Self assembly peptide amphiphile biomimetic materials for biomedical applications

171 377 0
Self assembly peptide amphiphile biomimetic materials for biomedical applications

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

SELF-ASSEMBLING PEPTIDE-AMPHIPHILE BIOMIMETIC MATERIALS FOR BIOMEDICAL APPLICATIONS LUO JINGNAN NATIONAL UNIVERSITY OF SINGAPORE 2012 SELF-ASSEMBLING PEPTIDE-AMPHIPHILE BIOMIMETIC MATERIALS FOR BIOMEDICAL APPLICATIONS LUO JINGNAN (M. Eng., B. Eng., Tian Jin University) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMICAL AND BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2012 To my dearest parents and sisters To my beloved, Zhang Ying ACKNOWLEDGEMENTS First and foremost, I would like to express my deepest and most sincere gratitude to my thesis advisor, Professor Tong Yen Wah, for giving me not only the opportunities to learn and grow but also freedom to try and err. I am sincerely grateful to his invaluable patience and advice not only in scientific but also in personal matters, such as career planning and job seeking. Thank you for your patience and guidance. I would like to thank Professor Jiang Jianwen and Professor Yang Kun-Lin for their generous time and guidance during my Ph.D. qualifying examination. I also would like to thank all past and present members of the Tong’s group, but particularly: Khew Shih Tak, Wiradharma Nikken, Koh Shirlaine, Chen Wen Hui, Niranjani Sankarakumar, Liang Youyun, Chen Yiren, Anjaneyulu Kodali, Wang Honglei, Xie Wenyuan, Ajitha Sundaresan, He Fang, Guo Zhi, Wang Bingfang, Sushumitha Sundar, and Lee Jonathan, for unconditional help and invaluable support. I also am grateful to other group members, especially Tan Weiling, Duong Hoang Hanh Phuoc, Deny Hartono, Harleen Kaur, Fong Kah Ee, and Meng Qiao, for providing a pleasant working environment. Additionally, I would like to thank the Department of Chemical and Biomoleclar Engineering, National University of Singapore for providing me the research scholarship and research facilities that make this study possible. Finally, I would like to thank my parents and sisters for their supports on my study. Their unconditional love, support and guidance has made me who I am today. Lastly, I would like to thank my best companion, Zhang Ying, for her care, love and selfless support. i TABLE OF CONTENTS ACKNOWLEDGEMENTS . i TABLE OF CONTENTS ii ABSTRACT . viii LIST OF TABLES . xi LIST OF FIGURES xii CHAPTER . INTRODUCTION 1.1 Background . 1.2 Hypothesis . 1.3 Research objectives . CHAPTER . LITERATURE REVIEW . 2.1 Regenerative medicine and biomaterials . Biomaterials . 10 2.2 The mimicking template: the extracellular matrices (ECM) . 13 Integrins . 14 The extracellular binding to integrins 15 The need of ECM mimics 16 Collagen . 18 Collagen mimics 21 ECM adhesive proteins and their mimics 25 ii 2.3 The mimicking means: molecular self-assembly 26 Self-assembling peptide systems . 26 Peptide amphiphiles . 28 Approaches to program PA self-assembly 31 Functionalization of self-assembled PA nanostructures 33 CHAPTER . 35 MATERIALS AND METHODS 35 3.1 Materials 35 3.2 Experimental section of chapter . 35 Peptide synthesis 35 Critical micelle concentration (CMC) . 36 Self-assembly of CPAs into nanofibers . 37 Transmission electron microscopy 37 Circular Dichroism Spectroscopy 38 Melting studies 38 Cell culture 39 Cell adhesion assay 39 Immunofluorescence staining 40 Statistical analysis . 41 3.3 Experimental section of chapter . 41 Microsphere Preparation 41 Porous polymeric scaffolds . 41 Peptide synthesis 42 Transmission electron microscopy 42 iii Network structure of peptide hydrogel 43 Visualization of cell–nanofiber interaction . 44 Cell culture 44 Cell adhesion assay 44 Cell spreading assay 45 Hybrid gel/scaffold system 46 Hybrid cell/gel/scaffold system . 46 Cell proliferation 47 Albumin secr 48 Statistical analysis . 48 3.4 Experimental section of chapter . 48 Peptide synthesis 48 Fiber formation and gelation of PAs . 49 Transmission electron microscopy 49 Scanning Electron Microscopy 50 Stop-flow analysis . 50 3.4 Experimental section of chapter . 51 Peptide synthesis 51 Preparation of assembled PA nanostructures 51 Transmission Electron Microscopy . 52 Circular Dichroism Spectroscopy 53 Dynamic Light Scattering 54 CHAPTER . 55 iv SEFL-ASSEMBLY OF COLLAGEN-MIMETIC PEPTIDE AMPHIPHILE INTO BIOFUNCTIONAL NANOFIBER 55 4.1 Introduction . 55 4.2 Results and Discussion 57 Design and synthesis of collagen-mimetic peptide amphiphiles . 57 TEM study of morphological structure . 60 CD spectra . 63 Melting point study 64 Cell adhesion assay 69 Immunofluorescence staining 71 4.3 Conclusions . 72 CHAPTER . 74 THREE-DIMENSIONAL POROUS SCAFFOLD FILLED WITH ECM-MIMETIC HYDROGEL TO OPTIMIZE LIVER CELL DISTRIBUTION, PROLIFERATION AND FUNCTION 74 5.1 Introduction . 74 5.2 Results and Discussion 77 Fabrication of ECM-mimetic fibrous hydrogel . 77 Cell adhesion and spreading on ECM-mimetic nanofibers . 83 Preparation of 3D porous PLGA scaffold . 85 Hybrid gel/scaffold system 88 Cell growth and distribution unto scaffolds 89 Cell proliferation and function 92 5.3 Conclusions . 94 CHAPTER . 95 v HIERARCHICAL SELF-ASSEMBLY OF PEPTIDE AMPHIPHILES INTO FIBER BUNDLES MEDIATED BY THE RGDS CELL-BINDING MOTIF . 95 6.1 Introduction . 95 6.2 Results and discussion . 97 Design of peptide amphiphile 97 Characterization of self-assembled PA fibers . 100 Proposed mechanism of hierarchical self-assembly 101 6.3 Conclusions . 108 CHAPTER . 110 POST-ASSEMBLY POLYMERIZATION OF PEPTIDE AMPHIPHILE NANOFIBERS TO ENHANCE FIBER STABILITY AND CONTROL FIBER LENGTH 110 7.1 Introduction . 110 7.2 Results and discussion . 111 The strategy of post-assembly polymerization and scission . 111 The design of PAs with unsaturated alkyl chain . 112 The stability of PA nanofibers 117 The length control of PA nanofibers . 119 7.3 Conclusions . 120 CHAPTER . 122 CONCLUSIONS AND RECOMMENDATIONS . 122 REFERENCES . 127 APPENDIX A . 149 APPENDIX B . 150 vi vii Reference Janet, A. and H. Martin (2004). "Cell-Matrix Interaction." Encyclopedia of Biological Chemistry: 362-366. Jayawarna, V., M. Ali, T. A. Jowitt, A. F. Miller, A. Saiani, J. E. Gough and R. V. Ulijn (2006). "Nanostructured hydrogels for three-dimensional cell culture through selfassembly of fluorenylmethoxycarbonyl-dipeptides." Advanced Materials 18(5): 611-614. Jefferson, E. A., E. Locardi and M. Goodman (1998). "Incorporation of achiral peptoidbased trimeric sequences into collagen mimetics." Journal of the American Chemical Society 120(30): 7420-7428. Jun, H. W., S. E. Paramonov and J. D. Hartgerink (2006). "Biomimetic self-assembled nanofibers." Soft Matter 2(3): 177-181. Kadler, K. E., A. Hill and E. G. Canty-Laird (2008). "Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators." Current Opinion in Cell Biology 20(5): 495-501. Kaufmann, P. M., S. Heimrath, B. S. Kim and D. J. Mooney (1997). "Highly porous polymer matrices as a three-dimensional culture system for hepatocytes." Cell Transplantation 6(5): 463-468. Kelly, T. R., R. L. Xie, C. K. Weinreb and T. Bregant (1998). "A molecular vernier." Tetrahedron Letters 39(22): 3675-3678. Khew, S. T. and Y. W. Tong (2007). "The specific recognition of a cell binding sequence derived from type I collagen by Hep3B and L929 cells." Biomacromolecules 8(10): 3153-3161. Khew, S. T., Q. J. Yang and Y. W. Tong (2008). "Enzymatically crosslinked collagenmimetic dendrimers that promote integrin-targeted cell adhesion." Biomaterials 29(20): 3034-3045. 136 Reference Khew, S. T., X. H. Zhu and Y. W. Tong (2007). "An integrin-specific collagen-mimetic peptide approach for optimizing Hep3B liver cell adhesion, proliferation, and cellular functions." Tissue Engineering 13(10): 2451-2463. Kim, M., J. Y. Lee, C. N. Jones, A. Revzin and G. Tae (2010). "Heparin-based hydrogel as a matrix for encapsulation and cultivation of primary hepatocytes." Biomaterials 31(13): 3596-3603. Klein, A. S., E. E. Messersmith, L. E. Ratner, R. Kochik, P. K. Baliga and A. O. Ojo (2010). "Organ donation and utilization in the United States, 1999-2008: Special feature." American Journal of Transplantation 10(4 PART 2): 973-986. Klug, A. (1999). "The tobacco mosaic virus particle: Structure and assembly." Philosophical Transactions of the Royal Society B: Biological Sciences 354(1383): 531-535. Knight, C. G., L. F. Morton, D. J. Onley, A. R. Peachey, A. J. Messent, P. A. Smethurst, D. S. Tuckwell, R. W. Farndale and M. J. Barnes (1998). "Identification in collagen type I of an integrin α2β1-binding site containing an essential GER sequence." Journal of Biological Chemistry 273(50): 33287-33294. Knight, C. G., L. F. Morton, A. R. Peachey, D. S. Tuckwell, R. W. Farndale and M. J. Barnes (2000). "The collagen-binding a-domains of integrins α1/β1 and α2/β1 recognize the same specific amino acid sequence, GFOGER, in native (triplehelical) collagens." Journal of Biological Chemistry 275(1): 35-40. Koide, T., D. L. Homma, S. Asada and K. Kitagawa (2005). "Self-complementary peptides for the formation of collagen-like triple helical supramolecules." Bioorganic and Medicinal Chemistry Letters 15(23): 5230-5233. Kotch, F. W. and R. T. Raines (2006). "Self-assembly of synthetic collagen triple helices." Proceedings of the National Academy of Sciences of the United States of America 103(9): 3028-3033. 137 Reference Koutsopouios, S., L. D. Unsworth, Y. Nagai and S. Zhang (2009). "Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold." Proceedings of the National Academy of Sciences of the United States of America 106(12): 4623-4628. Kramer, R. H. and N. Marks (1989). "Identification of integrin collagen receptors on human melanoma cells." Journal of Biological Chemistry 264(8): 4684-4688. Kramer, R. Z., J. Bella, P. Mayville, B. Brodsky and H. M. Berman (1999). "Sequence dependent conformational variations of collagen triple-helical structure." Nature Structural Biology 6(5): 454-457. Laflamme, M. A. and C. E. Murry (2011). "Heart regeneration." Nature 473(7347): 326335. Langer, R. and J. P. Vacanti (1993). "Tissue engineering." Science 260(5110): 920-926. Luo, J. and Y. W. Tong (2011). "Self-assembly of collagen-mimetic peptide amphiphiles into biofunctional nanofiber." ACS Nano 5(10): 7739-7747. Lynn, A. K., I. V. Yannas and W. Bonfield (2004). "Antigenicity and immunogenicity of collagen." Journal of Biomedical Materials Research - Part B Applied Biomaterials 71(2): 343-354. McCarthy, J. B., B. Vachhani and J. Iida (1996). "Cell adhesion to collagenous matrices." Biopolymers 40(4): 371-381. Mehta, G., C. M. Williams, L. Alvarez, M. Lesniewski, R. D. Kamm and L. G. Griffith (2010). "Synergistic effects of tethered growth factors and adhesion ligands on DNA synthesis and function of primary hepatocytes cultured on soft synthetic hydrogels." Biomaterials 31(17): 4657-4671. Mohd Yusoff, S. F., J. B. Gilroy, G. Cambridge, M. A. Winnik and I. Manners (2011). "End-to-end coupling and network formation behavior of cylindrical block copolymer micelles with a crystalline polyferrocenylsilane core." Journal of the American Chemical Society 133(29): 11220-11230. 138 Reference Mooney, D. J., K. Sano, P. Matthias Kaufmann, K. Majahod, B. Schloo, J. P. Vacanti and R. Langer (1997). "Long-term engraftment of hepatocytes transplanted on biodegradable polymer sponges." Journal of Biomedical Materials Research 37(3): 413-420. Mould, A. P., S. K. Akiyama and M. J. Humphries (1995). "Regulation of integrin α5β1fibronectin interactions by divalent cations. Evidence for distinct classes of binding sites for Mn2+, Mg2+,and Ca2+." Journal of Biological Chemistry 270(44): 26270-26277. Muraoka, T., C. Y. Koh, H. Cui and S. I. Stupp (2009). "Light-triggered bioactivity in three dimensions." Angewandte Chemie - International Edition 48(32): 59465949. Nejjari, M., Z. Hafdi, J. Dumortier, A. F. Bringuier, G. Feldmann and J. Y. Scoazec (1999). "α6β1 integrin expression in hepatocarcinoma cells: Regulation and role in cell adhesion and migration." International Journal of Cancer 83(4): 518-525. Nie, Z., A. Petukhova and E. Kumacheva (2010). "Properties and emerging applications of self-assembled structures made from inorganic nanoparticles." Nature Nanotechnology 5(1): 15-25. Niece, K. L., C. Czeisler, V. Sahni, V. Tysseling-Mattiace, E. T. Pashuck, J. A. Kessler and S. I. Stupp (2008). "Modification of gelation kinetics in bioactive peptide amphiphiles." Biomaterials 29(34): 4501-4509. Niece, K. L., J. D. Hartgerink, J. J. J. M. Donners and S. I. Stupp (2003). "Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction." Journal of the American Chemical Society 125(24): 7146-7147. O'Leary, L. E. R., J. A. Fallas, E. L. Bakota, M. K. Kang and J. D. Hartgerink (2011). "Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel." Nature Chemistry 3(10): 821-828. 139 Reference Olsen, D., C. Yang, M. Bodo, R. Chang, S. Leigh, J. Baez, D. Carmichael, M. Perälä, E. R. Hämäläinen, M. Jarvinen and J. Polarek (2003). "Recombinant collagen and gelatin for drug delivery." Advanced Drug Delivery Reviews 55(12): 1547-1567. Ottani, V., D. Martini, M. Franchi, A. Ruggeri and M. Raspanti (2002). "Hierarchical structures in fibrillar collagens." Micron 33(7-8): 587-596. Ottani, V., M. Raspanti and A. Ruggeri (2001). "Collagen structure and functional implications." Micron 32(3): 251-260. Palmer, L. C. and S. I. Stupp (2008). "Molecular self-assembly into one-dimensional nanostructures." Accounts of Chemical Research 41(12): 1674-1684. Pandya, M. J., G. M. Spooner, M. Sunde, J. R. Thorpe, A. Rodger and D. N. Woolfson (2000). "Sticky-end assembly of a designed peptide fiber provides insight into protein fibrillogenesis." Biochemistry 39(30): 8728-8734. Paramonov, S. E., H. W. Jun and J. D. Hartgerink (2006). "Self-assembly of peptideamphiphile nanofibers: The roles of hydrogen bonding and amphiphilic packing." Journal of the American Chemical Society 128(22): 7291-7298. Patra, S. K., R. Ahmed, G. R. Whittell, D. J. Lunn, E. L. Dunphy, M. A. Winnik and I. Manners (2011). "Cylindrical micelles of controlled length with a π-conjugated polythiophene core via crystallization-driven self-assembly." Journal of the American Chemical Society 133(23): 8842-8845. Perris, R., J. Syfrig, M. Paulsson and M. Bronner-Fraser (1993). "Molecular mechanisms of neural crest cell attachment and migration on types I and IV collagen." Journal of Cell Science 106(4): 1357-1368. Perumal, S., O. Antipova and J. P. R. O. Orgel (2008). "Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis." Proceedings of the National Academy of Sciences of the United States of America 105(8): 2824-2829. 140 Reference Petersen, T. H., E. A. Calle, L. Zhao, E. J. Lee, L. Gui, M. B. Raredon, K. Gavrilov, T. Yi, Z. W. Zhuang, C. Breuer, E. Herzog and L. E. Niklason (2010). "Tissueengineered lungs for in vivo implantation." Science 329(5991): 538-541. Pierschbacher, M. D. and E. Ruoslahti (1984). "Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule." Nature 309(5963): 30-33. Pierschbacher, M. D. and E. Ruoslahti (1987). "Influence of stereochemistry of the sequence Arg-Gly-Asp-Xaa on binding specificity in cell adhesion." Journal of Biological Chemistry 262(36): 17294-17298. Pires, M. M., D. E. Przybyla and J. Chmielewski (2009). "A metal-collagen peptide framework for three-dimensional cell culture." Angewandte Chemie International Edition 48(42): 7813-7817. Przybyla, D. E. and J. Chmielewski (2008). "Metal-triggered radial self-assembly of collagen peptide fibers." Journal of the American Chemical Society 130(38): 12610-12611. Qian, J., G. Guerin, Y. Lu, G. Cambridge, I. Manners and M. A. Winnik (2011). "Selfseeding in one dimension: An approach to control the length of fiberlike polyisoprene-polyferrocenylsilane block copolymer micelles." Angewandte Chemie - International Edition 50(7): 1622-1625. Qu, A. and D. J. Leahy (1996). "The role of the divalent cation in the structure of the I domain from the CD11a/CD18 integrin." Structure 4(8): 931-942. Ramshaw, J. A. M., N. K. Shah and B. Brodsky (1998). "Gly-X-Y tripeptide frequencies in collagen: A context for host-guest triple-helical peptides." Journal of Structural Biology 122(1-2): 86-91. Rele, S., Y. Song, R. P. Apkarian, Z. Qu, V. P. Conticello and E. L. Chaikof (2007). "Dperiodic collagen-mimetic microfibers." Journal of the American Chemical Society 129(47): 14780-14787. 141 Reference Reyes, C. D. and A. J. García (2003). "Engineering integrin-specific surfaces with a triple-helical collagen-mimetic peptide." Journal of Biomedical Materials Research - Part A 65(4): 511-523. Reyes, C. D. and A. J. García (2004). "α2β1 integrin-specific collagen-mimetic surfaces supporting osteoblastic differentiation." Journal of Biomedical Materials Research - Part A 69(4): 591-600. Rippon, W. B. and A. G. Walton (1971). "Optical properties of the polyglycine II helix." Biopolymers - Peptide Science Section 10(7): 1207-1212. Ruoslahti, E. (1996). RGD and other recognition sequences for integrins. 12: 697-715. Ruoslahti, E. (2003). "The RGD story: A personal account." Matrix Biology 22(6): 459465. Ruoslahti, E. and J. C. Reed (1994). "Anchorage dependence, integrins, and apoptosis." Cell 77(4): 477-478. Ryadnov, M. G. and D. N. Woolfson (2003). "Engineering the morphology of a selfassembling protein fibre." Nature Materials 2(5): 329-332. Sakaguchi, M., H. Hori, S. Hattori, S. Irie, A. Imai, M. Yanagida, H. Miyazawa, M. Toda and S. Inouye (1999). "IgE reactivity to α1 and α2 chains of bovine type I collagen in children with bovine gelatin allergy." Journal of Allergy and Clinical Immunology 104(3 II): 695-699. Sakakibara, S., Y. Kishida, K. Okuyama, N. Tanaka, T. Ashida and M. Kakudo (1972). "Single crystals of (Pro-Pro-Gly)10, a synthetic polypeptide model of collagen." Journal of Molecular Biology 65(2): 371-372,IN311-IN312,373. Scharffetter-Kochanek, K., C. E. Klein, G. Heinen, C. Mauch, T. Schaefer, B. C. Adelmann-Grill, G. Goerz, N. E. Fusenig, T. M. Krieg and G. Plewig (1992). "Migration of a human keratinocyte cell line (HACAT) to interstitial collagen type I is mediated by the α2β1-integrin receptor." Journal of Investigative Dermatology 98(1): 3-11. 142 Reference Shih, T. K. and W. T. Yen (2008). "Template-assembled triple-helical peptide molecules: Mimicry of collagen by molecular architecture and integrin-specific cell adhesion." Biochemistry 47(2): 585-596. Shimizu, T., M. Masuda and H. Minamikawa (2005). "Supramolecular nanotube architectures based on amphiphilic molecules." Chemical Reviews 105(4): 14011443. Shoulders, M. D. and R. T. Raines (2009). "Collagen structure and stability." Annual Review of Biochemistry 78: 929-958. Shoulders, M. D. and R. T. Raines (2009). Collagen structure and stability. 78: 929-958. Siljander, P. R. M., S. Hamaia, A. R. Peachey, D. A. Slatter, P. A. Smethurst, W. H. Ouwehand, C. G. Knight and R. W. Farndale (2004). "Integrin activation state determines selectivity for novel recognition sites in fibrillar collagens." Journal of Biological Chemistry 279(46): 47763-47772. Silva, G. A., C. Czeisler, K. L. Niece, E. Beniash, D. A. Harrington, J. A. Kessler and S. I. Stupp (2004). "Selective Differentiation of Neural Progenitor Cells by HighEpitope Density Nanofibers." Science 303(5662): 1352-1355. Smith, A. M., R. J. Williams, C. Tang, P. Coppo, R. F. Collins, M. L. Turner, A. Saiani and R. V. Ulijn (2008). "Fmoc-diphenylalanine self assembles to a hydrogel via a novel architecture based on π-π interlocked β-sheets." Advanced Materials 20(1): 37-41. Soto-Gutierrez, A., L. Zhang, C. Medberry, K. Fukumitsu, D. Faulk, H. Jiang, J. Reing, R. Gramignoli, J. Komori, M. Ross, M. Nagaya, E. Lagasse, D. Stolz, S. C. Strom, I. J. Fox and S. F. Badylak (2011). "A whole-organ regenerative medicine approach for liver replacement." Tissue Engineering - Part C: Methods 17(6): 677-686. 143 Reference Staatz, W. D., K. F. Fok, M. M. Zutter, S. P. Adams, B. A. Rodriguez and S. A. Santoro (1991). "Identification of a tetrapeptide recognition sequence for the α2β1 integrin in collagen." Journal of Biological Chemistry 266(12): 7363-7367. Tashiro, K., G. C. Sephel, B. Weeks, M. Sasaki, G. R. Martin, H. K. Kleinman and Y. Yamada (1989). "A synthetic peptide containing the IKVAV sequence from the A chain of laminin mediates cell attachment, migration, and neurite outgrowth." Journal of Biological Chemistry 264(27): 16174-16182. Tulla, M., M. Lahti, J. S. Puranen, A. M. Brandt, J. Käpylä, A. Domogatskaya, T. A. Salminen, K. Tryggvason, M. S. Johnson and J. Heino (2008). "Effects of conformational activation of integrin α1I and α2I domains on selective recognition of laminin and collagen subtypes." Experimental Cell Research 314(8): 1734-1743. Tysseling-Mattiace, V. M., V. Sahni, K. L. Niece, D. Birch, C. Czeisler, M. G. Fehlings, S. I. Stupp and J. A. Kessler (2008). "Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury." Journal of Neuroscience 28(14): 3814-3823. Tysseling, V. M., V. Sahni, E. T. Pashuck, D. Birch, A. Hebert, C. Czeisler, S. I. Stupp and J. A. Kessler (2010). "Self-assembling peptide amphiphile promotes plasticity of serotonergic fibers following spinal cord injury." Journal of Neuroscience Research 88(14): 3161-3170. Underhill, G. H., A. A. Chen, D. R. Albrecht and S. N. Bhatia (2007). "Assessment of hepatocellular function within PEG hydrogels." Biomaterials 28(2): 256-270. Van der Flier, A. and A. Sonnenberg (2001). "Function and interactions of integrins." Cell and Tissue Research 305(3): 285-298. Veit, G., B. Kobbe, D. R. Keene, M. Paulsson, M. Koch and R. Wagener (2006). "Collagen XXVIII, a novel von Willebrand factor A domain-containing protein with many imperfections in the collagenous domain." Journal of Biological Chemistry 281(6): 3494-3504. 144 Reference Velling, T., M. Kusche-Gullberg, T. Sejersen and D. Gullberg (1999). "cDNA cloning and chromosomal localization of human α11 integrin. A collagen-binding, I domain-containing, β1-associated integrin α-chain present in muscle tissues." Journal of Biological Chemistry 274(36): 25735-25742. Wang, S., D. Nagrath, P. C. Chen, F. Berthiaume and M. L. Yarmush (2008). "Threedimensional primary hepatocyte culture in synthetic self-assembling peptide hydrogel." Tissue Engineering - Part A. 14(2): 227-236. Wang, X., G. Guerin, H. Wang, Y. Wang, I. Manners and M. A. Winnik (2007). "Cylindrical block copolymer micelles and co-micelles of controlled length and architecture." Science 317(5838): 644-647. Webber, M. J., J. Tongers, M. A. Renault, J. G. Roncalli, D. W. Losordo and S. I. Stupp (2010). "Development of bioactive peptide amphiphiles for therapeutic cell delivery." Acta Biomaterialia 6(1): 3-11. Whitesides, G. M. and B. Grzybowski (2002). "Self-assembly at all scales." Science 295(5564): 2418-2421. Woolfson, D. N. and M. G. Ryadnov (2006). "Peptide-based fibrous biomaterials: some things old, new and borrowed." Current Opinion in Chemical Biology 10(6): 559567. Wu, L. and J. Ding (2004). "In vitro degradation of three-dimensional porous poly(D,Llactide-co- glycolide) scaffolds for tissue engineering." Biomaterials 25(27): 5821-5830. Xia, Y., P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan (2003). "One-dimensional nanostructures: Synthesis, characterization, and applications." Advanced Materials 15(5): 353-389. Xu, Y., S. Gurusiddappa, R. L. Rich, R. T. Owens, D. R. Keene, R. Mayne, A. Höök and M. Höök (2000). "Multiple binding sites in collagen type I for the integrins α1β1 and α2β1." Journal of Biological Chemistry 275(50): 38981-38989. 145 Reference Yang, X. B., R. S. Bhatnagar, S. Li and R. O. C. Oreffo (2004). "Biomimetic collagen scaffolds for human bone cell growth and differentiation." Tissue Engineering 10(7-8): 1148-1159. Yang, Z., G. Liang, L. Wang and B. Xu (2006). "Using a kinase/phosphatase switch to regulate a supramolecular hydrogel and forming the supramolecular hydrogel in vivo." Journal of the American Chemical Society 128(9): 3038-3043. Yoon, J. J., S. H. Song, D. S. Lee and T. G. Park (2004). "Immobilization of cell adhesive RGD peptide onto the surface of highly porous biodegradable polymer scaffolds fabricated by a gas foaming/salt leaching method." Biomaterials 25(25): 56135620. Yoshioka, T., N. Kawazoe, T. Tateishi and G. Chen (2008). "In vitro evaluation of biodegradation of poly(lactic-co-glycolic acid) sponges." Biomaterials 29(24-25): 3438-3443. Yu, S. M., V. P. Conticello, G. Zhang, C. Kayser, M. J. Fournier, T. L. Mason and D. A. Tirrell (1997). "Smectic ordering in solutions and films of a rod-like polymer owing to monodispersity of chain length." Nature 389(6647): 167-170. Yu, S. M., Y. Li and D. Kim (2011). "Collagen mimetic peptides: Progress towards functional applications." Soft Matter 7(18): 7927-7938. Yu, Y. C., P. Berndt, M. Tirrell and G. B. Fields (1996). "Self-assembling amphiphiles for construction of protein molecular architecture." Journal of the American Chemical Society 118(50): 12515-12520. Yu, Y. C., T. Pakalns, Y. Dori, J. B. McCarthy, M. Tirrell and G. B. Fields (1997). "Construction of biologically active protein molecular architecture using selfassembling peptide-amphiphiles." Methods in Enzymology 289: 571-587. Yu, Y. C., V. Roontga, V. A. Daragan, K. H. Mayo, M. Tirrell and G. B. Fields (1999). "Structure and dynamics of peptide-amphiphiles incorporating triple- helical proteinlike molecular architecture." Biochemistry 38(5): 1659-1668. 146 Reference Yu, Y. C., M. Tirrell and G. B. Fields (1998). "Minimal lipidation stabilizes protein-like molecular architecture." Journal of the American Chemical Society 120(39): 9979-9987. Yuan, J., Y. Xu, A. Walther, S. Bolisetty, M. Schumacher, H. Schmalz, M. Ballauff and A. H. E. Müller (2008). "Water-soluble organo-silica hybrid nanowires." Nature Materials 7(9): 718-722. Yuwono, V. M. and J. D. Hartgerink (2007). "Peptide amphiphile nanofibers template and catalyze silica nanotube formation." Langmuir 23(9): 5033-5038. Zhang, S., M. A. Greenfield, A. Mata, L. C. Palmer, R. Bitton, J. R. Mantei, C. Aparicio, M. O. De La Cruz and S. I. Stupp (2010). "A self-assembly pathway to aligned monodomain gels." Nature Materials 9(7): 594-601. Zhang, W. M., J. Käpylä, J. S. Puranen, C. G. Knight, C. F. Tiger, O. T. Pentikäinen, M. S. Johnson, R. W. Farndale, J. Heino and D. Gullberg (2003). "α11β1 integrin recognizes the GFOGER sequence in interstitial collagens." Journal of Biological Chemistry 278(9): 7270-7277. Zhao, H., L. Ma, C. Gao and J. Shen (2009). "A composite scaffold of PLGA microspheres/fibrin gel for cartilage tissue engineering: Fabrication, physical properties, and cell responsiveness." Journal of Biomedical Materials Research Part B Applied Biomaterials 88(1): 240-249. Zhao, H., L. Ma, Y. Gong, C. Gao and J. Shen (2009). "A polylactide/fibrin gel composite scaffold for cartilage tissue engineering: Fabrication and an in vitro evaluation." Journal of Materials Science: Materials in Medicine 20(1): 135-143. Zhao, X. and S. Zhang (2004). "Fabrication of molecular materials using peptide construction motifs." Trends in Biotechnology 22(9): 470-476. Zhao, X. and S. Zhang (2006). "Molecular designer self-assembling peptides." Chemical Society Reviews 35(11): 1105-1110. 147 Reference Zhu, X. H., L. Y. Lee, J. S. H. Jackson, Y. W. Tong and C. H. Wang (2008). "Characterization of porous poly(D,L-Lactic-co-glycolic Acid) sponges fabricated by supercritical CO2 gas-foaming method as a scaffold for three-dimensional growth of hep3b cells." Biotechnology and Bioengineering 100(5): 998-1009. Zouani, O. F., C. Chollet, B. Guillotin and M. C. Durrieu (2010). "Differentiation of preosteoblast cells on poly(ethylene terephthalate) grafted with RGD and/or BMPs mimetic peptides." Biomaterials 31(32): 8245-8253. OPTN: Organ Procurement and transplantation Network. http://optn.transplant.hrsa.gov/ (1/1/2012) 148 APPENDIX A APPENDIX A LIST OF AMINO ACIDS Table A.1. Letter codes of naturally occurring and non-natural (marked with *) amino acids. Amino acids letter code letter code Alanine Ala A Arginine Arg R Asparagine Asn N Aspartic acid/ Aspartate Asp D Cysteine Cys C Glutamine Gln Q Glutamic Acid/ Glutamate Glu E Glycine Gly G Histidine His H Hyp* O* Isoleucine Ile I Leucine Leu L Lysine Lys K Methionine Met M Phenylalanine Phe F Proline Pro P Serine Ser S Threonine Thr T Tryptophane Trp W Tyrosine Tyr Y Valine Val V Hydroxyproline* 149 APPENDIX B APPENDIX B LIST OF PUBLICATIONS Journal Papers: 1. Jingnan Luo, Yen Wah Tong, Self-assembly of collagen-mimetic peptide amphiphiles into biofunctional nanofiber, ACS Nano, 2011, (10), 7739-7747 2. Jingnan Luo, Yen Wah Tong, Hierarchical self-assembly of peptide amphiphiles into fiber bundles mediated by the cell binding motif RGDS, ChemComm, submitted. 3. Jingnan Luo, Yen Wah Tong, Enhancing stability and controlling length of selfassembling peptide nanofibers via polymerization and cutting process, JACS submitted. 4. Jingnan Luo, Yen Wah Tong, Three Dimensional Porous Scaffold Filled with Co-assembled Peptide Amphiphile Hydrogel to Optimize Cell Distribution, Proliferation and Function. To be submitted. Conference Papers: 5. Jingnan Luo, Yen Wah Tong, 2011, AlChE Annual Meeting, Minneapolis, USA 6. Jingnan Luo, Yen Wah Tong, 2011, the 5th WACBE Congress on Bioengineering, Taiwan 7. Jingnan Luo, Yen Wah Tong, 2011, Tissue Engineering & Regenerative Medicine International Society (TERMIS): Asia Pacific Meeting, Singapore 150 APPENDIX B 8. Jingnan Luo, Yen Wah Tong, 2010, TERMIS-Asia Pacific Meeting, Sydney, Australia 9. Jingnan Luo, Yen Wah Tong, 2010, 4t East Asian Pacific Student Work shop on Nano-Biomedical Engineering, Singapore 151 [...]... requirement for biomaterials and increasing appreciation of the functionality of biological matrix caused scientists to consider nature for design and fabrication inspiration for new generation of biomimetic materials This thesis was designed to develop new class of biomimetic materials that closely resembled the roles of natural materials and held great potential for a number of biomedical applications, ... great potential to engineer biomimetic materials for biomedical applications 1.2 Hypothesis It is hypothesized that the design and fabrication inspiration that nature offers, such as the ECM and molecular self- assembly, may result in new generation of biomimetic materials that structurally and functionally resemble biological matrices and are of capacities to biomedical applications 3 Chapter 1 1.3... to develop new class of biomimetic materials that closely resemble the features of natural materials for biomedical applications, through using peptides as the building blocks, native ECM as the mimicking template, and selfassembling PA system as the mimicking means The specific aims of the thesis include: 1) Fabricate collagen-mimetic peptide amphiphiles (CPAs) capable of selfassembling into nanofibers... of materials for biomedical applications However, the intrinsic problems of using animalderived proteins, such as poor reproducibility, possible immunogenicity, and potential risk of disease transmission, severely limit their applications in body, thus necessitating the fabrication of biomimetic materials closely resembling native ECM In recent years, the use of peptides to construct biomimetic materials. .. facilities construction of information-rich, intricate architectures in a highly reproducible manner with minimal energy input In recent years, several molecular self- assembling systems, such as selfcomplementary ionic peptides, α-helical coiled-coil peptides, β-hairpin peptides, and single-tail peptide amphiphiles (PAs), have been developed and used to fabricate biomaterials for regenerative medicine... host-biomaterials relationship and identify bioactive components for improving restoration, leading to new design principles and synthetic strategies for biomaterials The “second generation” biomaterials capable of eliciting a desired response from the host tissue have been developed through incorporating the bioactive components into synthetic materials These bioactive materials not only perform mechanical... materials and held great potential for a number of biomedical applications, through using peptides as the building blocks, the extracellular matrix (ECM) as the mimicking template, and peptideamphiphile self- assembly as the mimicking means The first part of the thesis was to fabricate collagen-mimetic peptide amphiphiles (CPAs) to structurally and biologically resemble fibrous collagen that is the... prepared through a co -assembly strategy The hybrid nanofibers will be assessed for the ability to form 3D fibrous network and promote cell adhesion and spreading The fabricated ECM-mimetic materials will further be infused into a 3D porous architecture to form biomimetic scaffold to optimize liver cell distribution, proliferation and function (Chapter 5) 3) Develop a hierarchical self- assemble pathway... collagen fiber bundle formation A hierarchical self- assembly pathway to form PA fiber bundles by inducing and controlling inter-nanofibers interactions using the bioactive motif RGDS will be developed and investigated Mechanism beyond the hierarchical self- assembly of PAs into fiber bundles will be proposed and proved 3D architecture built up from fiber bundles will be assessed for pore size and permeability... Chapter 2 effect of implanted materials in body, engineers, chemists, and biologists, in collaboration with physicians, were formalizing design principles and synthetic strategies for biomaterials The important principle that the release of toxic from implanted materials would adversely affect healing was realized and applied to design of implanted materials Based on the formalized design principles, . SELF- ASSEMBLING PEPTIDE- AMPHIPHILE BIOMIMETIC MATERIALS FOR BIOMEDICAL APPLICATIONS LUO JINGNAN NATIONAL UNIVERSITY OF SINGAPORE 2012 SELF- ASSEMBLING PEPTIDE- AMPHIPHILE. mimicking means: molecular self- assembly 26 Self- assembling peptide systems 26 Peptide amphiphiles 28 Approaches to program PA self- assembly 31 Functionalization of self- assembled PA nanostructures. biomimetic materials. This thesis was designed to develop new class of biomimetic materials that closely resembled the roles of natural materials and held great potential for a number of biomedical applications,

Ngày đăng: 09/09/2015, 18:57

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan