1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Surface functionalization of titanium for biomedical applications

207 460 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 207
Dung lượng 3,59 MB

Nội dung

SURFACE FUNCTIONALIZATION OF TITANIUM FOR BIOMEDICAL APPLICATIONS Zhang Fan NATIONAL UNIVERSITY OF SINGAPORE 2009 SURFACE FUNCTIONALIZATION OF TITANIUM FOR BIOMEDICAL APPLICATIONS ZHANG FAN (B.Eng.(Hons.), NUS) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMICAL AND BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2009 ACKNOWLEDGEMENTS My time at NUS has been an incredible experience. For that I owe thanks to a great many people for their guidance, advice, support, and friendship. First of all I would like to express my deepest thanks and appreciation to my supervisors: Professor Kang En Tang and Professor Neoh Koon Gee. They believed in me during my most difficult time with their great patience, continuous encouragement and invaluable advice, and offered me this amazing and enlightening opportunity to work and learn in their labs. Their vision and enthusiasm have been most inspiring to me. There are many Kang and Neoh Lab members who have been a source of great support along the way and I thank them all because it has been a great time working with them. Special thanks go to Dr. Xu Fujian, Dr. Shi Zhilong and Dr. Fu Guodong for their help from their great experience and skills. I am also grateful to Mr. Chua Poh Hui, Dr Lim Siew Lay and Dr. Wuang Shy Chyi for their useful discussions on my research work. In addition, thanks are also due to all technical staffs of Department of Chemical and Biomolecular Engineering, especially Dr. Yuan Zeliang and Ms Samantha, for their assistance in the project. Last, but certainly not least, I cannot express enough thanks and appreciation to my parents. Their consistent support and unconditional love has truly enabled me to get through this entire journey. TABLE OF CONTENTS ACKNOWLEDGEMENTS TABLE OF CONTENTS SUMMARY . NOMENCLATURE LIST OF FIGURES LIST OF TABLES CHAPTER PROJECT SCOPE 14 . CHAPTER LITERATURE SURVEY 15 . 2.1 Properties of Titanium and its Alloys 20 21 2.1.1 General Physical Properties 21 2.1.2 Reactivity and Surface Properties 22 2.1.3 Corrosion Properties 26 2.1.4 Mechanical Properties 28 2.1.5 Biocompatibility 32 2.2 Applications of Titanium and its Alloys 35 2.2.1 Hard Tissue Replacements 35 2.2.2 Cardiovascular Applications 40 2.2.3 Other applications 42 2.3 Surface Modification of Titanium 45 2.3.1 Mechanical Methods 46 2.3.2 Chemical Methods 46 2.3.3 Biochemical Modification 51 CHAPTER MODIFICATION OF TITANIUM VIA SURFACE-INITIATED ATOM TRANSFER RADICAL POLYMERIZATION 3.1 Introduction 55 56 3.2 Experimental Section 59 3.3 Results and discussion 64 3.4 Conclusions 78 CHAPTER FUNCTIONALIZATION OF TITANIUM SURFACES FROM ANTIBACTERIAL SURFACE TO SURFACE FOR OSTEOBLAST ADHESION 79 4.1 Introduction 80 4.2 Experimental Section 82 4.3 Results and Discussion 94 4.4 Conclusions 118 CHAPTER BACTERIAL ADHESION AND OSTEOBLAST FUNCTIONS ON HEPARIN-FUNCTIONALIZED TITANIUM SURFACES 119 5.1 Introduction 120 5.2 Materials and Methods 121 5.3 Results and Discussion 128 5.4 Conclusions 146 CHAPTER SILK-FUNCTIONALIZED TITANIUM SURFACES FOR ENHANCING OSTEOBLAST FUNCTIONS AND REDUCING BACTERIAL ADHESION 147 6.1 Introduction 148 6.2 Materials and Methods 150 6.3 Results and Discussion 155 6.4 Conclusions 177 CHAPTER CONCLUSIONS . 178 CHAPTER RECOMMENDATIONS FOR FUTURE RESEARCH 183 REFERENCES 188 SUMMARY . Titanium and its alloys have been widely used in biomedical devices and implants. Surface modifications of titanium and its alloys are usually employed to further enhance their biocompatibility and biological functions, while retaining their intrinsic bulk properties. In this work, titanium surfaces were modified via surface-initiated atom transfer radical polymerization (ATRP) and bioconjugation to tailor their functionalities. Further functionalization of the grafted surfaces via biomolecular immobilization or post derivatization was carried out and the biological performance of the resulting substrates was assayed. Brushes of poly(poly(ethylene poly((2-dimethylamino)ethyl glycol)methacrylate) methacrylate) or or P(PEGMA), P(DMAEMA), and poly(2,3,4,5,6-pentafluorostyrene) or P(PFS), as well as their block copolymers, were tethered on the silane-coupled titanium surfaces via ATRP. Diblock copolymer brushes consisting of PEGMA and DMAEMA blocks were obtained by using the initial homopolymer brushes as the macroinitiators for the ATRP of the second monomer. The compositions of functionalized surfaces were analyzed by X-ray photoelectron spectroscopy (XPS). The wettability of the titanium surfaces could be modified by surface initiated ATRP of different monomers. The functional polymer-metal hybrids were found to be stable to hydrolysis. Both antibacterial effects and enhancement in mammalian cell adhesion were achieved separately on different titanium surfaces via controlled surface graft polymerizations and post functionalization. Surface-initiated ATRP of 2-hydroxyethyl methacrylate (HEMA) was carried out on titanium surface. The pendant hydroxyl end groups of the grafted HEMA chains were then converted into carboxyl or amine groups to allow the coupling of gentamicin, penicillin, or collagen via the carbodiimide chemistry. The covalently immobilized antibiotics retain the antibacterial properties, as indicated by a significant reduction in the viability of contacting Staphylococcus aureus. The collagen-immobilized surfaces, on the other hand, promote fibroblast and osteoblast adhesion and proliferation. Thus, the present surface-initiated living radical graft polymerization technique allows the tailoring of Ti surface with vastly different functions and is potentially useful to the design or improvement of Ti-based biomedical implants. In an attempt to prepare the desirable implants which can simultaneously inhibit bacterial adhesion and promote osteoblast functions, titanium was functionalized with a biomimic anchor molecule, dopamine. The dopamine-modifed titanium surfaces conjugate with heparin via the carbodiimide chemistry. The covalently immobilized heparin significantly reduces the adhesion of the two bacteria strains (Staphylococcus aureus and Staphylococcus epidermidis) tested. At the same time, osteoblast cells adhesion, proliferation, and alkaline phosphatase activity can be enhanced, depending on the dopamine and heparin concentration. Thus, the technique of using dopamine together with heparin to functionalize Ti surfaces is a potentially useful mean to combat biomaterial-centered infection and enhance osseointegration. The possility of preparing ideal biomedical implants, which can simultaneously inhibit bacterial adhesion and promote osteoblast functions, have also been explored with the silk-functionalized titanium. Titanium surfaces were modified with poly(methacrylic acid) (P(MAA)) followed by immobilization of silk sericin. With the coupling of ATRP initiator, titanium was modified via surface-initiated ATRP of methacrylic acid sodium salt (MAAS). The pendant carboxyl end groups of the grafted and partially protonated MAA chains were subsequently coupled with silk sericin via the carbodiimide chemistry. The covalently immobilized MAA brushes significantly reduce the adhesion of the two bacteria strains tested. The silk sericin immobilized surfaces, at the same time, promote osteoblast cells adhesion, proliferation, and alkaline phosphatase activity. Thus, the P(MAA) and silk sericin functionalized Ti surfaces have potential applications for combating biomaterial-centered infection and promoting osseointegration. NOMENCLATURE AA AAm AFM acrylic acid acrylamide atomic force microscopy ALP ANOVA APS Ar alkaline phosphatase one-way analysis of variance (3-Aminopropyl)trimethoxysilane Argon ATCC ATRP American Type Culture Collection atom transfer radical polymerization B. mori BE Bombyx mori binding energy BMP Bpy bone morphogenetic protein 2,2'-Bipyridine –COOH cp CuCl CuCl2 carboxyl group commercially pure Copper(I) Chloride Copper(II) Chloride CVD DMAEMA DMAP DMEM DMF ECM EDAC EDTA eV FTIR chemical vapor deposition (2-dimethylamino)ethyl methacrylate 4-(dimethylamino)pyridine; Dulbecco's modified Eagle’s medium dimethyl formamide extracellular matrix 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride ethylenediaminetetraacetic acid electronvolt, a unit of energy Fourier transform infrared FWHM -g- full width at half-maximum graft GE GMA h HA HEMA HF HRB HRC gentamicin sulfate glycidyl methacrylate hour hydroxyapatite 2-hydroxyethyl methacrylate hydrofluoric acid hardness Rockwell B scale hardness Rockwell C scale IR MAA MAAS MMA MW NaSS –NH2 NHS OCPC –OH P(ABCD) PBS PE PEG PEGMA infrared methacrylic acid methacrylic acid sodium salt minute methyl methacrylate molecular weight sodium styrene sulfonate amine group N-hydroxysuccinimde; ortho-cresolphthalein complexone hydroxyl group polymer of ABCD phosphate buffered saline penicillin G sodium salt poly(ethylene glycol) poly(ethylene glycol) monomethacrylate PFS PI PLL PMDETA PNPP PVD RGD RPM S. aureus S. epidermidis SA SAM 2,3,4,5,6-pentafluorostyrene propidium iodide poly(L-lysine) N,N,N',N'',N''-pentamethyldiethylenetriamine p-nitrophenylphosphate physical vapor deposition Arg-Gly-Asp peptides revolutions per minute Staphylococcus aureus Staphylococcus epidermidis succinic anhydride self-assembled monolayer SBF SEM simulated body fluid scanning electron microscopy TEA Chlorosilane THF Ti UTS UV triethylamine trichloro(4-(chloromethyl)-phenyl)silane tetrahydrofuran titanium ultimate strength ultraviolet v VBC volume 4-vinylbenzyl chloride XPS YS X-ray photoelectron spectroscopy yield strength References to Orthopedic Devices and Issues of Antibiotic Resistance, Biomaterials, 27, pp. 2331-2339. 2006. Cen, L., K. G. Neoh and E. T. Kang. Antibacterial Activity of Cloth Functionalized with N-Alkylated Poly(4-Vinylpyridine), Journal of Biomedical Materials Research Part A, 71A, pp. 70-80. 2004. Chen, W., Y. Liu, H. S. Courtney, M. Bettenga, C. M. Agrawal, J. D. Bumgardner and J. L. Ong. In Vitro Anti-Bacterial and Biological Properties of Magnetron Co-Sputtered Silver-Containing Hydroxyapatite Coating, Biomaterials, 27, pp. 5512-5517. 2006. Chiari, M., M. Cretich, F. Damin, G. Di Carlo and C. Oldani. Advanced Polymers for Molecular Recognition and Sensing at the Interface, Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 866, pp. 89-103. 2008. Chua, P. H., K. G. Neoh, E. T. Kang and W. Wang. Surface Functionalization of Titanium with Hyaluronic Acid/Chitosan Polyelectrolyte Multilayers and RGD for Promoting Osteoblast Functions and Inhibiting Bacterial Adhesion, Biomaterials, 29, pp. 1412-1421. 2008. Cochran, D. L., P. V. Nummikoski, F. L. Higginbottom, J. S. Hermann, S. R. Makins and D. Buser. Evaluation of an Endosseous Titanium Implant with a Sandblasted and Acid-Etched Surface in the Canine Mandible: Radiographic Results, Clinical Oral Implants Research, 7, pp. 240-252. 1996. Coessens, V., T. Pintauer and K. Matyjaszewski. Functional Polymers by Atom Transfer Radical Polymerization, Prog. Polym. Sci., 26, pp. 337-377. 2001. Collings, E. W. The Physical Metallurgy of Titanium Alloys In: H.L. Gegel, Editors, Asm Series in Metal Processing. Cleveland: Edward Arnold. 2004. Collis, J. J. and G. Embery. Adsorption of Glycosaminoglycans to Commercially Pure Titanium, Biomaterials, 13, pp. 548-552. 1992. Costerton, J. W., P. S. Stewart and E. P. Greenberg. Bacterial Biofilms: A Common Cause of Persistent Infections, Science, 284, pp. 1318-1322. 1999. Cunliffe, D., C. A. Smart, C. Alexander and E. N. Vulfson. Bacterial Adhesion at Synthetic Surfaces, Appl. Environ. Microbiol., 65, pp. 4995-5002. 1999. Dalsin, J. L., B. H. Hu, B. P. Lee and P. B. Messersmith. Mussel Adhesive Protein Mimetic Polymers for the Preparation of Nonfouling Surfaces, J. Am. Chem. Soc., 125, pp. 4253-4258. 2003. Dalsin, J. L., L. J. Lin, S. Tosatti, J. Voros, M. Textor and P. B. Messersmith. Protein Resistance of Titanium Oxide Surfaces Modified by Biologically Inspired Mpeg-Dopa, Langmuir, 21, pp. 640-646. 2005. Danahy, M. P., M. J. Avaltroni, K. S. Midwood, J. E. Schwarzbauer and J. Schwartz. Self-Assembled Monolayers of Alpha,Omega-Diphosphonic Acids on Ti Enable Complete or Spatially Controlled Surface Derivatization, Langmuir, 20, pp. 5333-5337. 190 References 2004. Davies, J. E. Bone Engineering. Toronto: Em Squared Incorporated. 2000. Davies, J. E., B. Lowenberg and A. Shiga. The Bone-Titanium Interface in Vitro, J Biomed Mater Res, 24, pp. 1289-1306. 1990. Dayer, R., R. Rizzoli, P. Pechy, T. Vig, B. O. Aronson, P. Descouts and P. Ammann. Chemical Modification of Smooth Titanium Implant Surface by Coating with Propylene-Tetra-Phosphonic Acid Increases Their Osseointegration, Bone, 36, pp. S389-S389. 2005. Degasne, I., M. F. Basle, V. Demais, G. Hure, M. Lesourd, B. Grolleau, L. Mercier and D. Chappard. Effects of Roughness, Fibronectin and Vitronectin on Attachment, Spreading, and Proliferation of Human Osteoblast-Like Cells (Saos-2) on Titanium Surfaces, Calcif. Tissue Int., 64, pp. 499-507. 1999. Dong, R., S. Krishnan, B. A. Baird, M. Lindau and C. K. Ober. Patterned Biofunctional Poly(Acrylic Acid) Brushes on Silicon Surfaces, Biomacromolecules, 8, pp. 3082-3092. 2007. Donlan, R. M. and J. W. Costerton. Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms, Clin. Microbiol. Rev., 15, pp. 167-193. 2002. Dupres, V., F. D. Menozzi, C. Locht, B. H. Clare, N. L. Abbott, S. Cuenot, C. Bompard, D. Raze and Y. F. Dufrene. Nanoscale Mapping and Functional Analysis of Individual Adhesins on Living Bacteria, Nature Methods, 2, pp. 515-520. 2005. El Khadali, F., G. Helary, G. Pavon-Djavid and V. Migonney. Modulating Fibroblast Cell Proliferation with Functionalized Poly(Methyl Methacrylate) Based Copolymers: Chemical Composition and Monomer Distribution Effect, Biomacromolecules, 3, pp. 51-56. 2002. Elefteriou, F. Regulation of Bone Remodeling by the Central and Peripheral Nervous System, Arch. Biochem. Biophys., 473, pp. 231-236. 2008. Erdtmann, M., R. Keller and H. Baumann. Photochemical Immobilization of Heparin, Dermatan Sulphate, Dextran Sulphate and Endothelial Cell Surface Heparan Sulphate onto Cellulose Membranes for the Preparation of Athrombogenic and Antithrombogenic Polymers, Biomaterials, 15, pp. 1043-1048. 1994. Fan, X. W., L. J. Lin and P. B. Messersmith. Cell Fouling Resistance of Polymer Brushes Grafted from Ti Substrates by Surface-Initiated Polymerization: Effect of Ethylene Glycol Side Chain Length, Biomacromolecules, 7, pp. 2443-2448. 2006. Finklea, H. O. and R. W. Murray. Chemically Modified Electrodes. 12. Effects of Silanization on Titanium Dioxide Electrodes, J. Phys. Chem., 83, pp. 353-358. 1979. Fleming, A. J. and M. V. Sefton. Viability of Hydroxyethyl Methacrylate-Methyl Methacrylate-Microencapsulated Pc12 Cells after Omental Pouch Implantation within Agarose Gels, Tissue Eng., 9, pp. 1023-1036. 2003. 191 References Folkers, J. P., C. B. Gorman, P. E. Laibinis, S. Buchholz, G. M. Whitesides and R. G. Nuzzo. Self-Assembled Monolayers of Long-Chain Hydroxamic Acids on the Native Oxides of Metals, Langmuir, 11, pp. 813-824. 1995. Francois, P., D. Letourneur, D. P. Lew, J. Jozefonwicz and P. Vaudaux. Inhibition by Heparin and Derivatized Dextrans of Staphylococcus Epidermidis Adhesion to in Vitro Fibronectin-Coated or Explanted Polymer Surfaces, Journal of Biomaterials Science, Polymer Edition, 10, pp. 1207-1221. 1999. Fu, G. D., E. T. Kang and K. G. Neoh. Three-Dimensionally Ordered Porous Membranes Prepared Via Self-Assembly and Reverse Micelle Formation from Well-Defined Amphiphilic Block Copolymers, Langmuir, 21, pp. 3619-3624. 2005. Fu, J. H., J. Ji, W. Y. Yuan and J. C. Shen. Construction of Anti-Adhesive and Antibacterial Multilayer Films Via Layer-by-Layer Assembly of Heparin and Chitosan, Biomaterials, 26, pp. 6684-6692. 2005. Garcia-Alonso, M. C., L. Saldana, G. Valles, J. L. Gonzalez-Carrasco, J. Gonzalez-Cabrero, M. E. Martinez, E. Gil-Garay and L. Munuera. In Vitro Corrosion Behaviour and Osteoblast Response of Thermally Oxidised Ti6Al4V Alloy, Biomaterials, 24, pp. 19-26. 2003. Giordano, C., E. Sandrini, V. Busini, R. Chiesa, G. Fumagalli, G. Giavaresi, M. Fini, R. Giardino and A. Cigada. A New Chemical Etching Process to Improve Endosseous Implant Osseointegration: In Vitro Evaluation on Human Osteoblast-Like Cells, Int. J. Artif. Organs, 29, pp. 772-780. 2006. Gray, J. E., P. R. Norton, R. Alnouno, C. L. Marolda, M. A. Valvano and K. Griffiths. Biological Efficacy of Electroless-Deposited Silver on Plasma Activated Polyurethane, Biomaterials, 24, pp. 2759-2765. 2003. Gungormus, M. and O. Kaya. Evaluation of the Effect of Heterologous Type I Collagen on Healing of Bone Defects, J. Oral Maxillofac. Surg., 60, pp. 541-545. 2002. Gurappa, I. Characterization of Different Materials for Corrosion Resistance under Simulated Body Fluid Conditions, Materials Characterization, 49, pp. 73-79. 2002. Hammer, D. A. and M. Tirrell. Biological Adhesion at Interfaces, Annu. Rev. Mater. Sci., 26, pp. 651-691. 1996. Harkes, G., J. Feijen and J. Dankert. Adhesion of Escherichia-Coli on to a Series of Poly(Methacrylates) Differing in Charge and Hydrophobicity, Biomaterials, 12, pp. 853-860. 1991. Harris, L. G., S. Tosatti, M. Wieland, M. Textor and R. G. Richards. Staphylococcus Aureus Adhesion to Titanium Oxide Surfaces Coated with Non-Functionalized and Peptide-Functionalized Poly(L-Lysine)-Grafted-Poly(Ethylene Glycol) Copolymers, Biomaterials, 25, pp. 4135-4148. 2004. Hausser, H. J. and R. E. Brenner. Low Doses and High Doses of Heparin Have Different Effects on Osteoblast-Like Saos-2 Cells in Vitro, J. Cell. Biochem., 91, pp. 192 References 1062-1073. 2004. Haverich, A., S. Hirt, M. Karck, F. Siclari and H. Wahlig. Prevention of Graft Infection by Bonding of Gentamicin to Dacron Prostheses, J. Vasc. Surg., 15, pp. 187-193. 1992. Helmy, R., R. W. Wenslow and A. Y. Fadeev. Reaction of Organosilicon Hydrides with Solid Surfaces: An Example of Surface-Catalyzed Self-Assembly, J. Am. Chem. Soc., 126, pp. 7595-7600. 2004. Hench, L. L. and E. C. Ethridge. Biomaterials - the Interfacial Problem, Adv. Biomed. Eng., 5, pp. 35-150. 1975. Hendriks, J., J. Riesle and C. A. van Blitterswijk. Co-Culture in Cartilage Tissue Engineering, Journal of tissue engineering and regenerative medicine, 1, pp. 170-178. 2007. Herbert, C. B., T. L. McLernon, C. L. Hypolite, D. N. Adams, L. Pikus, C. C. Huang, G. B. Fields, P. C. Letourneau, M. D. Distefano and W. S. Hu. Micropatterning Gradients and Controlling Surface Densities of Photoactivatable Biomolecules on Self-Assembled Monolayers of Oligo(Ethylene Glycol) Alkanethiolates, Chem. Biol., 4, pp. 731-737. 1997. Hofer, R., M. Textor and N. D. Spencer. Alkyl Phosphate Monolayers, Self-Assembled from Aqueous Solution onto Metal Oxide Surfaces, Langmuir, 17, pp. 4014-4020. 2001. Hogt, A. H., J. Dankert and J. Feijen. Adhesion of Coagulase-Negative Staphylococci to Methacrylate Polymers and Copolymers, J. Biomed. Mater. Res., 20, pp. 533-545. 1986. Holmlin, R. E., X. Chen, R. G. Chapman, S. Takayama and G. M. Whitesides. Zwitterionic Sams That Resist Nonspecific Adsorption of Protein from Aqueous Buffer, Langmuir, 17, pp. 2841-2850. 2001. Hsu, R. W. W., C. C. Yang, C. A. Huang and Y. S. Chen. Investigation on the Corrosion Behavior of Ti-6a1-4v Implant Alloy by Electrochemical Techniques, Mater. Chem. Phys., 86, pp. 269-278. 2004. Huang, N., P. Yang, Y. X. Leng, J. Y. Chen, H. Sun, J. Wang, G. J. Wang, P. D. Ding, T. F. Xi and Y. Leng. Hemocompatibility of Titanium Oxide Films, Biomaterials, 24, pp. 2177-2187. 2003. Huang, N. P., R. Michel, J. Voros, M. Textor, R. Hofer, A. Rossi, D. L. Elbert, J. A. Hubbell and N. D. Spencer. Poly(L-Lysine)-G-Poly(Ethylene Glycol) Layers on Metal Oxide Surfaces: Surface-Analytical Characterization and Resistance to Serum and Fibrinogen Adsorption, Langmuir, 17, pp. 489-498. 2001. Iwasaki, Y. and N. Saito. Immobilization of Phosphorylcholine Polymers to Ti-Supported Vinyldimethylsilyl Monolayers and Reduction of Albumin Adsorption, Colloids Surf. B. Biointerfaces, 32, pp. 77-84. 2003. 193 References Jobin, M., M. Taborelli, R. Emch, F. Zenhausern and P. Descouts. Hydroxylation and Crystallization of Electropolished Titanium Surface, Ultramicroscopy, 42, pp. 637-643. 1992. Jose, B., V. Antoci, A. R. Zeiger, E. Wickstrom and N. J. Hickok. Vancomycin Covalently Bonded to Titanium Beads Kills Staphylococcus Aureus, Chem. Biol., 12, pp. 1041-1048. 2005. Kamigaito, M., T. Ando and M. Sawamoto. Metal-Catalyzed Living Radical Polymerization, Chem. Rev., 101, pp. 3689-3745. 2001. Kane, K. R., D. H. DeHeer, S. R. Owens, J. D. Beebe and A. B. Swanson. Adsorption of Collagenase to Particulate Titanium: A Possible Mechanism for Collagenase Localization in Periprosthetic Tissue, J. Appl. Biomater., 5, pp. 353-360. 1994. Kang, I. K., O. H. Kwon, Y. M. Lee and Y. K. Sung. Preparation and Surface Characterization of Functional Group-Grafted and Heparin-Immobilized Polyurethanes by Plasma Glow Discharge, Biomaterials, 17, pp. 841-847. 1996. Kim, H. M., F. Miyaji, T. Kokubo and T. Nakamura. Preparation of Bioactive Ti and Its Alloys Via Simple Chemical Surface Treatment, J. Biomed. Mater. Res., 32, pp. 409-417. 1996. Kim, H. M., F. Miyaji, T. Kokubo and T. Nakamura. Bonding Strength of Bonelike Apatite Layer to Ti Metal Substrate, J. Biomed. Mater. Res., 38, pp. 121-127. 1997. Kingshott, P., J. Wei, D. Bagge-Ravn, N. Gadegaard and L. Gram. Covalent Attachment of Poly(Ethylene Glycol) to Surfaces, Critical for Reducing Bacterial Adhesion, Langmuir, 19, pp. 6912-6921. 2003. Kinney, E. V., D. F. Bandyk, G. A. Seabrook, H. M. Kelly and J. B. Towne. Antibiotic-Bonded PTFE Vascular Grafts - the Effect of Silver Antibiotic on Bioactivity Following Implantation, J. Surg. Res., 50, pp. 430-435. 1991. Kitano, H., Y. Takahashi, K. Mizukami and K. Matsuura. Kinetic Study on the Binding of Lectin to Mannose Residues in a Polymer Brush, Colloids and Surfaces B: Biointerfaces, 70, pp. 91-97. 2009. Klee, D., J. Boing and H. Hocker. Surface Modification of Titanium for Improvement of the Interfacial Biocompatibility, Materialwiss. Werkstofftech., 35, pp. 186-191. 2004. Klinger, A., D. Steinberg, D. Kohavi and M. N. Sela. Mechanism of Adsorption of Human Albumin to Titanium in Vitro, J. Biomed. Mater. Res., 36, pp. 387-392. 1997. Kozhukharov, V., C. Trapalis and B. Samuneva. Sol-Gel Processing of Titanium-Containing Thin Coatings - Part Iii Properties, J Mater Sci Mater Med, 28, pp. 1283-1288. 1993. Kretlow, J. D. and A. G. Mikos. Review: Mineralization of Synthetic Polymer Scaffolds for Bone Tissue Engineering, Tissue Eng., 13, pp. 927-938. 2007. 194 References Krupa, D., J. Baszkiewicz, E. Jezierska, J. Mizera, T. Wierzchon, A. Barcz and R. Fillit. Effect of Nitrogen-Ion Implantation on the Corrosion Resistance of Ot-4-0 Titanium Alloy in 0.9% Nacl Environment, Surf. Coat. Technol., 111, pp. 86-91. 1999. Krupa, D., J. Baszkiewicz, J. A. Kozubowski, A. Barcz, J. W. Sobczak, A. Bilinski, M. Lewandowska-Szumiel and B. Rajchel. Effect of Phosphorus-Ion Implantation on the Corrosion Resistance and Biocompatibility of Titanium, Biomaterials, 23, pp. 3329-3340. 2002. Krupa, D., J. Baszkiewicz, J. A. Kozubowski, J. Mizera, A. Barcz, J. W. Sobczak, A. Bilinski and B. Rajchel. Corrosion Resistance and Bioactivity of Titanium after Surface Treatment by Three Different Methods: Ion Implantation, Alkaline Treatment and Anodic Oxidation, Anal. Bioanal. Chem., 381, pp. 617-625. 2005. Kuroda, K., Y. Miyashita, R. Ichino, M. Okido and O. Takai. Preparation of Calcium Phosphate Coatings on Titanium Using the Thermal Substrate Method and Their in Vitro Evaluation, Materials Transactions, 43, pp. 3015-3019. 2002. Lausmaa, J. Surface Spectroscopic Characterization of Titanium Implant Materials, J. Electron Spectrosc. Relat. Phenom., 81, pp. 343-361. 1996. Lausmaa, J., B. Kasemo and H. Mattsson. Surface Spectroscopic Characterization of Titanium Implant Materials, Appl. Surf. Sci., 44, pp. 133-146. 1990. Lebaron, R. G. and K. A. Athanasiou. Extracellular Matrix Cell Adhesion Peptides: Functional Applications in Orthopedic Materials, Tissue Eng., 6, pp. 85-103. 2000. Lee, B. H., Y. Do Kim, J. H. Shin and K. Hwan Lee. Surface Modification by Alkali and Heat Treatments in Titanium Alloys, Journal of Biomedical Materials Research, 61, pp. 466-473. 2002. Lee, H., S. M. Dellatore, W. M. Miller and P. B. Messersmith. Mussel-Inspired Surface Chemistry for Multifunctional Coatings, Science, 318, pp. 426-430. 2007. Li, P., I. Kangasniemi, K. de Groot and T. Kokubo. Bonelike Hydroxyapatite Induction by a Gel-Derived Titania on a Titanium Substrate, J. Am. Ceram. Soc., 77, pp. 1307-1312. 1994. Li, Y. L., K. G. Neoh and E. T. Kang. Controlled Release of Heparin from Polypyrrole-Poly(Vinyl Alcohol) Assembly by Electrical Stimulation, J. Biomed. Mater. Res. Part A, 73A, pp. 171-181. 2005. Liu, X. Y., P. K. Chu and C. X. Ding. Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications, Mater. Sci. Eng., R, 47, pp. 49-121. 2004. Liu, X. Y., P. K. Chu and C. X. Ding. Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications, Mater. Sci. Eng. R-Rep., 47, pp. 49-121. 2004. Liu, X. Y., R. W. Y. Poon, S. C. H. Kwok, P. K. Chu and C. X. Ding. Structure and Properties of Ca-Plasma-Implanted Titanium, Surf. Coat. Technol., 191, pp. 43-48. 195 References 2005. Lorian, V. Antibiotics in Laboratory Medicine. Baltimore, Maryland: Williams and Wilkins. 1996. Luong-Van, E., L. Grondahl, V. Nurcombe and S. Cool. In Vitro Biocompatibility and Bioactivity of Microencapsulated Heparan Sulfate, Biomaterials, 28, pp. 2127-2136. 2007. Lutjering, G. and J. C. Williams. Titanium. Berlin; New York: Springer. 2007. Ma, X. L., C. B. Cao and H. S. Zhu. The Biocompatibility of Silk Fibroin Films Containing Sulfonated Silk Fibroin, J. Biomed. Mater. Res. Part B, 78B, pp. 89-96. 2006. Maddikeri, R. R., S. Tosatti, M. Schuler, S. Chessari, M. Textor, R. G. Richards and L. G. Harris. Reduced Medical Infection Related Bacterial Strains Adhesion on Bioactive RGD Modified Titanium Surfaces: A First Step toward Cell Selective Surfaces, J. Biomed. Mater. Res. Part A, 84A, pp. 425-435. 2008. Magnet, S. and J. S. Blanchard. Molecular Insights into Aminoglycoside Action and Resistance, Chem. Rev., 105, pp. 477-497. 2005. Marcinko, S. and A. Y. Fadeev. Hydrolytic Stability of Organic Monolayers Supported on TiO2 and ZrO2, Langmuir, 20, pp. 2270-2273. 2004. Matsuno, R., K. Yamamoto, H. Otsuka and A. Takahara. Polystyrene- and Poly(3-Vinylpyridine)-Grafted Magnetite Nanoparticles Prepared through Surface-Initiated Nitroxide-Mediated Radical Polymerization, Macromolecules, 37, pp. 2203-2209. 2004. Matyjaszewski, K., P. J. Miller, N. Shukla, B. Immaraporn, A. Gelman, B. B. Luokala, T. M. Siclovan, G. Kickelbick, T. Vallant, H. Hoffmann and T. Pakula. Polymers at Interfaces: Using Atom Transfer Radical Polymerization in the Controlled Growth of Homopolymers and Block Copolymers from Silicon Surfaces in the Absence of Untethered Sacrificial Initiator, Macromolecules, 32, pp. 8716-8724. 1999. Matyjaszewski, K. and J. H. Xia. Atom Transfer Radical Polymerization, Chem. Rev., 101, pp. 2921-2990. 2001. McCafferty, E. and J. P. Wightman. Determination of the Concentration of Surface Hydroxyl Groups on Metal Oxide Films by a Quantitative XPS Method, Surf. Interface Anal., 26, pp. 549-564. 1998. McClay, D. R. and P. L. Hertzler. Quantitative Measurement of Cell Adhesion Using Centrifugal Force, Current protocols in cell biology / editorial board, Juan S. Bonifacino . [et al.], Chapter 9. 2001. Minoura, N., S. Aiba, Y. Gotoh, M. Tsukada and Y. Imai. Attachment and Growth of Cultured Fibroblast Cells on Silk Protein Matrices, J. Biomed. Mater. Res., 29, pp. 1215-1221. 1995. 196 References Montanaro, L., D. Campoccia and C. R. Arciola. Advancements in Molecular Epidemiology of Implant Infections and Future Perspectives, Biomaterials, 28, pp. 5155-5168. 2007. Moulder, J. F. and J. Chastain. Handbook of X-Ray Photoelectron Spectroscopy : A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Eden Prairie, Minn.: Perkin-Elmer Corp. 1992. Muller, R., J. Abke, E. Schnell, F. Macionczyk, U. Gbureck, R. Mehrl, Z. Ruszczak, R. Kujat, C. Englert, M. Nerlich and P. Angele. Surface Engineering of Stainless Steel Materials by Covalent Collagen Immobilization to Improve Implant Biocompatibility, Biomaterials, 26, pp. 6962-6972. 2005. Murata, H., R. R. Koepsel, K. Matyjaszewski and A. J. Russell. Permanent, Non-Leaching Antibacterial Surfaces--2: How High Density Cationic Surfaces Kill Bacterial Cells, Biomaterials, 28, pp. 4870-4879. 2007. Murayama, K., H. Nakamura, T. Nakajima, K. Takahashi and A. Yoshida. Preparation and Evaluation of Octadecyl Titania as Column-Packing Material for High-Performance Liquid Chromatography, Microchem. J., 49, pp. 362-367. 1994. Narayanan, R., S. K. Seshadri, T. Y. Kwon and K. H. Kim. Calcium Phosphate-Based Coatings on Titanium and Its Alloys, J. Biomed. Mater. Res. Part B, 85B, pp. 279-299. 2008. Nielsen, M. L., D. Raahave, J. G. Stage and T. Justesen. Anaerobic and Aerobic Skin Bacteria before and after Skin Disinfection with Chlorhexidine - Experimental Study in Volunteers, Journal of Clinical Pathology, 28, pp. 793-797. 1975. Nishio, K., M. Neo, H. Akiyama, S. Nishiguchi, H. M. Kim, T. Kokubo and T. Nakamura. The Effect of Alkali- and Heat-Treated Titanium and Apatite-Formed Titanium on Osteoblastic Differentiation of Bone Marrow Cells, J. Biomed. Mater. Res., 52, pp. 652-661. 2000. Osborne, V. L., D. M. Jones and W. T. S. Huck. Controlled Growth of Triblock Polyelectrolyte Brushes, Chem. Commun., pp. 1838-1839. 2002. Oyane, A., Y. Yokoyama, M. Uchida and A. Ito. The Formation of an Antibacterial Agent-Apatite Composite Coating on a Polymer Surface Using a Metastable Calcium Phosphate Solution, Biomaterials, 27, pp. 3295-3303. 2006. Padamwar, M. N. and A. P. Pawar. Silk Sericin and Its Applications: A Review, J. Sci. Ind. Res., 63, pp. 323-329. 2004. Pan, J., D. Thierry and C. Leygraf. Hydrogen Peroxide toward Enhanced Oxide Growth on Titanium in Pbs Solution: Blue Coloration and Clinical Relevance, J. Biomed. Mater. Res., 30, pp. 393-402. 1996. Panilaitis, B., G. H. Altman, J. S. Chen, H. J. Jin, V. Karageorgiou and D. L. Kaplan. Macrophage Responses to Silk, Biomaterials, 24, pp. 3079-3085. 2003. Pasaoglu, I., S. Arsan, A. C. Yorgancioglu and A. Y. Bozer. A Simple Management of 197 References Mediastinitis, International Surgery, 80, pp. 239-241. 1995. Peltola, T., M. Patsi, H. Rahiala, I. Kangasniemi and A. Yli-Urpo. Calcium Phosphate Induction by Sol-Gel-Derived Titania Coatings on Titanium Substrates in Vitro, J. Biomed. Mater. Res., 41, pp. 504-510. 1998. Peterson, C. D., B. M. Hillberry and D. A. Heck. Component Wear of Total Knee Prostheses Using Ti-6Al-4V, Titanium Nitride Coated Ti-6Al-4V, and Cobalt-Chromium-Molybdenum Femoral Components, J. Biomed. Mater. Res., 22, pp. 887-903. 1988. Petrini, P., C. R. Arciola, I. Pezzali, S. Bozzini, L. Montanaro, M. C. Tanzi, P. Speziale and L. Visai. Antibacterial Activity of Zinc Modified Titanium Oxide Surface, Int. J. Artif. Organs, 29, pp. 434-442. 2006. Pinzari, F., P. Ascarelli, E. Cappelli and R. Giorgi. Wettability Modification of Titanium Sheets Induced by Activated Surface Treatment, Langmuir, 18, pp. 5457-5461. 2002. Promisel, N. E. and R. I. Jaffee. The Science, Technology and Applications of Titanium. Oxford: Pergamon. 1970. Puleo, D. A., R. A. Kissling and M. S. Sheu. A Technique to Immobilize Bioactive Proteins, Including Bone Morphogenetic Protein-4 (BMP-4), on Titanium Alloy, Biomaterials, 23, pp. 2079-2087. 2002. Puleo, D. A. and A. Nanci. Understanding and Controlling the Bone-Implant Interface, Biomaterials, 20, pp. 2311-2321. 1999. Ramires, P. A., A. Romito, F. Cosentino and E. Milella. The Influence of Titania/Hydroxyapatite Composite Coatings on in Vitro Osteoblasts Behaviour, Biomaterials, 22, pp. 1467-1474. 2001. Rao, K. P. Recent Developments of Collagen-Based Materials for Medical Applications and Drug Delivery Systems, J. Biomater. Sci.-Polym. Ed., 7, pp. 623-645. 1995. Ratner, B. D. and S. J. Bryant. Biomaterials: Where We Have Been and Where We Are Going, Annual Review of Biomedical Engineering, 6, pp. 41-75. 2004. Ratner, B. D., A. S. Hoffman, F. J. Schoen and J. E. Lemons. Biomaterials Science: An Introduction to Materials in Medicine. Academic Press: San Diego. 1996. Ravikumar, T., H. Murata, R. R. Koepsel and A. J. Russell. Surface-Active Antifungal Polyquaternary Amine, Biomacromolecules, 7, pp. 2762-2769. 2006. Reyes, C. D. and A. J. Garcia. A Centrifugation Cell Adhesion Assay for High-Throughput Screening of Biomaterial Surfaces, Journal of Biomedical Materials Research - Part A, 67, pp. 328-333. 2003. Rhee, B. G. and H. Y. Sohn. Metal Alloy Coatings: Physical, Wear-Related, and Other Surface Characteristics, High Temp. Mater. Processes (London), 21, pp. 217-227. 198 References 2002. Rintoul, T. C., K. C. Butler, D. C. Thomas, J. W. Carriker, T. R. Maher, R. J. Kiraly, A. Massiello, S. C. Himley, J. F. Chen, K. Fukamachi, H. Harasaki, R. Savage and P. M. McCarthy. Continuing Development of the Cleveland Clinic-Nimbus Total Artificial Heart, ASAIO J., 39. 1993. Rohanizadeh, R., R. Z. LeGeros, M. Harsono and A. Bendavid. Adherent Apatite Coating on Titanium Substrate Using Chemical Deposition, J. Biomed. Mater. Res. Part A, 72A, pp. 428-438. 2005. Rose, S. F., S. Okere, G. W. Hanlon, A. W. Lloyd and A. L. Lewis. Bacterial Adhesion to Phosphorylcholine-Based Polymers with Varying Cationic Charge and the Effect of Heparin Pre-Adsorption, J. Mater. Sci.-Mater. Med., 16, pp. 1003-1015. 2005. Rowan, B., M. A. Wheeler and R. M. Crooks. Patterning Bacteria within Hyperbranched Polymer Film Templates, Langmuir, 18, pp. 9914-9917. 2002. Roy, D., J. S. Knapp, J. T. Guthrie and S. Perrier. Antibacterial Cellulose Fiber Via RAFT Surface Graft Polymerization, Biomacromolecules, 9, pp. 91-99. 2007. Ruedi, T. P. and W. M. Murphy. Ao Principles of Fracture Management. Stuttgart; New York; Davos Platz, Switzerland: Thieme ; AO Pub. 2000. Ryhanen, J., M. Kallioinen, J. Tuukkanen, J. Junila, E. Niemela, P. Sandvik and W. Serlo. In Vivo Biocompatibility Evaluation of Nickel-Titanium Shape Memory Metal Alloy: Muscle and Perineural Tissue Responses and Encapsule Membrane Thickness, J. Biomed. Mater. Res., 41, pp. 481-488. 1998. Saldana, L., V. Barranco, M. C. Garcia-Alonso, G. Valles, M. L. Escudero, L. Munuera and N. Vilaboa. Concentration-Dependent Effects of Titanium and Aluminium Ions Released from Thermally Oxidized Ti6Al4V Alloy on Human Osteoblasts, J. Biomed. Mater. Res. Part A, 77A, pp. 220-229. 2006. Salthouse, T. N. Some Aspects of Macrophage Behavior at the Implant Interface, J. Biomed. Mater. Res., 18, pp. 395-401. 1984. Samuneva, B., V. Kozhukharov, C. Trapalis and R. Kranold. Sol-Gel Processing of Titanium-Containing Thin Coatings - Part I Preparation and Structure, J Mater Sci Mater Med, 28, pp. 2353-2360. 1993. Satsangi, N., A. Satsangi, R. Glover, J. L. Ong and R. K. Satsangi. Osteoblast Response and Calcium Deposition on Phospholipid Modified Surfaces, J. Mater. Sci.-Mater. Med., 15, pp. 693-697. 2004. Schwartz, Z., J. Y. Martin, D. D. Dean, J. Simpson, D. L. Cochran and B. D. Boyan. Effect of Titanium Surface Roughness on Chondrocyte Proliferation, Matrix Production, and Differentiation Depends on the State of Cell Maturation, J. Biomed. Mater. Res., 30, pp. 145-155. 1996. Sehgal, D. and I. K. Vijay. A Method for the High-Efficiency of Water-Soluble Carbodiimide-Mediated Amidation, Anal. Biochem., 218, pp. 87-91. 1994. 199 References Serro, A. P., A. C. Fernandes, B. Saramago, J. Lima and M. A. Barbosa. Apatite Deposition on Titanium Surfaces - the Role of Albumin Adsorption, Biomaterials, 18, pp. 963-968. 1997. Sharkawy, A. A., B. Klitzman, G. A. Truskey and W. M. Reichert. Engineering the Tissue Which Encapsulates Subcutaneous Implants. I. Diffusion Properties, Journal of Biomedical Materials Research, 37, pp. 401-412. 1997. Sharkawy, A. A., B. Klitzman, G. A. Truskey and W. M. Reichert. Engineering the Tissue Which Encapsulates Subcutaneous Implants. Iii. Effective Tissue Response Times, Journal of Biomedical Materials Research, 40, pp. 598-605. 1998. Shi, Z. L., K. G. Neoh and E. T. Kang. Antibacterial Activity of Polymeric Substrate with Surface Grafted Viologen Moieties, Biomaterials, 26, pp. 501-508. 2005. Shi, Z. L., K. G. Neoh and E. T. Kang. Antibacterial and Adsorption Characteristics of Activated Carbon Functionalized with Quaternary Ammonium Moieties, Ind. Eng. Chem. Res., 46, pp. 439-445. 2007. Shi, Z. L., K. G. Neoh, E. T. Kang, C. Poh and W. Wang. Bacterial Adhesion and Osteoblast Function on Titanium with Surface-Grafted Chitosan and Immobilized RGD Peptide, J. Biomed. Mater. Res. Part A, 86A, pp. 865-872. 2008. Shigematsu, I., M. Nakamura, N. Saitou and K. Shimojima. Surface Hardening Treatments of Pure Titanium by Carbon Dioxide Laser, J. Mater. Sci. Lett., 19, pp. 967-970. 2000. Sittig, C., M. Textor, N. D. Spencer, M. Wieland and P. H. Vallotton. Surface Characterization of Implant Materials Cp Ti, Ti-6Al-7Nb and Ti-6Al-4V with Different Pretreatments, J. Mater. Sci.-Mater. Med., 10, pp. 35-46. 1999. Song, W. H., Y. K. Jun, Y. Han and S. H. Hong. Biomimetic Apatite Coatings on Micro-Arc Oxidized Titania, Biomaterials, 25, pp. 3341-3349. 2004. Spencer, R. C. Novel Methods for the Prevention of Infection of Intravascular Devices, J. Hosp. Infect., 43, pp. S127-S135. 1999. Stewart, P. S. Mechanisms of Antibiotic Resistance in Bacterial Biofilms, Int. J. Med. Microbiol., 292, pp. 107-113. 2002. Sundgren, J. E., P. Bodo, B. Ivarsson and I. Lundstrom. Adsorption of Fibrinogen on Titanium and Gold Surfaces Studied by Esca and Ellipsometry, J. Colloid Interface Sci., 113, pp. 530-543. 1986. Sutherland, D. S., P. D. Forshaw, G. C. Allen, I. T. Brown and K. R. Williams. Surface Analysis of Titanium Implants, Biomaterials, 14, pp. 893-899. 1993. Tamura, R. N., D. Oda, V. Quaranta, G. Plopper, R. Lambert, S. Glaser and J. C. R. Jones. Coating of Titanium Alloy with Soluble Laminin-5 Promotes Cell Attachment and Hemidesmosome Assembly in Gingival Epithelial Cells: Potential Application to Dental Implants, J. Periodontal Res., 32, pp. 287-294. 1997. 200 References Taunton, H. J., C. Toprakcioglu, L. J. Fetters and J. Klein. Forces between Surfaces Bearing Terminally Anchored Polymer-Chains in Good Solvents, Nature, 332, pp. 712-714. 1988. Tegoulia, V. A. and S. L. Cooper. Leukocyte Adhesion on Model Surfaces under Flow: Effects of Surface Chemistry, Protein Adsorption, and Shear Rate, J. Biomed. Mater. Res., 50, pp. 291-301. 2000. Tegoulia, V. A., W. Rao, A. T. Kalambur, J. F. Rabolt and S. L. Cooper. Surface Properties, Fibrinogen Adsorption, and Cellular Interactions of a Novel Phosphorylcholine-Containing Self-Assembled Monolayer on Gold, Langmuir, 17, pp. 4396-4404. 2001. Tengvall, P., H. Elwing, L. Sjoqvist, I. Lundstrom and L. M. Bjursten. Interaction between Hydrogen Peroxide and Titanium: A Possible Role in the Biocompatibility of Titanium, Biomaterials, 10, pp. 118-120. 1989. Terada, S., T. Nishimura, M. Sasaki, H. Yamada and M. Miki. Sericin, a Protein Derived from Silkworms, Accelerates the Proliferation of Several Mammalian Cell Lines Including a Hybridoma, Cytotechnology, 40, pp. 3-12. 2002. Thierry, B., F. M. Winnik, Y. Merhi, J. Silver and M. Tabrizian. Bioactive Coatings of Endovascular Stents Based on Polyelectrolyte Multilayers, Biomacromolecules, 4, pp. 1564-1571. 2003. Tirrell, M., E. Kokkoli and M. Biesalski. The Role of Surface Science in Bioengineered Materials, Surf. Sci., 500, pp. 61-83. 2002. Tosatti, S., S. M. De Paul, A. Askendal, S. VandeVondele, J. A. Hubbell, P. Tengvall and M. Textor. Peptide Functionalized Poly(L-Lysine)-G-Poly(Ethylene Glycol) on Titanium: Resistance to Protein Adsorption in Full Heparinized Human Blood Plasma, Biomaterials, 24, pp. 4949-4958. 2003. Tosatti, S., R. Michel, M. Textor and N. D. Spencer. Self-Assembled Monolayers of Dodecyl and Hydroxy-Dodecyl Phosphates on Both Smooth and Rough Titanium and Titanium Oxide Surfaces, Langmuir, 18, pp. 3537-3548. 2002. Trapalis, C., V. Kozhukharov, B. Samuneva and P. Stefanov. Sol-Gel Processing of Titanium-Containing Thin Coatings - Part Ii XPS Studies, J Mater Sci Mater Med, 28, pp. 1276-1282. 1993. Treat, N. D., N. Ayres, S. G. Boyes and W. J. Brittain. A Facile Route to Poly(Acrylic Acid) Brushes Using Atom Transfer Radical Polymerization, Macromolecules, 39, pp. 26-29. 2006. Tsubouchi, K., Y. Igarashi, Y. Takasu and H. Yamada. Sericin Enhances Attachment of Cultured Human Skin Fibroblasts, Biosci. Biotechnol. Biochem., 69, pp. 403-405. 2005. Tsujii, Y., K. Ohno, S. Yamamoto, A. Goto and T. Fukuda. Structure and Properties of High-Density Polymer Brushes Prepared by Surface-Initiated Living Radical Polymerization, Surface-Initiated Polymerization I, 197, pp. 1-45. 2006. 201 References Ulman, A. Self-Assembled Monolayers of Alkyltrichlorosilanes: Building Blocks for Future Organic Materials, Adv. Mater., 2, pp. 573-582. 1990. Valles, G., E. Gil-Garay, L. Munuera and N. Vilaboa. Modulation of the Cross-Talk between Macrophages and Osteoblasts by Titanium-Based Particles, Biomaterials, 29, pp. 2326-2335. 2008. van de Belt, H., D. Neut, W. Schenk, J. R. van Horn, H. C. van der Mei and H. J. Busscher. Staphylococcus Aureus Biofilm Formation on Different Gentamicin-Loaded Polymethylmethacrylate Bone Cements, Biomaterials, 22, pp. 1607-1611. 2001. van den Dolder, J., A. J. de Ruijter, P. H. Spauwen and J. A. Jansen. Observations on the Effect of BMP-2 on Rat Bone Marrow Cells Cultured on Titanium Substrates of Different Roughness, Biomaterials, 24, pp. 1853-1860. 2003. Vepari, C. and D. L. Kaplan. Silk as a Biomaterial, Prog. Polym. Sci., 32, pp. 991-1007. 2007. Viornery, C., Y. Chevolot, D. Leonard, B. O. Aronsson, P. Pechy, H. J. Mathieu, P. Descouts and M. Gratzel. Surface Modification of Titanium with Phosphonic Acid to Improve Bone Bonding: Characterization by XPS and ToF-Sims, Langmuir, 18, pp. 2582-2589. 2002. Wach, J. Y., S. Bonazzi and K. Gademann. Antimicrobial Surfaces through Natural Product Hybrids, Angewandte Chemie-International Edition, 47, pp. 7123-7126. 2008. Wang, P., K. L. Tan, E. T. Kang and K. G. Neoh. Synthesis, Characterization and Anti-Fouling Properties of Poly(Ethylene Glycol) Grafted Poly(Vinylidene Fluoride) Copolymer Membranes, J. Mater. Chem., 11, pp. 783-789. 2001. Wang, Q. F., H. J. Yu, L. Zhong, J. Q. Liu, J. Q. Sun and J. C. Shen. Incorporation of Silver Ions into Ultrathin Titanium Phosphate Films: In Situ Reduction to Prepare Silver Nanoparticles and Their Antibacterial Activity, Chem. Mater., 18, pp. 1988-1994. 2006. Wang, X. X., S. Hayakawa, K. Tsuru and A. Osaka. Improvement of Bioactivity of H2o2/Tacl5-Treated Titanium after Subsequent Heat Treatments, J. Biomed. Mater. Res., 52, pp. 171-176. 2000. Wang, X. X., S. Hayakawa, K. Tsuru and A. Osaka. Bioactive Titania Gel Layers Formed by Chemical Treatment of Ti Substrate with a H2o2/Hcl Solution, Biomaterials, 23, pp. 1353-1357. 2002. Wang, Y. Z., H. J. Kim, G. Vunjak-Novakovic and D. L. Kaplan. Stem Cell-Based Tissue Engineering with Silk Biomaterials, Biomaterials, 27, pp. 6064-6082. 2006. Weber, M., A. Vasella, M. Textor and N. D. Spencer. Glucosidation of Titanium Dioxide with 1-Aziglucoses: Preparation and Characterization of Modified Titanium-Dioxide Surfaces, Helv. Chim. Acta, 81, pp. 1359-1372. 1998. Weber, M., A. Vasella, M. Textor and N. D. Spencer. Glycosylidene Carbenes - Part 27 - Glucosidation of Titanium Dioxide with 1-Aziglucoses: Preparation and 202 References Characterization of Modified Titanium-Dioxide Surfaces, Helv. Chim. Acta, 81, pp. 1359-1372. 1998. Weber, N., H. P. Wendel and G. Ziemer. Hemocompatibility of Heparin-Coated Surfaces and the Role of Selective Plasma Protein Adsorption, Biomaterials, 23, pp. 429-439. 2002. Wetzel, A. C., J. Vlassis, R. G. Caffesse, C. H. F. Hammerle and N. P. Lang. Attempts to Obtain Re-Osseointegration Following Experimental Peri-Implantitis in Dogs, Clin. Oral Implants Res., 10, pp. 111-119. 1999. Williams, D. F. Biocompatibility of Clinical Implant Materials. Boca Raton, Florida: CRC Press. 1981. Woodward, J. T., A. Ulman and D. K. Schwartz. Self-Assembled Monolayer Growth of Octadecylphosphonic Acid on Mica, Langmuir, 12, pp. 3626-3629. 1996. Xiao, S. J., M. Textor, N. D. Spencer and H. Sigrist. Covalent Attachment of Cell-Adhesive, (Arg-Gly-Asp)-Containing Peptides to Titanium Surfaces, Langmuir, 14, pp. 5507-5516. 1998. Xiao, S. J., M. Textor, N. D. Spencer, M. Wieland, B. Keller and H. Sigrist. Immobilization of the Cell-Adhesive Peptide Arg-Gly-Asp-Cys (RGDC) on Titanium Surfaces by Covalent Chemical Attachment, J. Mater. Sci.-Mater. Med., 8, pp. 867-872. 1997. Xiao, S. J., M. Textor, N. D. Spencer, M. Wieland, B. Keller and H. Sigrist. Immobilization of the Cell-Adhesive Peptide Arg-Gly-Asp-Cys (RGDC) on Titanium Surfaces by Covalent Chemical Attachment, J. Mater. Sci. Mater. Med., 8, pp. 867-872. 1997. Xu, F. J., Q. J. Cai, Y. L. Li, E. T. Kang and K. G. Neoh. Covalent Immobilization of Glucose Oxidase on Well-Defined Poly(Glycidyl Methacrylate)-Si(111) Hybrids from Surface-Initiated Atom Transfer Radical Polymerization, Biomacromolecules, 6, pp. 1012-1020. 2005. Xu, F. J., E. T. Kang and K. G. Neoh. UV-Induced Coupling of 4-Vinylbenzyl Chloride on Hydrogen-Terminated Si(100) Surfaces for the Preparation of Well-Defined Polymer-Si Hybrids Via Surface-Initiated ATRP, Macromolecules, 38, pp. 1573-1580. 2005. Xu, F. J., Y. L. Li, E. T. Kang and K. G. Neoh. Heparin-Coupled Poly(Poly(Ethylene Glycol) Monomethacrylate)-Si(111) Hybrids and Their Blood Compatible Surfaces, Biomacromolecules, 6, pp. 1759-1768. 2005. Xu, F. J., Z. L. Yuan, E. T. Kang and K. G. Neoh. Branched Fluoropolymer-Si Hybrids Via Surface-Initiated ATRP of Pentafluorostyrene on Hydrogen-Terminated Si(100) Surfaces, Langmuir, 20, pp. 8200-8208. 2004. Xue, W. C., X. B. Zheng, X. Y. Liu and C. X. Ding. Osseointegration of Plasma-Sprayed Titanium Coating after Alkali Modification, Journal of Inorganic Materials, 20, pp. 1275-1280. 2005. 203 References Yammine, P., G. Pavon-Djavid, G. Helary and V. Migonney. Surface Modification of Silicone Intraocular Implants to Inhibit Cell Proliferation, Biomacromolecules, 6, pp. 2630-2637. 2005. Yan, W. Q., T. Nakamura, M. Kobayashi, H. M. Kim, F. Miyaji and T. Kokubo. Bonding of Chemically Treated Titanium Implants to Bone, J. Biomed. Mater. Res., 37, pp. 267-275. 1997. Yang, J. M., H. T. Lin, T. H. Wu and C. C. Chen. Wettability and Antibacterial Assessment of Chitosan Containing Radiation-Induced Graft Nonwoven Fabric of Polypropylene-G-Acrylic Acid, J. Appl. Polym. Sci., 90, pp. 1331-1336. 2003. Yang, L. F., M. Butcher, R. R. Simon, S. L. Osip and S. G. Shaughnessy. The Effect of Heparin on Osteoblast Differentiation and Activity in Primary Cultures of Bovine Aortic Smooth Muscle Cells, Atherosclerosis, 179, pp. 79-86. 2005. Yang, S. Y., J. D. Mendelsohn and M. F. Rubner. New Class of Ultrathin, Highly Cell-Adhesion-Resistant Polyelectrolyte Multilayers with Micropatterning Capabilities, Biomacromolecules, 4, pp. 987-994. 2003. Yang, Y. M., X. M. Chen, F. Ding, P. Y. Zhang, J. Liu and X. S. Go. Biocompatibility Evaluation of Silk Fibroin with Peripheral Nerve Tissues and Cells in Vitro, Biomaterials, 28, pp. 1643-1652. 2007. Yu, W. H., E. T. Kang, K. G. Neoh and S. P. Zhu. Controlled Grafting of Well-Defined Polymers on Hydrogen-Terminated Silicon Substrates by Surface-Initiated Atom Transfer Radical Polymerization, J. Phys. Chem. B, 107, pp. 10198-10205. 2003. Yuan, S. J., F.J. Xu, S.O. Pehkonen, Y.P. Ting, K.G. Neoh and E.T. Kang. Grafting of Antibacterial Polymers on Stainless Steel Via Surface-Initiated Atom Transfer Radical Polymerization for Inhibiting Biocorrosion by Desulfovibrio Desulfuricans, Biotechnology and Bioengineering, 103, pp. 268-281. 2009. Yuk, S. H., S. H. Cho and S. H. Lee. pH/Temperature-Responsive Polymer Composed of Poly((N,N-Dimethylamino)Ethyl Methacrylate-Co-Ethylacrylamide), Macromolecules, 30, pp. 6856-6859. 1997. Zalipsky, S., C. Gilon and A. Zilkha. Attachment of Drugs to Polyethylene Glycols, Eur. Polym. J., 19, pp. 1177-1183. 1983. Zeiler, E., D. Klaffke, K. Hiltner, T. Grogler, S. M. Rosiwal and R. F. Singer. Tribological Performance of Mechanically Lapped Chemical Vapor Deposited Diamond Coatings, Surface and Coatings Technology, 116-119, pp. 599-608. 1999. Zeng, F. Q., Y. Q. Shen and S. P. Zhu. Synthesis of Comb-Branched Polyacrylamide with Cationic Poly[(2-Dimethylamino)Ethyl Methacrylate Dimethylsulfate]Quat, Journal of Polymer Science Part a-Polymer Chemistry, 40, pp. 2394-2405. 2002. Zhang, F., E. T. Kang, K. G. Neoh and W. Huang. Modification of Gold Surface by Grafting of Poly(Ethylene Glycol) for Reduction in Protein Adsorption and Platelet Adhesion, J. Biomater. Sci.-Polym. Ed., 12, pp. 515-531. 2001. 204 References Zhang, X., E. T. Kang, K. G. Neoh, K. L. Tan, D. Y. Kim and C. Y. Kim. Surface Studies of Pristine and Surface-Modified Polypyrrole Films, J. Appl. Polym. Sci., 60, pp. 625-636. 1996. Zhang, Y. Q. Applications of Natural Silk Protein Sericin in Biomaterials, Biotechnol. Adv., 20, pp. 91-100. 2002. Zhang, Y. Q., Y. Ma, Y. Y. Xia, W. D. Shen, J. P. Mao and R. Y. Xue. Silk Sericin-Insulin Bioconjugates: Synthesis, Characterization and Biological Activity, J. Controlled Release, 115, pp. 307-315. 2006. Zhang, Y. Q., M. L. Tao, W. D. Shen, J. P. Mao and Y. H. Chen. Synthesis of Silk Sericin Peptides-L-Asparaginase Bioconjugates and Their Characterization, J. Chem. Technol. Biotechnol., 81, pp. 136-145. 2006. 205 [...]... serve as a good coupling agent for the immobilization of ATRP initiator on titanium substrates This PhD project aims to modify titanium surfaces with a series of biologically active molecules to improve the performance of titanium substrates for biomedical applications In Chapter 2, the properties of titanium and its applications in biomedical field are summarized Various surface modification techniques... illustrating the two routes for the immobilization of collagen on the Ti-g-P(HEMA) surface 90 Figure 4-5 XPS wide scan spectra of (a) the pristine or Ti-OH surface, and (b) Ti-Cl surface 95 Figure 4-6 XPS wide scan spectra of (a) the Ti-g-P(HEMA) surface from 1 h of surface- initiated ATRP of HEMA, (b) the Ti-g-P(HEMA-NH2) surface, and (c) the Ti-g-P(HEMA-PE) surface 97 Figure 4-7... Ti-Cl surface, and immobilization of silk sericin on the Ti-polymer hybrid 151 Figure 6-2 XPS wide scan and C 1s core-level spectra of (a, b) the pristine or Ti-OH surface, (c, d) the Ti-Cl surface, (e, f) the Ti-g-P(MAA) surface after 3 h of surface- initiated ATRP of MAAS and (g, h) the corresponding Ti-g-P(MAA-Silk) surface 156 Figure 6-3 Comparison of osteoblast attachment on surfaces of. .. silanization of the Ti-OH surface to give rise to the Ti-Cl surface, surface- initiated ATRP of PEGMA, DMAEMA, PFS, and PEGMA/DMAEMA block copolymer brushes from the Ti-Cl surface 58 Figure 3-2 Wide scan spectra of the (a) Ti-OH surface and (b) Ti-Cl surface, and Si 2p and Cl 2p core-level spectra of the (c,d) Ti-Cl surface 66 Figure 3-3 XPS core-level and wide scan spectra of (a,b) the Ti-g-P(PEGMA) surface. .. spectra of (a) the Ti-g-P(PEGMA) surface, (b) the Ti-g-P(DMAEMA) surface, (c) the Ti-g-P(PFS) surface, prepared under the ATRP conditions as described in Table 3-1 Test conditions: in water:THF (1:1, v:v) solution of pH =2 at 37 °C for 3 weeks 77 Figure 4-1 Schematic diagram illustrating the processes of silanization of the Ti-OH surface to give rise to the Ti-Cl surface, surface- initiated 9 ATRP of HEMA... 1s core-level spectra of the Ti-g-P(HEMA) surface from 1 h of surface- initiated ATRP of HEMA, and the corresponding Ti-g-P(HEMA-COOH) surface, and (c,d) C 1s and N 1s core-level spectra of the Ti-g-P(HEMA-SA-GE) surface 98 Figure 4-8 (a, b) C 1s and N 1s core-level spectra of the Ti-g-P(DMAEMA) surface, and (c, d) Br 3d and N 1s core-level spectra of the Ti-g-P(DMAEMA-Q) surface 99 Figure... surface obtained at the ATRP time of 3 h, (c,d) the Ti-g-P(DMAEMA) surface obtained at the ATRP time of 5 h, and (e,f) the Ti-g-P(PFS) surface obtained at the ATRP time of 3 h 72 Figure 3-4 Wide scan and C 1s core-level spectra of (a,b) Ti-g-P(PEGMA)-bP(DMAEMA) surface and (c,d) the Ti-g-P(DMAEMA)-b-P(PEGMA) surface (The ATRP conditions for the preparation of surface- grafted block copolymers... which can adversely affects biological function of surrounding tissues and can lead to mechanical failure of the device It is also this corrosion resistance in saline environments that forms the basis for the use of titanium in biomedical application Fortunately the corrosion resistance of the pure titanium is largely carried with it into the alloys as well Titanium- based alloys, such as Ti-6Al-4V has... properties of titanium and some of its alloys 29 Table 2-3 Typical hardness of titanium and some of its alloys 31 Table 3-1 Surface composition bonding ratio and static water contact angle of the polymer-functionalized titanium surfaces 67 14 CHAPTER 1 PROJECT SCOPE 15 Chapter 1 Over the last two decades, titanium and its alloys have been used extensively in biomedical devices and components... (d)Ti-g-P(HEMA-SA-Col) surfaces after 2 days of 3T3 fibroblast cell culturing at an initial seeding concentration of 104 cells/mL 112 10 Figure 4-14 SEM images of (a, c) Ti-g-P(HEMA-SA-Col) surfaces and (b, d) pristine Ti surfaces after 4 days of 3T3 osteoblast cell culturing at initial seeding concentrations of 2 × 104 cells/mL (for a and b) and 5 × 103 cells/mL (for c and d) 114 . SURFACE FUNCTIONALIZATION OF TITANIUM FOR BIOMEDICAL APPLICATIONS Zhang Fan NATIONAL UNIVERSITY OF SINGAPORE 2009 SURFACE FUNCTIONALIZATION. on titanium substrates. This PhD project aims to modify titanium surfaces with a series of biologically active molecules to improve the performance of titanium substrates for biomedical applications. . FUNCTIONALIZATION OF TITANIUM FOR BIOMEDICAL APPLICATIONS ZHANG FAN (B.Eng.(Hons.), NUS) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF

Ngày đăng: 14/09/2015, 08:37

TỪ KHÓA LIÊN QUAN