………………………………………………… 142 2.1. ROS mediated suppression and nuclear export of hTERT can be antagonized by hTERT overexpression……… ……………………… ….142 2.2. hTERT expression significantly reduces basal intracellular ROS levels and antagonize the increase in cellular ROS levels in response to oxidative stress…………………………………………………………… .144 3. MECHANISMS THAT hTERT CAN EMPLOY TO MODULATE CELLULAR ROS LEVELS…………………………………………… 145 3.1. Cellular antioxidant defences…………………………………………… .146 3.2. hTERT expression can enhance the Glutathione antioxidant defences…….147 3.3. hTERT expression improves Peroxiredoxin regeneration…………… … .149 3.4. hTERT expression enhances mitochondrial antioxidant defences……… 150 3.5. How hTERT could modulate the antioxidant defences? .151 3.6. The role of hTERT at the mitochondria…………………………………….154 4. PHYSIOLOGICAL SIGNIFICANCE OF MODULATION OF CELLULAR REDOX BALANCE BY hTERT……………………… 156 4.1. hTERT expression creates an intracellular environment unfavourable for eliciting death triggers…………………………………… .……… .156 4.2. hTERT expression protects cells from apoptotic triggers………………… 158 viii 5. CONCLUDING REMARKS………………………………………… .…160 6. REFERENCES…………………………………………………………….164 7. APPENDIX……………………………………………………………… .182 ix Chou, W.C., Hawkins, A.L., Barrett, J.F., Griffin, C.A., and Dang, C.V. (2001). Arsenic inhibition of telomerase transcription leads to genetic instability. J Clin Invest 108, 1541-1547. Clement, M.V., Hirpara, J.L., and Pervaiz, S. (2003). Decrease in intracellular superoxide sensitizes Bcl-2-overexpressing tumour cells to receptor and drug-induced apoptosis independent of the mitochondria. Cell Death Differ 10, 1273-1285. Clement, M.V., and Pervaiz, S. (1999). Reactive oxygen intermediates regulate cellular response to apoptotic stimuli: an hypothesis. Free Radic Res 30, 247-252. Clement, M.V., Ponton, A., and Pervaiz, S. (1998). Apoptosis induced by hydrogen peroxide is mediated by decreased superoxide anion concentration and reduction of intracellular milieu. FEBS Lett 440, 13-18. Clement, M.V., and Stamenkovic, I. (1996). Superoxide anion is a natural inhibitor of FAS-mediated cell death. EMBO J 15, 216-225. Clerkin, J.S., Naughton, R., Quiney, C., and Cotter, T.G. (2008). Mechanisms of ROS modulated cell survival during carcinogenesis. Cancer Lett 266, 30-36. Cong, Y., and Shay, J.W. (2008). Actions of human telomerase beyond telomeres. Cell Res 18, 725-732. Cong, Y.S., Wright, W.E., and Shay, J.W. (2002). Human telomerase and its regulation. Microbiol Mol Biol Rev 66, 407-425, table of contents. Corey, D.R. (2002). Telomerase inhibition, oligonucleotides, and clinical trials. Oncogene 21, 631-637. Cory, S., and Adams, J.M. (2002). The Bcl2 family: regulators of the cellular life-ordeath switch. Nat Rev Cancer 2, 647-656. Costantini, P., Belzacq, A.S., Vieira, H.L., Larochette, N., de Pablo, M.A., Zamzami, N., Susin, S.A., Brenner, C., and Kroemer, G. (2000). Oxidation of a critical thiol residue of the adenine nucleotide translocator enforces Bcl-2-independent permeability transition pore opening and apoptosis. Oncogene 19, 307-314. Counter, C.M., Gupta, J., Harley, C.B., Leber, B., and Bacchetti, S. (1995). Telomerase activity in normal leukocytes and in hematologic malignancies. Blood 85, 2315-2320. Counter, C.M., Meyerson, M., Eaton, E.N., Ellisen, L.W., Caddle, S.D., Haber, D.A., and Weinberg, R.A. (1998). Telomerase activity is restored in human cells by ectopic expression of hTERT (hEST2), the catalytic subunit of telomerase. Oncogene 16, 1217-1222. Crompton, M. (1999). The mitochondrial permeability transition pore and its role in cell death. Biochem J 341 ( Pt 2), 233-249. Cuthbert, A.P., Bond, J., Trott, D.A., Gill, S., Broni, J., Marriott, A., Khoudoli, G., Parkinson, E.K., Cooper, C.S., and Newbold, R.F. (1999). Telomerase repressor sequences on chromosome and induction of permanent growth arrest in human breast cancer cells. J Natl Cancer Inst 91, 37-45. Dairkee, S.H., Nicolau, M., Sayeed, A., Champion, S., Ji, Y., Moore, D.H., Yong, B., Meng, Z., and Jeffrey, S.S. (2007). Oxidative stress pathways highlighted in tumour cell immortalization: association with breast cancer outcome. Oncogene 26, 62696279. 167 Dalerba, P., Guiducci, C., Poliani, P.L., Cifola, I., Parenza, M., Frattini, M., Gallino, G., Carnevali, I., Di Giulio, I., Andreola, S., et al. (2005). Reconstitution of human telomerase reverse transcriptase expression rescues colorectal carcinoma cells from in vitro senescence: evidence against immortality as a constitutive trait of tumour cells. Cancer Res 65, 2321-2329. Danial, N.N., and Korsmeyer, S.J. (2004). Cell death: critical control points. Cell 116, 205-219. De Giorgi, F., Lartigue, L., Bauer, M.K., Schubert, A., Grimm, S., Hanson, G.T., Remington, S.J., Youle, R.J., and Ichas, F. (2002). The permeability transition pore signals apoptosis by directing Bax translocation and multimerization. FASEB J 16, 607-609. Del Bufalo, D., Rizzo, A., Trisciuoglio, D., Cardinali, G., Torrisi, M.R., Zangemeister-Wittke, U., Zupi, G., and Biroccio, A. (2005). Involvement of hTERT in apoptosis induced by interference with Bcl-2 expression and function. Cell Death Differ 12, 1429-1438. Delhommeau, F., Thierry, A., Feneux, D., Lauret, E., Leclercq, E., Courtier, M.H., Sainteny, F., Vainchenker, W., and Bennaceur-Griscelli, A. (2002). Telomere dysfunction and telomerase reactivation in human leukemia cell lines after telomerase inhibition by the expression of a dominant-negative hTERT mutant. Oncogene 21, 8262-8271. Denu, J.M., and Tanner, K.G. (1998). Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 37, 5633-5642. Desagher, S., and Martinou, J.C. (2000). Mitochondria as the central control point of apoptosis. Trends Cell Biol 10, 369-377. Dessain, S.K., Yu, H., Reddel, R.R., Beijersbergen, R.L., and Weinberg, R.A. (2000). Methylation of the human telomerase gene CpG island. Cancer Res 60, 537-541. Ding, L., Li, L.L., Yang, J., Tao, Y.G., Ye, M., Shi, Y., Tang, M., Yi, W., Li, X.L., Gong, J.P., et al. (2005). Epstein-Barr virus encoded latent membrane protein modulates nuclear translocation of telomerase reverse transcriptase protein by activating nuclear factor-kappaB p65 in human nasopharyngeal carcinoma cells. Int J Biochem Cell Biol 37, 1881-1889. Dringen, R. (2000). Glutathione metabolism neurodegeneration. Eur J Biochem 267, 4903. and oxidative stress in Dudognon, C., Pendino, F., Hillion, J., Saumet, A., Lanotte, M., and SegalBendirdjian, E. (2004). Death receptor signaling regulatory function for telomerase: hTERT abolishes TRAIL-induced apoptosis, independently of telomere maintenance. Oncogene 23, 7469-7474. Dutu, T., Michiels, S., Fouret, P., Penault-Llorca, F., Validire, P., Benhamou, S., Taranchon, E., Morat, L., Grunenwald, D., Le Chevalier, T., et al. (2005). Differential expression of biomarkers in lung adenocarcinoma: a comparative study between smokers and never-smokers. Ann Oncol 16, 1906-1914. Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicol Pathol 35, 495-516. 168 Fang, Y.Z., Yang, S., and Wu, G. (2002). Free radicals, antioxidants, and nutrition. Nutrition 18, 872-879. Fesus, L., Davies, P.J., and Piacentini, M. (1991). Apoptosis: molecular mechanisms in programmed cell death. Eur J Cell Biol 56, 170-177. Filomeni, G., Rotilio, G., and Ciriolo, M.R. (2003). Glutathione disulfide induces apoptosis in U937 cells by a redox-mediated p38 MAP kinase pathway. FASEB J 17, 64-66. Finlay, C.A. (1992). p53 loss of function: implications for the processes of immortalization and tumourigenesis. Bioessays 14, 557-560. Folini, M., Colella, G., Villa, R., Lualdi, S., Daidone, M.G., and Zaffaroni, N. (2000). Inhibition of telomerase activity by a hammerhead ribozyme targeting the RNA component of telomerase in human melanoma cells. J Invest Dermatol 114, 259-267. Franzese, O., Adamo, R., Pollicita, M., Comandini, A., Laudisi, A., Perno, C.F., Aquaro, S., and Bonmassar, E. (2007). Telomerase activity, hTERT expression, and phosphorylation are downregulated in CD4(+) T lymphocytes infected with human immunodeficiency virus type (HIV-1). J Med Virol 79, 639-646. Freeman, B.A., and Crapo, J.D. (1982). Biology of disease: free radicals and tissue injury. Lab Invest 47, 412-426. Fridovich, I. (1975). Superoxide dismutases. Annu Rev Biochem 44, 147-159. Fridovich, I. (1978). The biology of oxygen radicals. Science 201, 875-880. Fridovich, I. (1995). Superoxide radical and superoxide dismutases. Annu Rev Biochem 64, 97-112. Fujioka, S., Niu, J., Schmidt, C., Sclabas, G.M., Peng, B., Uwagawa, T., Li, Z., Evans, D.B., Abbruzzese, J.L., and Chiao, P.J. (2004). NF-kappaB and AP-1 connection: mechanism of NF-kappaB-dependent regulation of AP-1 activity. Mol Cell Biol 24, 7806-7819. Gellert G.C., Shalmica R. J., Z.Dikmen , Woodring E. Wright, and Shay, J.W. (2005). Telomerase as a therapeutic target in cancer. Drug Discovery Today 2, 159 - 164. Gorbunova, V., Seluanov, A., and Pereira-Smith, O.M. (2002). Expression of human telomerase (hTERT) does not prevent stress-induced senescence in normal human fibroblasts but protects the cells from stress-induced apoptosis and necrosis. J Biol Chem 277, 38540-38549. Greider, C.W. (1991). Chromosome first aid. Cell 67, 645-647. Greider, C.W. (1996). Telomere length regulation. Annu Rev Biochem 65, 337-365. Gross, A., McDonnell, J.M., and Korsmeyer, S.J. (1999). BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13, 1899-1911. Haendeler, J., Drose, S., Buchner, N., Jakob, S., Altschmied, J., Goy, C., Spyridopoulos, I., Zeiher, A.M., Brandt, U., and Dimmeler, S. (2009). Mitochondrial telomerase reverse transcriptase binds to and protects mitochondrial DNA and function from damage. Arterioscler Thromb Vasc Biol 29, 929-935. Haendeler, J., Hoffmann, J., Brandes, R.P., Zeiher, A.M., and Dimmeler, S. (2003). Hydrogen peroxide triggers nuclear export of telomerase reverse transcriptase via Src 169 kinase family-dependent phosphorylation of tyrosine 707. Mol Cell Biol 23, 45984610. Haendeler, J., Hoffmann, J., Diehl, J.F., Vasa, M., Spyridopoulos, I., Zeiher, A.M., and Dimmeler, S. (2004). Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells. Circ Res 94, 768775. Halliwell, B., John M.C. Gutteridge (1999). Free Radicals in Biology and Medicine Third edn (New York, Oxford University Press). Hampton, M.B., and Orrenius, S. (1997). Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis. FEBS Lett 414, 552-556. Hayflick, L. (1973). The biology of human aging. Am J Med Sci 265, 432-445. Hayflick, L., and Moorhead, P.S. (1961). The serial cultivation of human diploid cell strains. Exp Cell Res 25, 585-621. Hemann, M.T., Strong, M.A., Hao, L.Y., and Greider, C.W. (2001). The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107, 67-77. Hengartner, M.O. (2000). The biochemistry of apoptosis. Nature 407, 770-776. Henle, E.S., Han, Z., Tang, N., Rai, P., Luo, Y., and Linn, S. (1999). Sequencespecific DNA cleavage by Fe2+-mediated fenton reactions has possible biological implications. J Biol Chem 274, 962-971. Henze, K., and Martin, W. (2003). Evolutionary biology: essence of mitochondria. Nature 426, 127-128. Hirpara, J.L., Clement, M.V., and Pervaiz, S. (2001). Intracellular acidification triggered by mitochondrial-derived hydrogen peroxide is an effector mechanism for drug-induced apoptosis in tumour cells. J Biol Chem 276, 514-521. Hiyama, K., Hirai, Y., Kyoizumi, S., Akiyama, M., Hiyama, E., Piatyszek, M.A., Shay, J.W., Ishioka, S., and Yamakido, M. (1995). Activation of telomerase in human lymphocytes and hematopoietic progenitor cells. J Immunol 155, 3711-3715. Hofmann, B., Hecht, H.J., and Flohe, L. (2002). Peroxiredoxins. Biol Chem 383, 347364. Holmgren, A. (2000). Antioxidant function of thioredoxin and glutaredoxin systems. Antioxid Redox Signal 2, 811-820. Holmgren, A., and Bjornstedt, M. (1995). Thioredoxin and thioredoxin reductase. Methods Enzymol 252, 199-208. Huang, C.S., Chang, L.S., Anderson, M.E., and Meister, A. (1993). Catalytic and regulatory properties of the heavy subunit of rat kidney gamma-glutamylcysteine synthetase. J Biol Chem 268, 19675-19680. Huang, H.L., Fang, L.W., Lu, S.P., Chou, C.K., Luh, T.Y., and Lai, M.Z. (2003). DNA-damaging reagents induce apoptosis through reactive oxygen species-dependent Fas aggregation. Oncogene 22, 8168-8177. Huang, J.J., Lin, M.C., Bai, Y.X., Jing, D.D., Wong, B.C., Han, S.W., Lin, J., Xu, B., Huang, C.F., and Kung, H.F. (2002). Ectopic expression of a COOH-terminal fragment of the human telomerase reverse transcriptase leads to telomere dysfunction 170 and reduction of growth and tumourigenicity in HeLa cells. Cancer Res 62, 32263232. Imlay, J.A. (2008). Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77, 755-776. Inoue, M., Sato, E.F., Nishikawa, M., Park, A.M., Kira, Y., Imada, I., and Utsumi, K. (2003). Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr Med Chem 10, 2495-2505. Izeradjene, K., Douglas, L., Tillman, D.M., Delaney, A.B., and Houghton, J.A. (2005). Reactive oxygen species regulate caspase activation in tumour necrosis factorrelated apoptosis-inducing ligand-resistant human colon carcinoma cell lines. Cancer Res 65, 7436-7445. Jacob, C., Holme, A.L., and Fry, F.H. (2004). The sulfinic acid switch in proteins. Org Biomol Chem 2, 1953-1956. Jakob, S., Schroeder, P., Lukosz, M., Buchner, N., Spyridopoulos, I., Altschmied, J., and Haendeler, J. (2008). Nuclear protein tyrosine phosphatase Shp-2 is one important negative regulator of nuclear export of telomerase reverse transcriptase. J Biol Chem 283, 33155-33161. Jang, J.H., and Surh, Y.J. (2004). Bcl-2 attenuation of oxidative cell death is associated with up-regulation of gamma-glutamylcysteine ligase via constitutive NFkappaB activation. J Biol Chem 279, 38779-38786. Jones, D.P. (2002). Redox potential of GSH/GSSG couple: assay and biological significance. Methods Enzymol 348, 93-112. Jonsson, T.J., and Lowther, W.T. (2007). The peroxiredoxin repair proteins. Subcell Biochem 44, 115-141. Joza, N., Susin, S.A., Daugas, E., Stanford, W.L., Cho, S.K., Li, C.Y., Sasaki, T., Elia, A.J., Cheng, H.Y., Ravagnan, L., et al. (2001). Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410, 549554. Kakkar, P., and Singh, B.K. (2007). Mitochondria: a hub of redox activities and cellular distress control. Mol Cell Biochem 305, 235-253. Kampkotter, A., Pielarski, T., Rohrig, R., Timpel, C., Chovolou, Y., Watjen, W., and Kahl, R. (2007). The Ginkgo biloba extract EGb761 reduces stress sensitivity, ROS accumulation and expression of catalase and glutathione S-transferase in Caenorhabditis elegans. Pharmacol Res 55, 139-147. Kang, S.S., Kwon, T., Kwon, D.Y., and Do, S.I. (1999). Akt protein kinase enhances human telomerase activity through phosphorylation of telomerase reverse transcriptase subunit. J Biol Chem 274, 13085-13090. Kellogg, E.W., 3rd, and Fridovich, I. (1975). Superoxide, hydrogen peroxide, and singlet oxygen in lipid peroxidation by a xanthine oxidase system. J Biol Chem 250, 8812-8817. Kerr, J.F., Wyllie, A.H., and Currie, A.R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26, 239257. 171 Kim, K.S., Kang, K.W., Seu, Y.B., Baek, S.H., and Kim, J.R. (2009). Interferongamma induces cellular senescence through p53-dependent DNA damage signaling in human endothelial cells. Mech Ageing Dev 130, 179-188. Kimura, A., Ohmichi, M., Kawagoe, J., Kyo, S., Mabuchi, S., Takahashi, T., Ohshima, C., Arimoto-Ishida, E., Nishio, Y., Inoue, M., et al. (2004). Induction of hTERT expression and phosphorylation by estrogen via Akt cascade in human ovarian cancer cell lines. Oncogene 23, 4505-4515. Klingelhutz, A.J., Foster, S.A., and McDougall, J.K. (1996). Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 380, 79-82. Kobayashi, Y., Maniki, M., and Nakamura, K. (1996). Cationic chlorophyl derivatives with SOD mimicking activity suppress the proliferation of human ovarian cancer cells. Cancer Biother Radiopharm 11, 197-202. Kondo, Y., Kondo, S., Tanaka, Y., Haqqi, T., Barna, B.P., and Cowell, J.K. (1998). Inhibition of telomerase increases the susceptibility of human malignant glioblastoma cells to cisplatin-induced apoptosis. Oncogene 16, 2243-2248. Kong, Q., Beel, J.A., and Lillehei, K.O. (2000). A threshold concept for cancer therapy. Med Hypotheses 55, 29-35. Kong, Q., and Lillehei, K.O. (1998). Antioxidant inhibitors for cancer therapy. Med Hypotheses 51, 405-409. Kowaltowski, A.J., and Fiskum, G. (2005). Redox mechanisms of cytoprotection by Bcl-2. Antioxid Redox Signal 7, 508-514. Kraemer, K., Fuessel, S., Schmidt, U., Kotzsch, M., Schwenzer, B., Wirth, M.P., and Meye, A. (2003). Antisense-mediated hTERT inhibition specifically reduces the growth of human bladder cancer cells. Clin Cancer Res 9, 3794-3800. Kroemer, G., Galluzzi, L., and Brenner, C. (2007). Mitochondrial membrane permeabilization in cell death. Physiol Rev 87, 99-163. Kroemer, G., Galluzzi, L., Vandenabeele, P., Abrams, J., Alnemri, E.S., Baehrecke, E.H., Blagosklonny, M.V., El-Deiry, W.S., Golstein, P., Green, D.R., et al. (2009). Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16, 3-11. Kumar, A.P., Chang, M.K., Fliegel, L., Pervaiz, S., and Clement, M.V. (2007). Oxidative repression of NHE1 gene expression involves iron-mediated caspase activity. Cell Death Differ 14, 1733-1746. Kurvinen, K., Syrjanen, S., and Johansson, B. (2006). Long-term suppression of telomerase expression in HeLa cell clones, transfected with an expression vector carrying siRNA targeting hTERT mRNA. Int J Oncol 29, 279-288. Kyo, S., Takakura, M., Kanaya, T., Zhuo, W., Fujimoto, K., Nishio, Y., Orimo, A., and Inoue, M. (1999). Estrogen activates telomerase. Cancer Res 59, 5917-5921. Kyo, S., Takakura, M., Taira, T., Kanaya, T., Itoh, H., Yutsudo, M., Ariga, H., and Inoue, M. (2000). Sp1 cooperates with c-Myc to activate transcription of the human telomerase reverse transcriptase gene (hTERT). Nucleic Acids Res 28, 669-677. LaBelle, E.F., Singh, S.V., Srivastava, S.K., and Awasthi, Y.C. (1986). Evidence for different transport systems for oxidized glutathione and S-dinitrophenyl glutathione in human erythrocytes. Biochem Biophys Res Commun 139, 538-544. 172 Lebel, R., McDuff, F.O., Lavigne, P., and Grandbois, M. (2007). Direct visualization of the binding of c-Myc/Max heterodimeric b-HLH-LZ to E-box sequences on the hTERT promoter. Biochemistry 46, 10279-10286. Lee, J., Sung, Y.H., Cheong, C., Choi, Y.S., Jeon, H.K., Sun, W., Hahn, W.C., Ishikawa, F., and Lee, H.W. (2008). TERT promotes cellular and organismal survival independently of telomerase activity. Oncogene 27, 3754-3760. Lee, M.K., Hande, M.P., and Sabapathy, K. (2005). Ectopic mTERT expression in mouse embryonic stem cells does not affect differentiation but confers resistance to differentiation- and stress-induced p53-dependent apoptosis. J Cell Sci 118, 819-829. Lee, Y.J., Lee, K.H., Kim, H.R., Jessup, J.M., Seol, D.W., Kim, T.H., Billiar, T.R., and Song, Y.K. (2001). Sodium nitroprusside enhances TRAIL-induced apoptosis via a mitochondria-dependent pathway in human colorectal carcinoma CX-1 cells. Oncogene 20, 1476-1485. LeGrand, T.S., and Aw, T.Y. (1998). Chronic hypoxia alters glucose utilization during GSH-dependent detoxication in rat small intestine. Am J Physiol 274, G376384. Leung, J.K., and Pereira-Smith, O.M. (2001). Identification of genes involved in cell senescence and immortalization: potential implications for tissue ageing. Novartis Found Symp 235, 105-110; discussion 110-105; 146-109. Levine, B., and Klionsky, D.J. (2004). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6, 463-477. Levine, B., and Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell 132, 27-42. Levine, M., and Tjian, R. (2003). Transcription regulation and animal diversity. Nature 424, 147-151. Li, H., Cao, Y., Berndt, M.C., Funder, J.W., and Liu, J.P. (1999). Molecular interactions between telomerase and the tumour suppressor protein p53 in vitro. Oncogene 18, 6785-6794. Li, H., Zhao, L.L., Funder, J.W., and Liu, J.P. (1997). Protein phosphatase 2A inhibits nuclear telomerase activity in human breast cancer cells. J Biol Chem 272, 1672916732. Linnane, A.W., Kios, M., and Vitetta, L. (2007). Healthy aging: regulation of the metabolome by cellular redox modulation and prooxidant signaling systems: the essential roles of superoxide anion and hydrogen peroxide. Biogerontology 8, 445467. Liu, K., Hodes, R.J., and Weng, N. (2001). Cutting edge: telomerase activation in human T lymphocytes does not require increase in telomerase reverse transcriptase (hTERT) protein but is associated with hTERT phosphorylation and nuclear translocation. J Immunol 166, 4826-4830. Lockshin, R.A., and Zakeri, Z. (2004). Apoptosis, autophagy, and more. Int J Biochem Cell Biol 36, 2405-2419. Lopez-Lazaro, M. (2008). The warburg effect: why and how cancer cells activate glycolysis in the presence of oxygen? Anticancer Agents Med Chem 8, 305-312. 173 Lorenz, M., Saretzki, G., Sitte, N., Metzkow, S., and von Zglinicki, T. (2001). BJ fibroblasts display high antioxidant capacity and slow telomere shortening independent of hTERT transfection. Free Radic Biol Med 31, 824-831. Maiorino, M., Aumann, K.D., Brigelius-Flohe, R., Doria, D., van den Heuvel, J., McCarthy, J., Roveri, A., Ursini, F., and Flohe, L. (1995). Probing the presumed catalytic triad of selenium-containing peroxidases by mutational analysis of phospholipid hydroperoxide glutathione peroxidase (PHGPx). Biol Chem Hoppe Seyler 376, 651-660. Marzo, I., Brenner, C., Zamzami, N., Jurgensmeier, J.M., Susin, S.A., Vieira, H.L., Prevost, M.C., Xie, Z., Matsuyama, S., Reed, J.C., et al. (1998). Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281, 2027-2031. Massard, C., Zermati, Y., Pauleau, A.L., Larochette, N., Metivier, D., Sabatier, L., Kroemer, G., and Soria, J.C. (2006). hTERT: a novel endogenous inhibitor of the mitochondrial cell death pathway. Oncogene 25, 4505-4514. Masutomi, K., Possemato, R., Wong, J.M., Currier, J.L., Tothova, Z., Manola, J.B., Ganesan, S., Lansdorp, P.M., Collins, K., and Hahn, W.C. (2005). The telomerase reverse transcriptase regulates chromatin state and DNA damage responses. Proc Natl Acad Sci U S A 102, 8222-8227. Matoba, S., Kang, J.G., Patino, W.D., Wragg, A., Boehm, M., Gavrilova, O., Hurley, P.J., Bunz, F., and Hwang, P.M. (2006). p53 regulates mitochondrial respiration. Science 312, 1650-1653. McCord, J.M., and Fridovich, I. (1969a). Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244, 6049-6055. McCord, J.M., and Fridovich, I. (1969b). The utility of superoxide dismutase in studying free radical reactions. I. Radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygen. J Biol Chem 244, 6056-6063. Meister, A. (1988a). Glutathione metabolism and its selective modification. J Biol Chem 263, 17205-17208. Meister, A. (1988b). On the discovery of glutathione. Trends Biochem Sci 13, 185188. Meister, A., and Anderson, M.E. (1983). Glutathione. Annu Rev Biochem 52, 711760. Minamino, T., Mitsialis, S.A., and Kourembanas, S. (2001). Hypoxia extends the life span of vascular smooth muscle cells through telomerase activation. Mol Cell Biol 21, 3336-3342. Misawa, M., Tauchi, T., Sashida, G., Nakajima, A., Abe, K., Ohyashiki, J.H., and Ohyashiki, K. (2002). Inhibition of human telomerase enhances the effect of chemotherapeutic agents in lung cancer cells. Int J Oncol 21, 1087-1092. Mitchell, J.R., Wood, E., and Collins, K. (1999). A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402, 551-555. Mitchell, P., and Moyle, J. (1965a). Evidence discriminating between the chemical and the chemiosmotic mechanisms of electron transport phosphorylation. Nature 208, 1205-1206. 174 Mitchell, P., and Moyle, J. (1965b). Stoichiometry of proton translocation through the respiratory chain and adenosine triphosphatase systems of rat liver mitochondria. Nature 208, 147-151. Mondello, C., Bottone, M.G., Noriki, S., Soldani, C., Pellicciari, C., and Scovassi, A.I. (2006). Oxidative stress response in telomerase-immortalized fibroblasts from a centenarian. Ann N Y Acad Sci 1091, 94-101. Moreno-Sanchez, R., Rodriguez-Enriquez, S., Saavedra, E., Marin-Hernandez, A., and Gallardo-Perez, J.C. (2009). The bioenergetics of cancer: is glycolysis the main ATP supplier in all tumour cells? Biofactors 35, 209-225. Nakayama, Y., Sakamoto, H., Satoh, K., and Yamamoto, T. (2000). Tamoxifen and gonadal steroids inhibit colon cancer growth in association with inhibition of thymidylate synthase, survivin and telomerase expression through estrogen receptor beta mediated system. Cancer Lett 161, 63-71. Natarajan, S., Chen, Z., Wancewicz, E.V., Monia, B.P., and Corey, D.R. (2004). Telomerase reverse transcriptase (hTERT) mRNA and telomerase RNA (hTR) as targets for downregulation of telomerase activity. Oligonucleotides 14, 263-273. Neidle, S., and Parkinson, G. (2002). Telomere maintenance as a target for anticancer drug discovery. Nat Rev Drug Discov 1, 383-393. Neubert, D., Wojtczak, A.B., and Lehninger, A.L. (1962). Purification and enzymatic identity of mitochondrial contraction-factors I and II. Proc Natl Acad Sci U S A 48, 1651-1658. Nijtmans, L.G., Taanman, J.W., Muijsers, A.O., Speijer, D., and Van den Bogert, C. (1998). Assembly of cytochrome-c oxidase in cultured human cells. Eur J Biochem 254, 389-394. Nishimoto, A., Miura, N., Horikawa, I., Kugoh, H., Murakami, Y., Hirohashi, S., Kawasaki, H., Gazdar, A.F., Shay, J.W., Barrett, J.C., et al. (2001). Functional evidence for a telomerase repressor gene on human chromosome 10p15.1. Oncogene 20, 828-835. Nordberg, J., and Arner, E.S. (2001). Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31, 1287-1312. Oberley, L.W., and Buettner, G.R. (1979). Role of superoxide dismutase in cancer: a review. Cancer Res 39, 1141-1149. Oh, S.T., Kyo, S., and Laimins, L.A. (2001). Telomerase activation by human papillomavirus type 16 E6 protein: induction of human telomerase reverse transcriptase expression through Myc and GC-rich Sp1 binding sites. J Virol 75, 5559-5566. Oikawa, S., and Kawanishi, S. (1999). Site-specific DNA damage at GGG sequence by oxidative stress may accelerate telomere shortening. FEBS Lett 453, 365-368. Orrenius, S. (2007). Reactive oxygen species in mitochondria-mediated cell death. Drug Metab Rev 39, 443-455. Orrenius, S., Gogvadze, V., and Zhivotovsky, B. (2007). Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol 47, 143-183. 175 Ouellette, M.M., Liao, M., Herbert, B.S., Johnson, M., Holt, S.E., Liss, H.S., Shay, J.W., and Wright, W.E. (2000). Subsenescent telomere lengths in fibroblasts immortalized by limiting amounts of telomerase. J Biol Chem 275, 10072-10076. Packer, L., and Fuehr, K. (1977). Low oxygen concentration extends the lifespan of cultured human diploid cells. Nature 267, 423-425. Padgett, C.M., and Whorton, A.R. (1995). Regulation of cellular thiol redox status by nitric oxide. Cell Biochem Biophys 27, 157-177. Pai, E.F., and Schulz, G.E. (1983). The catalytic mechanism of glutathione reductase as derived from x-ray diffraction analyses of reaction intermediates. J Biol Chem 258, 1752-1757. Papa, S., and Skulachev, V.P. (1997). Reactive oxygen species, mitochondria, apoptosis and aging. Mol Cell Biochem 174, 305-319. Park, W.C., Liu, H., Macgregor Schafer, J., and Jordan, V.C. (2005). Deregulation of estrogen induced telomerase activity in tamoxifen-resistant breast cancer cells. Int J Oncol 27, 1459-1466. Parrinello, S., Samper, E., Krtolica, A., Goldstein, J., Melov, S., and Campisi, J. (2003). Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 5, 741-747. Passos, J.F., Saretzki, G., and von Zglinicki, T. (2007). DNA damage in telomeres and mitochondria during cellular senescence: is there a connection? Nucleic Acids Res 35, 7505-7513. Passos, J.F., von Zglinicki, T., and Saretzki, G. (2006). Mitochondrial dysfunction and cell senescence: cause or consequence? Rejuvenation Res 9, 64-68. Pelicano, H., Carney, D., and Huang, P. (2004). ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 7, 97-110. Pervaiz, S., Cao, J., Chao, O.S., Chin, Y.Y., and Clement, M.V. (2001). Activation of the RacGTPase inhibits apoptosis in human tumour cells. Oncogene 20, 6263-6268. Pervaiz, S., Ramalingam, J.K., Hirpara, J.L., and Clement, M.V. (1999a). Superoxide anion inhibits drug-induced tumour cell death. FEBS Lett 459, 343-348. Pervaiz, S., Seyed, M.A., Hirpara, J.L., Clement, M.V., and Loh, K.W. (1999b). Purified photoproducts of merocyanine 540 trigger cytochrome C release and caspase 8-dependent apoptosis in human leukemia and melanoma cells. Blood 93, 4096-4108. Pias, E.K., and Aw, T.Y. (2002). Apoptosis in mitotic competent undifferentiated cells is induced by cellular redox imbalance independent of reactive oxygen species production. FASEB J 16, 781-790. Plymate, S.R., Haugk, K.H., Sprenger, C.C., Nelson, P.S., Tennant, M.K., Zhang, Y., Oberley, L.W., Zhong, W., Drivdahl, R., and Oberley, T.D. (2003). Increased manganese superoxide dismutase (SOD-2) is part of the mechanism for prostate tumour suppression by Mac25/insulin-like growth factor binding-protein-related protein-1. Oncogene 22, 1024-1034. Poole, J.C., Andrews, L.G., and Tollefsbol, T.O. (2001). Activity, function, and gene regulation of the catalytic subunit of telomerase (hTERT). Gene 269, 1-12. 176 Powis, G., and Montfort, W.R. (2001). Properties and biological activities of thioredoxins. Annu Rev Biophys Biomol Struct 30, 421-455. Rassoulzadegan, M., Naghashfar, Z., Cowie, A., Carr, A., Grisoni, M., Kamen, R., and Cuzin, F. (1983). Expression of the large T protein of polyoma virus promotes the establishment in culture of "normal" rodent fibroblast cell lines. Proc Natl Acad Sci U S A 80, 4354-4358. Reed, J.C. (2002). Apoptosis-based therapies. Nat Rev Drug Discov 1, 111-121. Reid, T.J., 3rd, Murthy, M.R., Sicignano, A., Tanaka, N., Musick, W.D., and Rossmann, M.G. (1981). Structure and heme environment of beef liver catalase at 2.5 A resolution. Proc Natl Acad Sci U S A 78, 4767-4771. Rhee, S.G., Chae, H.Z., and Kim, K. (2005a). Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med 38, 1543-1552. Rhee, S.G., Kang, S.W., Chang, T.S., Jeong, W., and Kim, K. (2001). Peroxiredoxin, a novel family of peroxidases. IUBMB Life 52, 35-41. Rhee, S.G., Kang, S.W., Netto, L.E., Seo, M.S., and Stadtman, E.R. (1999). A family of novel peroxidases, peroxiredoxins. Biofactors 10, 207-209. Rhee, S.G., Yang, K.S., Kang, S.W., Woo, H.A., and Chang, T.S. (2005b). Controlled elimination of intracellular H(2)O(2): regulation of peroxiredoxin, catalase, and glutathione peroxidase via post-translational modification. Antioxid Redox Signal 7, 619-626. Richter T, Z.T. (2007). A continuous correlation between oxidative stress and telomere shortening in fibroblasts. Exp Gerontol 42, 1039-1042. Robinson, K.M., Janes, M.S., Pehar, M., Monette, J.S., Ross, M.F., Hagen, T.M., Murphy, M.P., and Beckman, J.S. (2006). Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc Natl Acad Sci U S A 103, 15038-15043. Rohde, V., Sattler, H.P., Bund, T., Bonkhoff, H., Fixemer, T., Bachmann, C., Lensch, R., Unteregger, G., Stoeckle, M., and Wullich, B. (2000). Expression of the human telomerase reverse transcriptase is not related to telomerase activity in normal and malignant renal tissue. Clin Cancer Res 6, 4803-4809. Ross, M.F., Kelso, G.F., Blaikie, F.H., James, A.M., Cocheme, H.M., Filipovska, A., Da Ros, T., Hurd, T.R., Smith, R.A., and Murphy, M.P. (2005). Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochemistry (Mosc) 70, 222-230. Rudin, C.M., and Thompson, C.B. (1997). Apoptosis and disease: regulation and clinical relevance of programmed cell death. Annu Rev Med 48, 267-281. Santos, J.H., Meyer, J.N., Skorvaga, M., Annab, L.A., and Van Houten, B. (2004). Mitochondrial hTERT exacerbates free-radical-mediated mtDNA damage. Aging Cell 3, 399-411. Santos, J.H., Meyer, J.N., and Van Houten, B. (2006). Mitochondrial localization of telomerase as a determinant for hydrogen peroxide-induced mitochondrial DNA damage and apoptosis. Hum Mol Genet 15, 1757-1768. 177 Saretzki, G., Murphy, M.P., and von Zglinicki, T. (2003). MitoQ counteracts telomere shortening and elongates lifespan of fibroblasts under mild oxidative stress. Aging Cell 2, 141-143. Satra, M., Tsougos, I., Papanikolaou, V., Theodorou, K., Kappas, C., and Tsezou, A. (2006). Correlation between radiation-induced telomerase activity and human telomerase reverse transcriptase mRNA expression in HeLa cells. Int J Radiat Biol 82, 401-409. Schafer, F.Q., and Buettner, G.R. (2001). Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30, 1191-1212. Schmidt, K.N., Amstad, P., Cerutti, P., and Baeuerle, P.A. (1995). The roles of hydrogen peroxide and superoxide as messengers in the activation of transcription factor NF-kappa B. Chem Biol 2, 13-22. Schultz, D.R., and Harrington, W.J., Jr. (2003). Apoptosis: programmed cell death at a molecular level. Semin Arthritis Rheum 32, 345-369. Sen, C.K., Rahkila, P., and Hanninen, O. (1993). Glutathione metabolism in skeletal muscle derived cells of the L6 line. Acta Physiol Scand 148, 21-26. Seo, M.S., Kang, S.W., Kim, K., Baines, I.C., Lee, T.H., and Rhee, S.G. (2000). Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate. J Biol Chem 275, 20346-20354. Serra, V., von Zglinicki, T., Lorenz, M., and Saretzki, G. (2003). Extracellular superoxide dismutase is a major antioxidant in human fibroblasts and slows telomere shortening. J Biol Chem 278, 6824-6830. Shats, I., Milyavsky, M., Tang, X., Stambolsky, P., Erez, N., Brosh, R., Kogan, I., Braunstein, I., Tzukerman, M., Ginsberg, D., et al. (2004). p53-dependent downregulation of telomerase is mediated by p21waf1. J Biol Chem 279, 50976-50985. Shay, J.W. (2003). Telomerase therapeutics: telomeres recognized as a DNA damage signal: commentary re: K. Kraemer et al., antisense-mediated hTERT inhibition specifically reduces the growth of human bladder cancer cells. Clin. Cancer Res., 9: 3794-3800, 2003. Clin Cancer Res 9, 3521-3525. Shay, J.W., Pereira-Smith, O.M., and Wright, W.E. (1991a). A role for both RB and p53 in the regulation of human cellular senescence. Exp Cell Res 196, 33-39. Shay, J.W., Van Der Haegen, B.A., Ying, Y., and Wright, W.E. (1993). The frequency of immortalization of human fibroblasts and mammary epithelial cells transfected with SV40 large T-antigen. Exp Cell Res 209, 45-52. Shay, J.W., and Wright, W.E. (2000). The use of telomerized cells for tissue engineering. Nat Biotechnol 18, 22-23. Shay, J.W., Wright, W.E., and Werbin, H. (1991b). Defining the molecular mechanisms of human cell immortalization. Biochim Biophys Acta 1072, 1-7. Skulachev, V.P. (1997). Membrane-linked systems preventing superoxide formation. Biosci Rep 17, 347-366. Skulachev, V.P. (1998). Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett 423, 275-280. 178 Slee, E.A., Harte, M.T., Kluck, R.M., Wolf, B.B., Casiano, C.A., Newmeyer, D.D., Wang, H.G., Reed, J.C., Nicholson, D.W., Alnemri, E.S., et al. (1999). Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, 7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol 144, 281-292. Soriano, F.X., Baxter, P., Murray, L.M., Sporn, M.B., Gillingwater, T.H., and Hardingham, G.E. (2009). Transcriptional regulation of the AP-1 and Nrf2 target gene sulfiredoxin. Mol Cells 27, 279-282. Srivastava, S.K., and Beutler, E. (1969). The transport of oxidized glutathione from human erythrocytes. J Biol Chem 244, 9-16. Storey, K.B. (1996). Oxidative stress: animal adaptations in nature. Braz J Med Biol Res 29, 1715-1733. Sung, Y.H., Choi, Y.S., Cheong, C., and Lee, H.W. (2005). The pleiotropy of telomerase against cell death. Mol Cells 19, 303-309. Takakura, M., Kyo, S., Inoue, M., Wright, W.E., and Shay, J.W. (2005). Function of AP-1 in transcription of the telomerase reverse transcriptase gene (TERT) in human and mouse cells. Mol Cell Biol 25, 8037-8043. Tetich, M., Kutner, A., Leskiewicz, M., Budziszewska, B., and Lason, W. (2004). Neuroprotective effects of (24R)-1,24-dihydroxycholecalciferol in human neuroblastoma SH-SY5Y cell line. J Steroid Biochem Mol Biol 89-90, 365-370. Timbrell, J.A. (2008). Principles of Biochemical Toxicology, Fourth edn (Informa Healthcare). Toussaint, O., Medrano, E.E., and von Zglinicki, T. (2000). Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol 35, 927-945. Trachootham, D., Alexandre, J., and Huang, P. (2009). Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8, 579-591. Tzukerman, M., Selig, S., and Skorecki, K. (2002). Telomeres and telomerase in human health and disease. J Pediatr Endocrinol Metab 15, 229-240. Ulaner, G.A., Hu, J.F., Vu, T.H., Oruganti, H., Giudice, L.C., and Hoffman, A.R. (2000). Regulation of telomerase by alternate splicing of human telomerase reverse transcriptase (hTERT) in normal and neoplastic ovary, endometrium and myometrium. Int J Cancer 85, 330-335. Umei, T., Babior, B.M., Curnutte, J.T., and Smith, R.M. (1991). Identification of the NADPH-binding subunit of the respiratory burst oxidase. J Biol Chem 266, 60196022. Vega, L.R., Mateyak, M.K., and Zakian, V.A. (2003). Getting to the end: telomerase access in yeast and humans. Nat Rev Mol Cell Biol 4, 948-959. Veldman, T., Horikawa, I., Barrett, J.C., and Schlegel, R. (2001). Transcriptional activation of the telomerase hTERT gene by human papillomavirus type 16 E6 oncoprotein. J Virol 75, 4467-4472. von Zglinicki, T., Saretzki, G., Docke, W., and Lotze, C. (1995). Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp Cell Res 220, 186-193. 179 Vyssokikh, M.Y., Zorova, L., Zorov, D., Heimlich, G., Jurgensmeier, J.J., and Brdiczka, D. (2002). Bax releases cytochrome c preferentially from a complex between porin and adenine nucleotide translocator. Hexokinase activity suppresses this effect. Mol Biol Rep 29, 93-96. Wang, W., Sun, F., An, Y., Ai, H., Zhang, L., Huang, W., and Li, L. (2009). Morroniside protects human neuroblastoma SH-SY5Y cells against hydrogen peroxide-induced cytotoxicity. Eur J Pharmacol 613, 19-23. Wei, Q., Jiang, H., Matthews, C.P., and Colburn, N.H. (2008). Sulfiredoxin is an AP1 target gene that is required for transformation and shows elevated expression in human skin malignancies. Proc Natl Acad Sci U S A 105, 19738-19743. Wong-Riley, M.T. (1989). Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci 12, 94-101. Woo, H.A., Chae, H.Z., Hwang, S.C., Yang, K.S., Kang, S.W., Kim, K., and Rhee, S.G. (2003a). Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science 300, 653-656. Woo, H.A., Kang, S.W., Kim, H.K., Yang, K.S., Chae, H.Z., and Rhee, S.G. (2003b). Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid. Immunoblot detection with antibodies specific for the hyperoxidized cysteinecontaining sequence. J Biol Chem 278, 47361-47364. Woo, S.H., Park, I.C., Park, M.J., An, S., Lee, H.C., Jin, H.O., Park, S.A., Cho, H., Lee, S.J., Gwak, H.S., et al. (2004). Arsenic trioxide sensitizes CD95/Fas-induced apoptosis through ROS-mediated upregulation of CD95/Fas by NF-kappaB activation. Int J Cancer 112, 596-606. Wood, Z.A., Poole, L.B., and Karplus, P.A. (2003a). Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300, 650-653. Wood, Z.A., Schroder, E., Robin Harris, J., and Poole, L.B. (2003b). Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28, 32-40. Wright, W.E., Pereira-Smith, O.M., and Shay, J.W. (1989). Reversible cellular senescence: implications for immortalization of normal human diploid fibroblasts. Mol Cell Biol 9, 3088-3092. Wu, Y.L., Dudognon, C., Nguyen, E., Hillion, J., Pendino, F., Tarkanyi, I., Aradi, J., Lanotte, M., Tong, J.H., Chen, G.Q., et al. (2006). Immunodetection of human telomerase reverse-transcriptase (hTERT) re-appraised: nucleolin and telomerase cross paths. J Cell Sci 119, 2797-2806. Xu, D., Dwyer, J., Li, H., Duan, W., and Liu, J.P. (2008). Ets2 maintains hTERT gene expression and breast cancer cell proliferation by interacting with c-Myc. J Biol Chem 283, 23567-23580. Yang, E., Zha, J., Jockel, J., Boise, L.H., Thompson, C.B., and Korsmeyer, S.J. (1995). Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80, 285-291. Yasumoto, S., Kunimura, C., Kikuchi, K., Tahara, H., Ohji, H., Yamamoto, H., Ide, T., and Utakoji, T. (1996). Telomerase activity in normal human epithelial cells. Oncogene 13, 433-439. 180 Yeo, M., Rha, S.Y., Jeung, H.C., Hu, S.X., Yang, S.H., Kim, Y.S., An, S.W., and Chung, H.C. (2005). Attenuation of telomerase activity by hammerhead ribozyme targeting human telomerase RNA induces growth retardation and apoptosis in human breast tumour cells. Int J Cancer 114, 484-489. Zacks, M.A., Wen, J.J., Vyatkina, G., Bhatia, V., and Garg, N. (2005). An overview of chagasic cardiomyopathy: pathogenic importance of oxidative stress. An Acad Bras Cienc 77, 695-715. Zhang, N., Hartig, H., Dzhagalov, I., Draper, D., and He, Y.W. (2005). The role of apoptosis in the development and function of T lymphocytes. Cell Res 15, 749-769. Zhang, Y., Zhao, W., Zhang, H.J., Domann, F.E., and Oberley, L.W. (2002). Overexpression of copper zinc superoxide dismutase suppresses human glioma cell growth. Cancer Res 62, 1205-1212. Zhao, Y., Sfeir, A.J., Zou, Y., Buseman, C.M., Chow, T.T., Shay, J.W., and Wright, W.E. (2009). Telomere extension occurs at most chromosome ends and is uncoupled from fill-in in human cancer cells. Cell 138, 463-475. Zong, W.X., and Thompson, C.B. (2006). Necrotic death as a cell fate. Genes Dev 20, 1-15. Zornig, M., Hueber, A., Baum, W., and Evan, G. (2001). Apoptosis regulators and their role in tumourigenesis. Biochim Biophys Acta 1551, F1-37. Zorov, D.B., Bannikova, S.Y., Belousov, V.V., Vyssokikh, M.Y., Zorova, L.D., Isaev, N.K., Krasnikov, B.F., and Plotnikov, E.Y. (2005). Reactive oxygen and nitrogen species: friends or foes? Biochemistry (Mosc) 70, 215-221. 181 APPENDIX PUBLICATIONS Inthrani R. Indran, Manoor P. Hande, Shazib Pervaiz. Tumour Cell Redox State and Mitochondria at the Centre of the Non-Canonical Activity of Telomerase Reverse Transcriptase. Molecular Aspects of Medicine 31, 21-28. Inthrani R. Indran, Manoor P. Hande, Shazib Pervaiz. hTERT overexpression alleviates intracellular ROS production, improves mitochondrial function and endows cells with a survival advantage against ROS-mediated apoptosis. (Manuscript in progress) CONFERENCE PAPERS Inthrani R. Indran, Manoor P. Hande, Shazib Pervaiz. (2008) Telomerase reverse transcriptase (hTERT) overexpression protects cancer cells from ROS mediated cell death. American Association for cancer research. San Diego, America. Inthrani R. Indran, Manoor P. Hande, Shazib Pervaiz. (2009) Telomerase reverse transcriptase (hTERT) overexpression protects cancer cells from ROS mediated cell death. EMBO Workshop on Mitochondria, Apoptosis and Cancer. Prague, Czech Republic. * * Received the Best Poster Award 182 [...]... et al., 2001) Telomerase is differentially regulated under normal and pathological conditions While in most human somatic cells telomerase activity is extinguished during embryonic differentiation, the highly proliferative cells such as stem cells, germ cells, activated lymphocytes, haematopoietic progenitor cells, intestinal crypt cells, endometrial cells, basal layer of skin cells and cervical keratinocytes... resistance are the major goals in developing anti cancer agents today In order to achieve these goals, exploitation of the intrinsic differences between normal and cancer cells could be a valuable approach to target cancer cells for cell death One of the glaring differences between normal cells and cancer cells is their difference in telomerase expression Telomerase is is a multi component ribonucleoprotein... transfection of HeLa cells with pBabe-Neo and pBabe-hTERT-Neo Figure 20: Stable hTERT overexpression reduces basal intracellular ROS Figure 21: Stably hTERT overexpressing cells displays lower intracellular ROS when treated with H2O2 Figure 22: Stably hTERT overexpressing cells displays lower intracellular ROS when treated with C1 Figure 23: hTERT expression and localization in Neo and HT1 cells following... of intracellular SOD and Catalase expression following hTERT overexpression and H2O2 treatment Figure 25: Regulation of Peroxiredoxins and Thioredoxin Figure 26: hTERT overexpression increases the rate of Peroxiredoxin regeneration from the hyperoxidised form Figure 27: hTERT overexpressing cells maintain a higher intracellular GSH/GSSG ratio following H2O2 treatment Figure 28: hTERT overexpressing cells. .. 1 Singapore Cancer Registry 1 strands in the telomere regions thus playing a crucial role in telomere maintenance It is active in almost all cancer cells but is inactive in most somatic cells with the exception of a few, including stem cells and germline cells, thus making it an attractive target for cancer therapy 2 TELOMERES AND TELOMERASE Telomeres are specialized structures that cap and preserve...SUMMARY The human telomerase reverse transcriptase (hTERT) is the catalytic subunit of the telomerase holoenzyme which is critical for the maintenance of telomere lengths and the enhanced replicative capacity of the cells Being silenced during embryonic differentiation in normal cells, its reactivation in over 85% of cancer cells has made hTERT an attractive therapeutic target in the field of cancer However... balance that the cells maintain for optimal survival ROS are important second messengers who regulate numerous pathways and redox regulated transcription factors like Nf-Kb and AP1 and steer cells towards cell growth and survival (Bubici et al., 2006; Clerkin et al., 2008) Furthermore, a slight increase in intracellular ROS, and specifically O2.-, has been shown to favour survival by antagonizing apoptotic. .. is assembled onto the template (b) (Neidle and Parkinson, 2002) 3 2.1 Telomerase and telomerase regulation The telomerase holoenzyme consists of a catalytic protein subunit, human telomerase reverse transcriptase (hTERT), the RNA component of the telomerase (hTR) that is used as the template by the reveres transcriptase to elongate the telomeric ends, and telomerase associated proteins such as TEP1... it has been reported that in normal ovarian tissues and uterine leiomyoma, cells have no detectable telomerase activity despite expressing both hTR and full length hTERT mRNAs (Ulaner et al., 2000) This lack of correlation between hTERT expression and telomerase activity has also been noted in peripheral T and B cells, human colon and renal tissues and tumours The discordance was attributed to the difference... genome from oxidative stress and the cells from apoptosis (Ahmed et al., 2008) Another novel role for hTERT is its involvement in modulating cellular responses to apoptotic triggers Indeed, it has been shown that targeting hTERT may help sensitize a variety of cancer cells to apoptotic triggers (Bollmann, 2008; Cong and Shay, 2008; Sung et al., 2005) Several studies have also shown that the apoptotic . HUMAN TELOMERASE REVERSE TRANSCRIPTASE (hTERT) OVEREXPRESSION MODULATES INTRACELLULAR REDOX BALANCE AND PROTECTS CANCER CELLS FROM ROS MEDIATED CELL DEATH INTHRANI. normal and cancer cells could be a valuable approach to target cancer cells for cell death. One of the glaring differences between normal cells and cancer cells is their difference in telomerase. overexpressing cells …………………………………… 126 4.4. hTERT overexpression can protect cells from H 2 O 2 induced cell death 130 4.5. hTERT overexpression can protect cells from C1 induced cell death … 135

Ngày đăng: 14/09/2015, 08:38

Từ khóa liên quan

Mục lục

  • INTRODUCTION

    • 1. CANCER

    • 2. TELOMERES AND TELOMERASE

      • 2.1 Telomerase and telomerase regulation

      • 2.1.1 Transcriptional regulation of hTERT

      • 2.1.2 Post translational modifications of hTERT

      • 2.2 Senescence and Immortalization

      • 2.3 The non canonical roles of telomerase

      • 3. REACTIVE OXYGEN SPECIES

        • 3.1 Different types of ROS

        • 3.2 Sources of ROS

        • 3.3 Functions of ROS

        • 4. THE CELLULAR ANTIOXIDANT DEFENCE

          • 4.1 Superoxide Dismutases

          • 4.2 Catalase

          • 4.3 Glutathione and Glutathione Dependant Enzymes

          • 4.3.1 Glutathione

          • 4.3.2 GSH synthesis

          • 4.3.3 Glutathione Reductase

          • 4.3.4 Glutathione Peroxidase

          • 4.4 Peroxiredoxins

          • 4.5 Thioredoxins

          • 5. hTERT AND ROS

            • 5.1 Effects of oxidative stress on hTERT

            • 5.2 Effects of hTERT on oxidative stress

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan