1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Sprouty in breast cancer

211 191 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 211
Dung lượng 12,86 MB

Nội dung

SPROUTY IN BREAST CANCER LO TING LING B.SC. (PHARMACY) WITH HONOURS NATIONAL UNIVERSITY OF SINGAPORE A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY INSTITUTE OF MOLECULAR AND CELL BIOLOGY DEPARTMENT OF PHYSIOLOGY NATIONAL UNIVERSITY OF SINGAPORE 2007 I ACKNOWLEDGEMENTS My gratitude and special thanks extend to: Associate Prof. Graeme R. Guy for his excellent mentorship and guidance. His constant support and encouragement have been instrumental towards the progress of my Ph.D. research. I am also thankful to the following Ph.D. review committee: Associate Prof. Uttam Surana Associate Prof. Low Boon Chuan for their constructive suggestions and scientific discussions. The following scientists who helped me in various ways: Dr. Permeen Yusoff for assistance in immunohistochemistry and in situ hybridization experiments. Dr. Fong Chee Wai for scientific guidance in my first year of PhD. Dr. Rebecca Jackson and Chow Soah Yee for proof reading this thesis. Dr. Jormay Lim, Dr. Lao Dieu Hung, Sumana Chandramouli and Chow Soah Yee for discussions and sharing of reagents. All past and present lab members and all people who have helped me in one way another. Heartfelt appreciation goes to my parents and my husband for their unwavering love, support and patience throughout my Ph.D. candidature. Ting Ling Lo April 2007 II TABLE OF CONTENTS ACKNOWLEDGEMENTS I TABLE OF CONTENTS II LIST OF FIGURES VIII LIST OF TABLES XI ABBREVIATIONS XII SUMMARY XVII CHAPTER Introduction 1.1 Mammalian cell signalling 1.2 Receptor tyrosine kinase (RTK) signalling pathways 1.3 Ras/ERK pathway 1.3.1 Introduction 1.3.2 Adapter and scaffold proteins 1.3.3 Ras 1.3.4 Raf 1.3.5 MEK 1.3.6 ERK 1.3.7 Modulators of the strength and duration of ERK signalling 1.4 Sprouty family of proteins 10 1.4.1 Discovery of Sprouty 10 1.4.2 Structure of Sproutys 13 1.4.3 Sproutys and their mechanisms of inhibition of RTK signalling 13 1.4.4 Regulation of the activity of Sproutys 16 1.4.4.1 Post-translational modifications of Sproutys 16 1.4.4.1.1 Tyrosine phosphorylation of Sproutys 1.4.4.1.2 Serine phosphorylation and palmitoylation of Sproutys III 1.4.5 1.5 1.5.2 1.5.3 1.5.4 1.7 18 Physiological functions of Sproutys 20 1.4.5.1 Vertebrate development 20 1.4.5.2 Proliferation and differentiation 22 1.4.5.3 Cell motility 22 Cancer 1.5.1 1.6 1.4.4.2 Regulation of Sprouty levels 23 Alterations of three types of genes are responsible for tumourigenesis: oncogenes, tumour suppressor genes and stability genes 23 Mechanisms of alterations in cancer susceptibility genes 26 1.5.2.1 Genetic mechanisms 26 1.5.2.2 Epigenetic mechanisms 27 1.5.2.3 Transcriptional mechanisms 29 Implications of alterations in cancer susceptibility genes 30 1.5.3.1 RTK as oncogenes 32 1.5.3.2 Oncogenes in Ras-Raf-MEK-ERK pathway 32 1.5.3.2.1 Ras 33 1.5.3.2.2 Raf 33 1.5.3.3 Tumour suppressors 35 Tumour markers 38 Polyoma Middle T antigen (PyMT) as a cancer model 40 1.6.1 Introduction to Polyoma virus 40 1.6.2 PyMT as a model to study transformation 40 1.6.3 General structure of PyMT 41 1.6.4 PyMT signalling pathways 42 Aims of research CHAPTER 2.1 46 Materials and Methods Chemicals and reagents 47 IV 2.2 DNA Methodology 47 2.2.1 General DNA manipulations 47 2.2.2 Preparation of electro-competent cells 48 2.2.3 Purification and analysis of DNA 48 2.2.4 Plasmid constructions 49 2.2.5 Reverse transcription-polymerase chain reaction (RT-PCR) analysis 50 2.2.6 Microarray gene expression data analysis 50 2.2.7 Quantitative real-time PCR 51 2.2.8 DNA sequencing 52 2.2.9 Synthesis of [α-32P] dCTP-labeled cDNA 52 2.2.10 Hybridization of cDNA probes to Cancer Profiling Array 52 2.2.11 Loss of heterozygosity (LOH) assay 53 2.3 RNA extraction and reverse transcription 54 2.4 Histological analysis 54 2.5 RNA in situ hybridization analysis 54 2.6 Immunohistochemistry 55 2.7 Cell culture 56 2.7.1 Transfection of mammalian cells 56 2.7.2 Treatment of cells with 5-aza-deoxycytidine and trichostatin 56 2.7.3 Stable transfection 57 2.7.4 Proliferation assay 57 2.7.5 Transformation assays 58 2.7.6 Staining for foci formation 59 2.7.7 Soft agar colony formation 59 2.7.8 In vivo tumour formation 59 2.7.9 siRNA knock down 60 2.7.10 Adenovirus System 60 Protein methodology 60 2.8 V 2.8.1 Preparation of extracts from cells 60 2.8.2 Analysis of proteins 61 2.8.3 Antibodies and immunoprecipitation reagents 61 2.8.4 Immunoprecipitations 62 2.8.5 Western transfer and immunodetection 62 CHAPTER 3.1 Down-regulation of Sproutys in breast cancer hSpry1 and expression is down-regulated in breast cancer 63 3.1.1 Microarray database 63 3.1.2 Matched normal and tumour tissue cDNA array studies 65 3.1.3 Quantitative real-time PCR studies 73 3.2 Expression of mSpry1 and mSpry2 in developing mouse mammary gland 76 3.3 In situ analysis of human breast tissues showed the down-regulation of Spry isoforms in breast cancer 84 Immunohistochemical analysis of human breast tissues showed the down-regulation of Spry isoforms in breast cancer 87 3.5 Expression of Spry2 in breast cancer cell lines 89 3.6 Down-regulation of hSpry2 in breast cancer is not due to epigenetic silencing 91 Inhibiting Spry’s function in MCF-7 cells results in cells proliferating faster and exhibiting anchorage-independent growth 97 Inhibiting Spry’s function in MCF-7 cells results in the formation of larger tumours 100 Discussion 103 3.4 3.7 3.8 3.9 CHAPTER Down-regulation of Sprouty2 in liver cancer 4.1 Introduction to Hepatocellular carcinoma (HCC) 107 4.2 Spry2 transcript is down-regulated in Hepatocellular carcinoma (HCC) 108 4.2.1 Microarray studies 108 4.2.2 Quantitative real-time PCR studies 111 VI 4.2.3 In situ and immunohistochemistry studies showed that Spry2 is differentially expressed in normal, cirrhotic and HCC liver tissues 111 4.3 Down-regulation of Spry2 in HCC is not due to loss of heterozygosity 115 4.4 Hypermethylation of promoter is not responsible for down-regulation of Spry2 117 Spry2 inhibits HGF-stimulated ERK and exerts an antiproliferative effect in the hepatoma cell line SNU449 119 Knocking down Spry2 levels transforms NIH3T3 cells in the presence of FGF stimulation 119 Discussion 123 4.5 4.6 4.7 CHAPTER Evidence of roles of Sprouty in cancers 5.1 Down-regulation of Sprys in prostate cancer 127 5.2 Evidence for Sprouty isoforms as tumour suppressors 130 5.3 Sprouty as a potential tumour marker 131 5.3.1 Melanoma 131 5.3.2 Gastrointestinal stromal tumours (GISTs) 133 5.3.3 clear cell Renal Cell Carcinomas (ccRCC) 134 5.3.4 Lung tumours induced by K-Ras 134 5.4 Summary CHAPTER 6.1 6.2 135 Sprouty inhibits Ras/ERK activation and transformation downstream of Polyoma Middle T antigen (PyMT) PyMT as a model to study transformation 137 6.1.1 Membrane binding 137 6.1.2 Binding to PP2A 139 6.1.3 Src binding 140 6.1.4 Crucial PyMT-stimulated signalling pathways that mediate transformation of cells 141 Spry2 inhibits PyMT-induced transformation in NIH3T3 cells 144 VII 6.3 Elucidation of Spry2's mechanism of inhibition of PyMTinduced transformation of cells 144 6.3.1 Spry1, and inhibit Ras/ERK signalling downstream of the PyMT 148 6.3.2 Comparison of the protein interactions of Spry isoforms in PyMT versus FGF signalling 150 6.3.2.1 Spry2 does not interact with c-Cbl in the presence of PyMT 153 6.3.2.2 Spry2's inhibition of ERK is not mediated by Grb2 sequestration 153 6.3.2.3 Conserved N-terminal tyrosine in Spry isoforms is crucial for the ability of Spry isoforms to inhibit the Ras/ERK signalling downstream of PyMT 158 6.3.2.4 Spry isoforms are not phosphorylated in the presence of PyMT 158 Asn53 and Tyr55 residues in the aa 50-60 region of Spry2 are crucial for mediating Spry2's ability to inhibit Ras/ERK signalling downstream of PyMT 158 Spry isoforms not inhibit the interaction between PyMT and its associated signaling proteins 160 6.3.3 6.3.4 6.3.5 6.4 Spry isoforms not inhibit PI3 kinase signalling downstream of PyMT 163 Discussion CHAPTER 165 Summary and future perspectives 7.1 Sprys expression is deregulated in various cancers 168 7.2 The mechanism of down-regulation of Sprys in different cancers is cancer- specific 168 Sprys as a tumour suppressors and molecular markers? 169 7.3 References 173 Publications 192 VIII LIST OF FIGURES 1.3.1 The Ras/ERK pathway. 1.3.3 Ras proteins function as regulated GDP–GTP binary switches. 1.4.1 Various isoforms of Sprouty proteins and their respective domains. 1.5.3.1 Constitutive activation of RTKs. 1.5.3.3 Inactivation of tumour suppressor genes. 1.6.3 Schematic diagram of PyMT. 1.6.4 A diagrammatic representation of Shc and PI3-kinase (PI3K) pathways stimulated by membrane-bound PyMT. 3.1.1 Spry2 is down-regulated in breast and uterine cancer. 3.1.2 (A) Layout of the commercially available cDNA array (Cancer Profiling Array) (BD Clontech). (B) hSpry1 and hSpry2 cDNA probes are specific for their respective Spry isoforms. (C) hSpry2 is down-regulated in breast cancer. (D) hSpry1 is down-regulated in breast cancer. (E) Expression levels of ErbB2 in breast tumours demonstrate that the sample population of breast tumours in the blot are a true representation of the population of breast cancers. (F) The cDNA samples in the Cancer Profiling Array are equally loaded. 3.1.3 (A), (B) Spry1 and are down-regulated in breast tumours. (C) Expression levels of ErbB2 were analyzed to show that the sample population of breast tumours used were from a representative breast cancer patient population. 3.2.1 Mouse mammary gland development during puberty, pregnancy and lactation. 3.2.2 Phases of mammary gland development. 3.2.3 (A) mSpry2 is highly expressed in developing mammary ducts in and week old females and appeared to be confined specifically to the epithelial lining of the mammary ducts. (B) mSpry2's localization in week old male mouse mammary gland was found to be similar to that observed in week old female mouse mammary gland. IX (C) In pregnant mice, the expression of mSpry2 becomes elevated again in actively proliferating alveoli. mSpry2 expression then becomes diminished in the lactating female and appears to be totally absent during the involution phase. (D) A bar chart representation of the qualitative levels of Spry2 during the various stages of mammary gland development, based on the in situ hybridization data in Fig. 3.2.3A and Fig. 3.2.3C. (E) mSpry2 sense probe control demonstrates a lack of non-specific staining. (F) Co-localization of the two Spry isoforms, specifically in the luminal epithelial cells of the mammary ducts of a pregnant mouse. 3.3.1 hSpry2 and hFgf8 are co-localized in the epithelial lining of normal breast ducts. 3.3.2 (A), (B) Spry1 and are down-regulated in human breast cancer tissues. 3.4 (A) Immunohistochemical analysis of human breast tissue showed that Spry2 localizes specifically in the epithelial lining of breast ducts. (B) Immunohistochemical analysis of human breast tissue showed that Spry2 expression is down-regulated in breast cancer. 3.5 Spry2 mRNA expression in various normal and tumour breast cell lines. 3.6.1 (A) Schematic representation of the hSPRY2 gene structure highlighting the positions of the two CpG islands (CpG I and CpG II) relative to the transcription start site. (B) Epigenetic silencing is not responsible for the down-regulation of Spry2 expression in breast tumours. 3.62 WT1, an upstream transcriptional effector of Spry1, is not the cause of downregulation of Spry1 in breast cancer. 3.7 Inhibiting Spry’s function causes MCF-7 cells to proliferate faster and exhibit anchorage independent growth. 3.8 (A), (B) Inhibiting Spry’s function causes MCF-7 cells to have greater in vivo tumourigenic potential. (C) Expression of hSpry2Y55F in the xenograft tumours excised from the nude mice. 4.2.1 Spry2 transcript is down-regulated in Hepatocellular carcinoma (HCC). 4.2.2 Spry2 but not Spry1 is significantly down-regulated in HCC. 4.2.3 Spry2 expression is relatively higher in normal and cirrhotic liver compared to HCC liver. 4.3 Loss of Heterozygosity (LOH) does not cause of the down-regulation of Spry2 HCC. in 177 El-Serag HB, Hampel H, Yeh C, Rabeneck L. Extrahepatic manifestations of hepatitis C among United States male veterans. Hepatology. 2002; 36(6):1439-45. Esteller M. The coming of age of DNA methylation in medicine in the genomics and postgenomics era. Clin Immunol. 2002; 103(3 Pt 1):213-6. Esteva FJ, Hortobagyi GN. Prognostic molecular markers in early breast cancer. Breast Cancer Res. 2004; 6(3):109-18. F: Farooq A, Zhou MM. Structure and regulation of MAPK phosphatases. Cell Signal. 2004; 16(7):76979. Review. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990; 61(5):759-67. Feig LA. Ral-GTPases: approaching their 15 minutes of fame. Trends Cell Biol. 2003; 13(8):419-25. Review. Feig LA, Buchsbaum RJ. Cell signaling: life or death decisions of ras proteins. Curr Biol. 2002; 12(7):R259-61. Review. Fiorini M, Ballaro C, Sala G, Falcone G, Alema S, Segatto O. Expression of RALT, a feedback inhibitor of ErbB receptors, is subjected to an integrated transcriptional and post-translational control. Oncogene. 2002; 21(42):6530-9. Flamme I, Frolich T, Risau W. Molecular mechanisms of vasculogenesis and embryonic angiogenesis. J Cell Physiol. 1997; 173(2):206-10. Review. Fong CW, Leong HF, Wong ES, Lim J, Yusoff P, Guy GR. Tyrosine phosphorylation of Sprouty2 enhances its interaction with c-Cbl and is crucial for its function. J Biol Chem. 2003; 278(35):3345664. Frank SA. Somatic mutation: early cancer steps depend on tissue architecture. Curr Biol. 2003; 13(7):R261-3. Review. Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature. 1986; 323(6089):643-6. Fritzsche S, Kenzelmann M, Hoffmann MJ, Muller M, Engers R, Grone HJ, Schulz WA. Concomitant down-regulation of SPRY1 and SPRY2 in prostate carcinoma. Endocr Relat Cancer. 2006; 13(3):83949. Frolov A, Chahwan S, Ochs M, Arnoletti JP, Pan ZZ, Favorova O, Fletcher J, von Mehren M, Eisenberg B, Godwin AK. Response markers and the molecular mechanisms of action of Gleevec in gastrointestinal stromal tumors. Mol Cancer Ther. 2003; 2(8):699-709. Fuks F, Burgers WA, Brehm A, Hughes-Davies L, Kouzarides T. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet. 2000; 24(1):88-91. Fukushima T, Suzuki S, Mashiko M, Ohtake T, Endo Y, Takebayashi Y, Sekikawa K, Hagiwara K, Takenoshita S. BRAF mutations in papillary carcinomas of the thyroid. Oncogene. 2003; 22(41):64557. Furthauer M, Reifers F, Brand M, Thisse B, Thisse C. sprouty4 acts in vivo as a feedback-induced antagonist of FGF signaling in zebrafish. Development. 2001; 128(12):2175-86. Furthauer M, Lin W, Ang SL, Thisse B, Thisse C. Sef is a feedback-induced antagonist of Ras/MAPKmediated FGF signalling. Nat Cell Biol. 2002; 4(2):170-4. 178 Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton MR. A census of human cancer genes. Nat Rev Cancer. 2004; 4(3):177-83. G: Gan DD, Macaluso M, Cinti C, Khalili K, Giordano A. How does a normal human cell become a cancer cell? J Exp Clin Cancer Res. 2003; 22(4):509-16. Review. Giambartolomei S, Covone F, Levrero M, Balsano C. Sustained activation of the Raf/MEK/Erk pathway in response to EGF in stable cell lines expressing the Hepatitis C Virus (HCV) core protein. Oncogene. 2001; 20(20):2606-10. Glover HR, Brewster CE, Dilworth SM. Association between src-kinases and the polyoma virus oncogene middle T-antigen requires PP2A and a specific sequence motif. Oncogene. 1999; 18(30):4364-70. Gottlieb KA, Villarreal LP. Natural biology of polyomavirus middle T antigen. Microbiol Mol Biol Rev. 2001; 65(2):288-318. Review. Greenfield C, Hiles I, Waterfield MD, Federwisch M, Wollmer A, Blundell TL, McDonald N. Epidermal growth factor binding induces a conformational change in the external domain of its receptor. EMBO J. 1989; 8(13):4115-23. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, Edkins S, O'Meara S, Vastrik I, Schmidt EE, Avis T, Barthorpe S, Bhamra G, Buck G, Choudhury B, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jenkinson A, Jones D, Menzies A, Mironenko T, Perry J, Raine K, Richardson D, Shepherd R, Small A, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Cahill DP, Louis DN, Goldstraw P, Nicholson AG, Brasseur F, Looijenga L, Weber BL, Chiew YE, DeFazio A, Greaves MF, Green AR, Campbell P, Birney E, Easton DF, Chenevix-Trench G, Tan MH, Khoo SK, Teh BT, Yuen ST, Leung SY, Wooster R, Futreal PA, Stratton MR. Patterns of somatic mutation in human cancer genomes. Nature. 2007; 446(7132):153-8. Gross I, Bassit B, Benezra M, Licht JD. Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras activation. J Biol Chem. 2001; 276(49):46460-8. Gross I, Morrison DJ, Hyink DP, Georgas K, English MA, Mericskay M, Hosono S, Sassoon D, Wilson PD, Little M, Licht JD. The receptor tyrosine kinase regulator Sprouty1 is a target of the tumor suppressor WT1 and important for kidney development. J Biol Chem. 2003; 278(42):41420-30. GROSS L. A filterable agent, recovered from Ak leukemic extracts, causing salivary gland carcinomas in C3H mice. Proc Soc Exp Biol Med. 1953; 83(2):414-21. Gross, L. (ed.) 1983. The polyoma virus, p737-828. In Oncogenic viruses. Pergamon Press, Oxford, England. Grussenmeyer T, Carbone-Wiley A, Scheidtmann KH, Walter G. Interactions between polyomavirus medium T antigen and three cellular proteins of 88, 61, and 37 kilodaltons. J Virol. 1987; 61(12):39029. Guan KL, Figueroa C, Brtva TR, Zhu T, Taylor J, Barber TD, Vojtek AB. Negative regulation of the serine/threonine kinase B-Raf by Akt. J Biol Chem. 2000; 275(35):27354-9. Guy GR, Wong ES, Yusoff P, Chandramouli S, Lo TL, Lim J, Fong CW. Sprouty: how does the branch manager work? J Cell Sci. 2003; 116(Pt 15):3061-8. Review. H: Hacohen N, Kramer S, Sutherland D, Hiromi Y, Krasnow MA. Sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell. 1998; 92(2):253-63. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000; 100(1):57-70. 179 Hall AB, Jura N, DaSilva J, Jang YJ, Gong D, Bar-Sagi D. hSpry2 is targeted to the ubiquitindependent proteasome pathway by c-Cbl. Curr Biol. 2003; 13(4):308-14. Hanafusa H, Torii S, Yasunaga T, Nishida E. Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signaling pathway. Nat Cell Biol. 2002; 4(11):850-8. Hanahan D. Signaling vascular morphogenesis and maintenance. Science. 1997; 277(5322):48-50. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000; 100(1):57-70. Review. Hancock JT., Cell Signalling, Addison-Wesley, 1998 Hancock JF. Ras proteins: different signals from different locations. Nat Rev Mol Cell Biol. 2003; 4(5):373-84. Harvey R, Oostra BA, Belsham GJ, Gillett P, Smith AE. An antibody to a synthetic peptide recognizes polyomavirus middle-T antigen and reveals multiple in vitro tyrosine phosphorylation sites. Mol Cell Biol. 1984; 4(7):1334-42. Hayashi J, Aoki H, Arakawa Y, Hino O. Hepatitis C virus and hepatocarcinogenesis. Intervirology. 1999; 42(2-3):205-10. Review. Hayashi J, Aoki H, Kajino K, Moriyama M, Arakawa Y, Hino O. Hepatitis C virus core protein activates the MAPK/ERK cascade synergistically with tumor promoter TPA, but not with epidermal growth factor or transforming growth factor alpha. Hepatology. 2000; 32(5):958-61. Heldin CH. Dimerization of cell surface receptors in signal transduction. Cell. 1995; 80(2):213-23. Review. Hennighausen L, Robinson GW. Information networks in the mammary gland. Nat Rev Mol Cell Biol. 2005; 6(9):715-25. Review. Horak ID, Kawakami T, Gregory F, Robbins KC, Bolen JB. Association of p60fyn with middle tumor antigen in murine polyomavirus-transformed rat cells. J Virol. 1989; 63(5):2343-7. Hoshino R, Chatani Y, Yamori T, Tsuruo T, Oka H, Yoshida O, Shimada Y, Ari-i S, Wada H, Fujimoto J, Kohno M. Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors. Oncogene. 1999; 18(3):813-22. Houben R, Becker JC, Kappel A, Terheyden P, Brocker EB, Goetz R, Rapp UR. Constitutive activation of the Ras-Raf signaling pathway in metastatic melanoma is associated with poor prognosis. J Carcinog. 2004; 3(1):6. Hunter T, Hutchinson MA, Eckhart W. Polyoma middle-sized T antigen can be phosphorylated on tyrosine at multiple sites in vitro. EMBO J. 1984; 3(1):73-9. Hunter T. Oncoprotein networks. Cell. 1997; 88(3):333-46. Review. Huser M, Luckett J, Chiloeches A, Mercer K, Iwobi M, Giblett S, Sun XM, Brown J, Marais R, Pritchard C. MEK kinase activity is not necessary for Raf-1 function. EMBO J. 2001; 20(8):1940-51. Huynh H, Nguyen TT, Chow KH, Tan PH, Soo KC, Tran E. Over-expression of the mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK in hepatocellular carcinoma: its role in tumor progression and apoptosis. BMC Gastroenterol. 2003; 3:19. I: Ichaso N, Dilworth SM. Cell transformation by the middle T-antigen of polyoma virus. Oncogene. 2001; 20(54):7908-16. Review. 180 Ikenoue T, Hikiba Y, Kanai F, Tanaka Y, Imamura J, Imamura T, Ohta M, Ijichi H, Tateishi K, Kawakami T, Aragaki J, Matsumura M, Kawabe T, Omata M. Functional analysis of mutations within the kinase activation segment of B-Raf in human colorectal tumors. Cancer Res. 2003; 63(23):8132-7. Ikenoue T, Hikiba Y, Kanai F, Aragaki J, Tanaka Y, Imamura J, Imamura T, Ohta M, Ijichi H, Tateishi K, Kawakami T, Matsumura M, Kawabe T, Omata M. Different effects of point mutations within the B-Raf glycine-rich loop in colorectal tumors on mitogen-activated protein/extracellular signalregulated kinase kinase/extracellular signal-regulated kinase and nuclear factor kappaB pathway and cellular transformation. Cancer Res. 2004; 64(10):3428-35. Impagnatiello MA, Weitzer S, Gannon G, Compagni A, Cotten M, Christofori G. Mammalian sprouty1 and -2 are membrane-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells. J Cell Biol. 2001; 152(5):1087-98. Ito Y, Sasaki Y, Horimoto M, Wada S, Tanaka Y, Kasahara A, Ueki T, Hirano T, Yamamoto H, Fujimoto J, Okamoto E, Hayashi N, Hori M. Activation of mitogen-activated protein kinases/extracellular signal-regulated kinases in human hepatocellular carcinoma. Hepatology. 1998; 27(4):951-8. J: Janssens V, Goris J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J. 2001; 353(Pt 3):417-39. Review. Jefford CE, Irminger-Finger I. Mechanisms of chromosome instability in cancers. Crit Rev Oncol Hematol. 2006; 59(1):1-14. Johnson L, Mercer K, Greenbaum D, Bronson RT, Crowley D, Tuveson DA, Jacks T. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature. 2001; 410(6832):1111-6. Johnstone RW. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov. 2002; 1(4):287-99. Review. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002; 3(6):415-28. Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet. 1999; 21(2):163-7. Jou YS, Lee CS, Chang YH, Hsiao CF, Chen CF, Chao CC, Wu LS, Yeh SH, Chen DS, Chen PJ. Clustering of minimal deleted regions reveals distinct genetic pathways of human hepatocellular carcinoma. Cancer Res. 2004; 64(9):3030-6. K: Kaleko M, Rutter WJ, Miller AD. Overexpression of the human insulinlike growth factor I receptor promotes ligand-dependent neoplastic transformation. Mol Cell Biol. 1990; 10(2):464-73. Kaplan DR, Whitman M, Schaffhausen B, Raptis L, Garcea RL, Pallas D, Roberts TM, Cantley L. Phosphatidylinositol metabolism and polyoma-mediated transformation. Proc Natl Acad Sci U S A. 1986; 83(11):3624-8. Kaplan DR, Whitman M, Schaffhausen B, Pallas DC, White M, Cantley L, Roberts TM. Common elements in growth factor stimulation and oncogenic transformation: 85 kd phosphoprotein and phosphatidylinositol kinase activity. Cell. 1987; 50(7):1021-9. Karamouzis MV, Gorgoulis VG, Papavassiliou AG. Transcription factors and neoplasia: vistas in novel drug design. Clin Cancer Res. 2002; 8(5):949-61. Review. Kawakami Y, Rodriguez-Leon J, Koth CM, Buscher D, Itoh T, Raya A, Ng JK, Esteban CR, Takahashi S, Henrique D, Schwarz MF, Asahara H, Izpisua Belmonte JC. MKP3 mediates the cellular response to FGF8 signalling in the vertebrate limb. Nat Cell Biol. 2003; 5(6):513-9. 181 Kiefer F, Courtneidge SA, Wagner EF. Oncogenic properties of the middle T antigens of polyomaviruses. Adv Cancer Res. 1994; 64:125-57. Review. Kim HJ, Bar-Sagi D. Modulation of signalling by Sprouty: a developing story. Nat Rev Mol Cell Biol. 2004; 5(6):441-50. Review. Kim KR, Moon HE, Kim KW. Hypoxia-induced angiogenesis in human hepatocellular carcinoma. J Mol Med. 2002 Nov;80(11):703-14. Review. Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 2003; 63(7):1454-7. Kinzler KW, Vogelstein B. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature. 1997; 386(6627):761-763. Klein OD, Minowada G, Peterkova R, Kangas A, Yu BD, Lesot H, Peterka M, Jernvall J, Martin GR. Sprouty genes control diastema tooth development via bidirectional antagonism of epithelialmesenchymal FGF signaling. Dev Cell. 2006; 11(2):181-90. Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971; 68(4):820-3. Knudson AG. The genetics of childhood cancer. Bull Cancer. 1988; 75(1):135-8. Knudson AG. Antioncogenes and human cancer. Proc Natl Acad Sci U S A. 1993; 90(23):10914-21. Review. Knudson AG. Two genetic hits (more or less) to cancer. Nat Rev Cancer. 2001; 1(2):157-62. Knudson AG. Cancer genetics. Am J Med Genet. 2002; 111(1):96-102. Koike K, Tsutsumi T, Fujie H, Shintani Y, Kyoji M. Molecular mechanism of viral hepatocarcinogenesis. Oncology. 2002; 62 Suppl 1:29-37. Review. Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med. 1998; 4(7):844-7. Kornbluth S, Sudol M, Hanafusa H. Association of the polyomavirus middle-T antigen with c-yes protein. Nature. 1987; 325(7000):171-3. Krauss Gerhard, Biochemistry of Signal Transduction and Regulation, Wiley-VCH, 1999. Kramer S, Okabe M, Hacohen N, Krasnow MA, Hiromi Y. Sprouty: a common antagonist of FGF and EGF signaling pathways in Drosophila. Development. 1999; 126(11):2515-25. Kranenburg O, Moolenaar WH. Ras-MAP kinase signaling by lysophosphatidic acid and other G protein-coupled receptor agonists. Oncogene. 2001; 20(13):1540-6. Review. Krolewski JJ. Cytokine and growth factor receptors in the nucleus: what's up with that? J Cell Biochem. 2005; 95(3):478-87. Kumar R, Angelini S, Czene K, Sauroja I, Hahka-Kemppinen M, Pyrhonen S, Hemminki K. BRAF mutations in metastatic melanoma: a possible association with clinical outcome. Clin Cancer Res. 2003; 9(9):3362-8. 182 Kwabi-Addo B, Wang J, Erdem H, Vaid A, Castro P, Ayala G, Ittmann M. The expression of Sprouty1, an inhibitor of fibroblast growth factor signal transduction, is decreased in human prostate cancer. Cancer Res. 2004; 64(14):4728-35. Kypta RM, Hemming A, Courtneidge SA. Identification and characterization of p59fyn (a src-like protein tyrosine kinase) in normal and polyoma virus transformed cells. EMBO J. 1988; 7(12):3837-44. L: Lao DH, Chandramouli S, Yusoff P, Fong CW, Saw TY, Tai LP, Yu CY, Leong HF, Guy GR. A Src homology 3-binding sequence on the C terminus of Sprouty2 is necessary for inhibition of the Ras/ERK pathway downstream of fibroblast growth factor receptor stimulation. J Biol Chem. 2006; 281(40):29993-30000. Lao DH, Yusoff P, Chandramouli S, Philp RJ, Fong CW, Jackson RA, Saw TY, Yu CY, Guy GR. Direct binding of PP2A to sprouty2 and phosphorylation changes are a prerequisite for ERK inhibition downstream of fibroblast growth factor receptor stimulation. J Biol Chem. 2007; 282(12):9117-26. Lappi DA. Semin Cancer Biol. 1995; 6(5):279-88. Tumor targeting through fibroblast growth factor receptors. Lee CC, Putnam AJ, Miranti CK, Gustafson M, Wang LM, Vande Woude GF, Gao CF. Overexpression of sprouty inhibits HGF/SF-mediated cell growth, invasion, migration, and cytokinesis. Oncogene. 2004; 23(30):5193-202. Lee HS, Huang AM, Huang GT, Yang PM, Chen PJ, Sheu JC, Lai MY, Lee SC, Chou CK, Chen DS. Hepatocyte growth factor stimulates the growth and activates mitogen-activated protein kinase in human hepatoma cells. J Biomed Sci. 1998; 5(3):180-4. Lee SH, Schloss DJ, Jarvis L, Krasnow MA, Swain JL. Inhibition of angiogenesis by a mouse sprouty protein. J Biol Chem. 2001; 276(6):4128-33. Leeksma OC, Van Achterberg TA, Tsumura Y, Toshima J, Eldering E, Kroes WG, Mellink C, Spaargaren M, Mizuno K, Pannekoek H, de Vries CJ. Human sprouty 4, a new ras antagonist on 5q31, interacts with the dual specificity kinase TESK1. Eur J Biochem. 2002; 269(10):2546-56. Levy L, Renard CA, Wei Y, Buendia MA. Genetic alterations and oncogenic pathways in hepatocellular carcinoma. Ann N Y Acad Sci. 2002; 963:21-36. Lewis TS, Shapiro PS, Ahn NG. Signal transduction through MAP kinase cascades. Adv Cancer Res. 1998; 74:49-139. Review. Lewis MT. Hedgehog signaling in mouse mammary gland development and neoplasia. J Mammary Gland Biol Neoplasia. 2001; 6(1):53-66. Review. Li W, Zhu T, Guan KL. Transformation potential of Ras isoforms correlates with activation of phosphatidylinositol 3-kinase but not ERK. J Biol Chem. 2004; 279(36):37398-406. Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ, Pollard JW. Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol. 2003; 163(5):2113-26. Liu J, DeYoung SM, Hwang JB, O'Leary EE, Saltiel AR. The roles of Cbl-b and c-Cbl in insulinstimulated glucose transport. J Biol Chem. 2003; 278(38):36754-62. Lo TL, Fong CW, Yusoff P, McKie AB, Chua MS, Leung HY, Guy GR. Sprouty and cancer: the first terms report. Cancer Lett. 2006 ;242(2):141-50. Review. Loeb DM, Evron E, Patel CB, Sharma PM, Niranjan B, Buluwela L, Weitzman SA, Korz D, Sukumar S. Wilms' tumor suppressor gene (WT1) is expressed in primary breast tumors despite tumor-specific promoter methylation. Cancer Res. 2001; 61(3):921-5. 183 Lomax M, Fried M. Polyoma virus disrupts ARF signaling to p53. Oncogene. 2001; 20(36):4951-60. Ludwig JA, Weinstein JN. Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer. 2005; 5(11):845-56. M: Maass N, Biallek M, Rosel F, Schem C, Ohike N, Zhang M, Jonat W, Nagasaki K. Hypermethylation and histone deacetylation lead to silencing of the maspin gene in human breast cancer. Biochem Biophys Res Commun. 2002; 297(1):125-8. Macaluso M, Paggi MG, Giordano A. Genetic and epigenetic alterations as hallmarks of the intricate road to cancer. Oncogene. 2003; 22(42):6472-8. Review. Macleod K.Tumor suppressor genes. Curr Opin Genet Dev. 2000; 10(1):81-93. Review. Mailleux AA, Tefft D, Ndiaye D, Itoh N, Thiery JP, Warburton D, Bellusci S. Evidence that SPROUTY2 functions as an inhibitor of mouse embryonic lung growth and morphogenesis. Mech Dev. 2001; 102(1-2):81-94. Mailleux AA, Spencer-Dene B, Dillon C, Ndiaye D, Savona-Baron C, Itoh N, Kato S, Dickson C, Thiery JP, Bellusci S. Role of FGF10/FGFR2b signaling during mammary gland development in the mouse embryo. Development. 2002; 129(1):53-60. Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003; 3(6):459-65. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002; 298(5600):1912-34. Review. Marais R, Marshall CJ. Control of the ERK MAP kinase cascade by Ras and Raf. Cancer Surv. 1996; 27:101-25. Marais R, Light Y, Paterson HF, Mason CS, Marshall CJ. Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases. J Biol Chem. 1997; 272(7):4378-83. Markland W, Oostra BA, Harvey R, Markham AF, Colledge WH, Smith AE. Site-directed mutagenesis of polyomavirus middle-T antigen sequences encoding tyrosine 315 and tyrosine 250. J Virol. 1986; 59(2):384-91. Markland W, Smith AE. Mutants of polyomavirus middle-T antigen. Biochim Biophys Acta. 1987; 907(3):299-321. Review. Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK. Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer. 2001; 1(3):194-202. Review. Marsh SK, Bansal GS, Zammit C, Barnard R, Coope R, Roberts-Clarke D, Gomm JJ, Coombes RC, Johnston CL. Increased expression of fibroblast growth factor in human breast cancer. Oncogene. 1999; 18(4):1053-60. Mason JM, Morrison DJ, Bassit B, Dimri M, Band H, Licht JD, Gross I. Tyrosine phosphorylation of Sprouty proteins regulates their ability to inhibit growth factor signaling: a dual feedback loop. Mol Biol Cell. 2004; 15(5):2176-88. Mason JM, Morrison DJ, Basson MA, Licht JD. Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. Trends Cell Biol. 2006; 16(1):45-54. Review. Matheny SA, Chen C, Kortum RL, Razidlo GL, Lewis RE, White MA. Ras regulates assembly of mitogenic signalling complexes through the effector protein IMP. Nature. 2004; 427(6971):256-60. 184 Matthews JT, Benjamin TL. 12-O-tetradecanoylphorbol-13-acetate stimulates phosphorylation of the 58,000-Mr form of polyomavirus middle T antigen in vivo: implications for a possible role of protein kinase C in middle T function. J Virol. 1986; 58(2):239-46. McKie AB, Douglas DA, Olijslagers S, Graham J, Omar MM, Heer R, Gnanapragasam VJ, Robson CN, Leung HY. Epigenetic inactivation of the human sprouty2 (hSPRY2) homologue in prostate cancer. Oncogene. 2005; 24(13):2166-74. McCormick F. Signalling networks that cause cancer. Trends Cell Biol. 1999; 9(12):M53-6. Review. Mikula M, Schreiber M, Husak Z, Kucerova L, Ruth J, Wieser R, Zatloukal K, Beug H, Wagner EF, Baccarini M. Embryonic lethality and fetal liver apoptosis in mice lacking the c-raf-1 gene. EMBO J. 2001; 20(8):1952-62. Miller BJ, Wang D, Krahe R, Wright FA. Pooled analysis of loss of heterozygosity in breast cancer: a genome scan provides comparative evidence for multiple tumor suppressors and identifies novel candidate regions. Am J Hum Genet. 2003; 73(4):748-67. Minowada G, Jarvis LA, Chi CL, Neubuser A, Sun X, Hacohen N, Krasnow MA, Martin GR. Vertebrate Sprouty genes are induced by FGF signaling and can cause chondrodysplasia when overexpressed. Development. 1999; 126(20):4465-75. Miyoshi K, Wakioka T, Nishinakamura H, Kamio M, Yang L, Inoue M, Hasegawa M, Yonemitsu Y, Komiya S, Yoshimura A. The Sprouty-related protein, Spred, inhibits cell motility, metastasis, and Rho-mediated actin reorganization. Oncogene. 2004; 23(33):5567-76. Mor O, Read M, Fried M. p53 in polyoma virus transformed REF52 cells. Oncogene. 1997; 15(25):3113-9. Morrison RS, Yamaguchi F, Saya H, Bruner JM, Yahanda AM, Donehower LA, Berger M. Basic fibroblast growth factor and fibroblast growth factor receptor I are implicated in the growth of human astrocytomas. J Neurooncol. 1994; 18(3):207-16. Review. Mullane KP, Ratnofsky M, Cullere X, Schaffhausen B. Signaling from polyomavirus middle T and small T defines different roles for protein phosphatase 2A. Mol Cell Biol. 1998; 18(12):7556-64. Mumby M. Regulation by tumour antigens defines a role for PP2A in signal transduction. Semin Cancer Biol. 1995; 6(4):229-37. Review. Murphree AL, Benedict WF. Retinoblastoma: clues to human oncogenesis. Science. 1984; 223(4640):1028-33. N: Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998a; 393(6683):386-9. Nan X, Cross S, Bird A. Gene silencing by methyl-CpG-binding proteins. Novartis Found Symp. 1998b; 214:6-16. Review. Nielsen TO, West RB, Linn SC, Alter O, Knowling MA, O'Connell JX, Zhu S, Fero M, Sherlock G, Pollack JR, Brown PO, Botstein D, van de Rijn M. Molecular characterisation of soft tissue tumours: a gene expression study. Lancet. 2002; 359(9314):1301-7. Nicholson PR, Empereur S, Glover HR, Dilworth SM. ShcA tyrosine phosphorylation sites can replace ShcA binding in signalling by middle T-antigen. EMBO J. 2001; 20(22):6337-46. Nikiforova MN, Kimura ET, Gandhi M, Biddinger PW, Knauf JA, Basolo F, Zhu Z, Giannini R, Salvatore G, Fusco A, Santoro M, Fagin JA, Nikiforov YE. BRAF mutations in thyroid tumors are 185 restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab. 2003; 88(11):5399-404. Nowell PC. Tumor progression: a brief historical perspective. Semin Cancer Biol. 2002; 12(4):261-6. Review. Nutt SL, Dingwell KS, Holt CE, Amaya E. Xenopus Sprouty2 inhibits FGF-mediated gastrulation movements but does not affect mesoderm induction and patterning. Genes Dev. 2001; 15(9):1152-66. Nzeako UC, Goodman ZD, Ishak KG. Hepatocellular carcinoma in cirrhotic and noncirrhotic livers. A clinico-histopathologic study of 804 North American patients. Am J Clin Pathol. 1996; 105(1):65-75. O: O'Neill E, Kolch W. Conferring specificity on the ubiquitous Raf/MEK signalling pathway. Br J Cancer. 2004; 90(2):283-8. Review. Ory S, Zhou M, Conrads TP, Veenstra TD, Morrison DK. Protein phosphatase 2A positively regulates Ras signaling by dephosphorylating KSR1 and Raf-1 on critical 14-3-3 binding sites. Curr Biol. 2003; 13(16):1356-64. O'Shea CC, Fried M. Modulation of the ARF-p53 pathway by the small DNA tumor viruses. Cell Cycle. 2005; 4(3):449-52. Ozaki K, Kadomoto R, Asato K, Tanimura S, Itoh N, Kohno M. ERK pathway positively regulates the expression of Sprouty genes. Biochem Biophys Res Commun. 2001; 285(5):1084-8. P: Paige AJ. Redefining tumour suppressor genes: exceptions to the two-hit hypothesis. Cell Mol Life Sci. 2003; 60(10):2147-63. Paik JH, Kollipara R, Chu G, Ji H, Xiao Y, Ding Z, Miao L, Tothova Z, Horner JW, Carrasco DR, Jiang S, Gilliland DG, Chin L, Wong WH, Castrillon DH, DePinho RA. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell. 2007; 128(2):309-23. Pallas DC, Shahrik LK, Martin BL, Jaspers S, Miller TB, Brautigan DL, Roberts TM. Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell. 1990; 60(1):167-76. Pan KH, Lih CJ, Cohen SN. Analysis of DNA microarrays using algorithms that employ rule-based expert knowledge. Proc Natl Acad Sci U S A. 2002; 99(4):2118-23. Papin C, Denouel A, Calothy G, Eychene A. Identification of signalling proteins interacting with B-Raf in the yeast two-hybrid system. Oncogene. 1996; 12(10):2213-21. Pawson T. Protein modules and signalling networks. Nature. 1995; 373(6515):573-80. Review. Pawson T, Gish GD, Nash P. SH2 domains, interaction modules and cellular wiring. Trends Cell Biol. 2001; 11(12):504-11. Review. Payne SR, Kemp CJ. Tumor suppressor genetics. Carcinogenesis. 2005; 26(12):2031-45. Review. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH. Mitogenactivated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001; 22(2):153-83. Review. Perez L, Paasinen A, Schnierle B, Kach S, Senften M, Ballmer-Hofer K. Mitosis-specific phosphorylation of polyomavirus middle-sized tumor antigen and its role during cell transformation. Proc Natl Acad Sci U S A. 1993; 90(17):8113-7. 186 Perl AK, Hokuto I, Impagnatiello MA, Christofori G, Whitsett JA. Temporal effects of Sprouty on lung morphogenesis. Dev Biol. 2003; 258(1):154-68. Petricoin EF, Zoon KC, Kohn EC, Barrett JC, Liotta LA. Clinical proteomics: translating benchside promise into bedside reality. Nat Rev Drug Discov. 2002; 1(9):683-95. Review. Pineau P, Marchio A, Nagamori S, Seki S, Tiollais P, Dejean A. Homozygous deletion scanning in hepatobiliary tumor cell lines reveals alternative pathways for liver carcinogenesis. Hepatology. 2003; 37(4):852-61. Pouyssegur J, Volmat V, Lenormand P. Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Biochem Pharmacol. 2002; 64(5-6):755-63. Review. Prendergast GC, Lawe D, Ziff EB. Association of Myn, the murine homolog of max, with c-Myc stimulates methylation-sensitive DNA binding and ras cotransformation. Cell. 1991; 65(3):395-407. Q: Quilliam LA, Rebhun JF, Castro AF. A growing family of guanine nucleotide exchange factors is responsible for activation of Ras-family GTPases. Prog Nucleic Acid Res Mol Biol. 2002; 71:391-444. Review. Quon KC, Berns A. Haplo-insufficiency? Let me count the ways. Genes Dev. 2001; 15(22):2917-21. R: Rae JM, Creighton CJ, Meck JM, Haddad BR, Johnson MD. MDA-MB-435 cells are derived from M14 Melanoma cells--a loss for breast cancer, but a boon for melanoma research. Breast Cancer Res Treat. 2006. Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature. 2002; 418(6901):934. Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang CH, Angelo M, Ladd C,Reich M, Latulippe E, Mesirov JP, Poggio T, Gerald W, Loda M, Lander ES, Golub TR. Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci U S A. 2001; 98(26):15149-54. Raptis L, Lamfrom H, Benjamin TL. Regulation of cellular phenotype and expression of polyomavirus middle T antigen in rat fibroblasts. Mol Cell Biol. 1985; 5(9):2476-86. Rassoulzadegan M, Cowie A, Carr A, Glaichenhaus N, Kamen R, Cuzin F. The roles of individual polyoma virus early proteins in oncogenic transformation. Nature. 1982; 300(5894):713-8. Reich A, Sapir A, Shilo B. Sprouty is a general inhibitor of receptor tyrosine kinase signaling. Development. 1999; 126(18):4139-47. Repasky GA, Chenette EJ, Der CJ. Renewing the conspiracy theory debate: does Raf function alone to mediate Ras oncogenesis? Trends Cell Biol. 2004; 14(11):639-47. Review. Robertson KD. DNA methylation and chromatin - unraveling the tangled web. Oncogene. 2002; 21(35):5361-79. Review. Robertson SC, Tynan J, Donoghue DJ. RTK mutations and human syndromes: when good receptors turn bad. Trends Genet. 2000; 16(8):368. Rodriguez-Viciana P, Collins C, Fried M. Polyoma and SV40 proteins differentially regulate PP2A to activate distinct cellular signaling pathways involved in growth control. Proc Natl Acad Sci U S A. 2006; 103(51):19290-5. 187 Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P, Iyer V, Jeffrey SS, Van de Rijn M, Waltham M, Pergamenschikov A, Lee JC, Lashkari D, Shalon D, Myers TG, Weinstein JN, Botstein D, Brown PO. Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet. 2000; 24(3):227-35. Rountree MR, Bachman KE, Herman JG, Baylin SB. DNA methylation, chromatin inheritance, and cancer. Oncogene. 2001; 20(24):3156-65. Review. Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev. 2004; 68(2):320-44. Review. Rubin C, Litvak V, Medvedovsky H, Zwang Y, Lev S, Yarden Y. Sprouty fine-tunes EGF signaling through interlinked positive and negative feedback loops. Curr Biol. 2003; 13(4):297-307. Rubin C, Gur G, Yarden Y. Negative regulation of receptor tyrosine kinases: unexpected links to c-Cbl and receptor ubiquitylation. Cell Res. 2005a; 15(1):66-71. Review. Rubin C, Zwang Y, Vaisman N, Ron D, Yarden Y. Phosphorylation of carboxyl-terminal tyrosines modulates the specificity of Sprouty-2 inhibition of different signaling pathways. J Biol Chem. 2005b; 280(10):9735-44. Ruediger R, Roeckel D, Fait J, Bergqvist A, Magnusson G, Walter G. Identification of binding sites on the regulatory A subunit of protein phosphatase 2A for the catalytic C subunit and for tumor antigens of simian virus 40 and polyomavirus. Mol Cell Biol. 1992; 12(11):4872-82. S: Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol. 1995; 19(3):183-232. Review. Sambrook J, Russell DW. Molecular Cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, 2001, 3rd edition. Santarosa M, Ashworth A. Haploinsufficiency for tumour suppressor genes: when you don't need to go all the way. Biochim Biophys Acta. 2004; 1654(2):105-22. Sasaki A, Taketomi T, Wakioka T, Kato R, Yoshimura A. Identification of a dominant negative mutant of Sprouty that potentiates fibroblast growth factor- but not epidermal growth factor-induced ERK activation. J Biol Chem. 2001; 276(39):36804-8. Sasaki A, Taketomi T, Kato R, Saeki K, Nonami A, Sasaki M, Kuriyama M, Saito N, Shibuya M, Yoshimura A. Mammalian Sprouty4 suppresses Ras-independent ERK activation by binding to Raf1. Nat Cell Biol. 2003; 5(5):427-32. Schaffhausen B, Benjamin TL. Comparison of phosphorylation of two polyoma virus middle T antigens in vivo and in vitro. J Virol. 1981; 40(1):184-96. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2000; 103(2):211-25. Review. Schmidt CM, McKillop IH, Cahill PA, Sitzmann JV. Increased MAPK expression and activity in primary human hepatocellular carcinoma. Biochem Biophys Res Commun. 1997; 236(1):54-8. Schmidt CM, McKillop IH, Cahill PA, Sitzmann JV. The role of cAMP-MAPK signalling in the regulation of human hepatocellular carcinoma growth in vitro. Eur J Gastroenterol Hepatol. 1999; 11(12):1393-9. Sebolt-Leopold JS, Herrera R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer. 2004; 4(12):937-47. 188 Segawa K, Ito Y. Differential subcellular localization of in vivo-phosphorylated and nonphosphorylated middle-sized tumor antigen of polyoma virus and its relationship to middle-sized tumor antigen phosphorylating activity in vitro. Proc Natl Acad Sci U S A. 1982; 79(22):6812-6. Shapiro PS, Ahn NG. Feedback regulation of Raf-1 and mitogen-activated protein kinase (MAP) kinase kinases and by MAP kinase phosphatase-1 (MKP-1). J Biol Chem. 1998; 273(3):1788-93 Shaw AT, Meissner A, Dowdle JA, Crowley D, Magendantz M, Ouyang C, Parisi T, Rajagopal J, Blank LJ, Bronson RT, Stone JR, Tuveson DA, Jaenisch R, Jacks T. Sprouty-2 regulates oncogenic Kras in lung development and tumorigenesis. Genes Dev. 2007; 21(6):694-707. Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature. 2006; 441(7092):424-30. Review. Sherr CJ. Cancer cell cycles. Science. 1996; 274(5293):1672-7. Review. Shields JM, Pruitt K, McFall A, Shaub A, Der CJ. Understanding Ras: 'it ain't over 'til it's over'. Trends Cell Biol. 2000; 10(4):147-54. Review. Shilo BZ. Signaling by the Drosophila epidermal growth factor receptor pathway during development. Exp Cell Res. 2003; 284(1):140-9. Review. Shim K, Minowada G, Coling DE, Martin GR. Sprouty2, a mouse deafness gene, regulates cell fate decisions in the auditory sensory epithelium by antagonizing FGF signaling. Dev Cell. 2005; 8(4):55364. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson D, Willson JK, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE. The consensus coding sequences of human breast and colorectal cancers. Science. 2006; 314(5797):268-74. Skolnik EY, Lee CH, Batzer A, Vicentini LM, Zhou M, Daly R, Myers MJ Jr, Backer JM, Ullrich A, White MF, et al. The SH2/SH3 domain-containing protein GRB2 interacts with tyrosinephosphorylated IRS1 and Shc: implications for insulin control of ras signalling. EMBO J. 1993; 12(5):1929-36. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987; 235(4785):177-82. Smalley M, Ashworth A. Stem cells and breast cancer: A field in transit. Nat Rev Cancer. 2003; 3(11):832-44. Review. Srinivas PR, Kramer BS, Srivastava S. Trends in biomarker research for cancer detection. Lancet Oncol. 2001; 2(11):698-704. Review. Sternlicht MD. Key stages in mammary gland development: the cues that regulate ductal branching morphogenesis. Breast Cancer Res. 2006; 8(1):201. Review. Su W, Liu W, Schaffhausen BS, Roberts TM. Association of Polyomavirus middle tumor antigen with phospholipase C-gamma 1. J Biol Chem. 1995; 270(21):12331-4. Suriawinata A, Xu R. An update on the molecular genetics of hepatocellular carcinoma. Semin Liver Dis. 2004; 24(1):77-88. Szabo E, Paska C, Kaposi Novak P, Schaff Z, Kiss A. Similarities and differences in hepatitis B and C virus induced hepatocarcinogenesis. Pathol Oncol Res. 2004; 10(1):5-11. Review. T: 189 Takahashi M, Rhodes DR, Furge KA, Kanayama H, Kagawa S, Haab BB, Teh BT. Gene expression profiling of clear cell renal cell carcinoma: gene identification and prognostic classification. Proc Natl Acad Sci U S A. 2001; 98(17):9754-9. Taketomi T, Yoshiga D, Taniguchi K, Kobayashi T, Nonami A, Kato R, Sasaki M, Sasaki A, Ishibashi H, Moriyama M, Nakamura K, Nishimura J, Yoshimura A. Loss of mammalian Sprouty2 leads to enteric neuronal hyperplasia and esophageal achalasia. Nat Neurosci. 2005; 8(7):855-7. Talmage DA, Freund R, Young AT, Dahl J, Dawe CJ, Benjamin TL. Phosphorylation of middle T by pp60c-src: a switch for binding of phosphatidylinositol 3-kinase and optimal tumorigenesis. Cell. 1989; 59(1):55-65. Taniguchi K, Ayada T, Ichiyama K, Kohno R, Yonemitsu Y, Minami Y, Kikuchi A, Maehara Y, Yoshimura A. Sprouty2 and Sprouty4 are essential for embryonic morphogenesis and regulation of FGF signaling. Biochem Biophys Res Commun. 2007; 352(4):896-902. Tefft JD, Lee M, Smith S, Leinwand M, Zhao J, Bringas P Jr, Crowe DL, Warburton D. Conserved function of mSpry-2, a murine homolog of Drosophila sprouty, which negatively modulates respiratory organogenesis. Curr Biol. 1999; 9(4):219-22. Templeton D, Eckhart W. N-terminal amino acid sequences of the polyoma middle-size T antigen are important for protein kinase activity and cell transformation. Mol Cell Biol. 1984; 4(5):817-21. Thompson EW, Waltham M, Ramus SJ, Hutchins AM, Armes JE, Campbell IG, Williams ED, Thompson PR, Rae JM, Johnson MD, Clarke R. LCC15-MB cells are MDA-MB-435: a review of misidentified breast and prostate cell lines. Clin Exp Metastasis. 2004; 21(6):535-41. Tooze, J. 1980 DNA tumor viruses, p125-295. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. Treisman R, Novak U, Favaloro J, Kamen R. Transformation of rat cells by an altered polyoma virus genome expressing only the middle-T protein. Nature. 1981; 292(5824):595-600. Treisman R. Ternary complex factors: growth factor regulated transcriptional activators. Curr Opin Genet Dev. 1994; 4(1):96-101. Review. Tsavachidou D, Coleman ML, Athanasiadis G, Li S, Licht JD, Olson MF, Weber BL. SPRY2 is an inhibitor of the ras/extracellular signal-regulated kinase pathway in melanocytes and melanoma cells with wild-type BRAF but not with the V599E mutant. Cancer Res. 2004; 64(16):5556-9. Tsumura Y, Toshima J, Leeksma OC, Ohashi K, Mizuno K. Sprouty-4 negatively regulates cell spreading by inhibiting the kinase activity of testicular protein kinase. Biochem J. 2005; 387(Pt 3):62737. Tsygankov AY, Teckchandani AM, Feshchenko EA, Swaminathan G. Beyond the RING: CBL proteins as multivalent adapters. Oncogene. 2001; 20(44):6382-402. Review. U: Ueki T, Fujimoto J, Suzuki T, Yamamoto H, Okamoto E. Expression of hepatocyte growth factor and its receptor c-met proto-oncogene in hepatocellular carcinoma. Hepatology. 1997; 25(4):862-6. Ulug ET, Cartwright AJ, Courtneidge SA. Characterization of the interaction of polyomavirus middle T antigen with type 2A protein phosphatase. J Virol. 1992; 66(3):1458-67. Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990; 61(2):203-12. Review V: van de Rijn M, Perou CM, Tibshirani R, Haas P, Kallioniemi O, Kononen J, Torhorst J, Sauter G, Zuber M, Kochli OR, Mross F, Dieterich H, Seitz R, Ross D, Botstein D, Brown P. Expression of 190 cytokeratins 17 and identifies a group of breast carcinomas with poor clinical outcome. Am J Pathol. 2002; 161(6):1991-6. Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden JM, Bollen M, Esteller M, Di Croce L, de Launoit Y, Fuks F. The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 2006; 439(7078):871-4. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2002; 2(7):489-501. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004; 10(8):789-99. W: Walter G, Ruediger R, Slaughter C, Mumby M. Association of protein phosphatase 2A with polyoma virus medium tumor antigen. Proc Natl Acad Sci U S A. 1990; 87(7):2521-5. Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, Springer CJ, Barford D, Marais R; Cancer Genome Project. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell. 2004; 116(6):855-67. Wang J, Thompson B, Ren C, Ittmann M, Kwabi-Addo B. Sprouty4, a suppressor of tumor cell motility, is down regulated by DNA methylation in human prostate cancer. Prostate. 2006; 66(6):61324. Wang Y, Waldron RT, Dhaka A, Patel A, Riley MM, Rozengurt E, Colicelli J. The RAS effector RIN1 directly competes with RAF and is regulated by 14-3-3 proteins. Mol Cell Biol. 2002; 22(3):916-26. Warburton D, Bellusci S. The molecular genetics of lung morphogenesis and injury repair. Paediatr Respir Rev. 2004;5 Suppl A:S283-7. Review. Webster MA, Hutchinson JN, Rauh MJ, Muthuswamy SK, Anton M, Tortorice CG, Cardiff RD, Graham FL, Hassell JA, Muller WJ. Requirement for both Shc and phosphatidylinositol 3' kinase signaling pathways in polyomavirus middle T-mediated mammary tumorigenesis. Mol Cell Biol. 1998; 18(4):2344-59. Weinstein IB, Joe AK. Mechanisms of disease: Oncogene addiction--a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol. 2006; 3(8):448-57. Review. Wellbrock C, Karasarides M, Marais R. The RAF proteins take centre stage. Nat Rev Mol Cell Biol. 2004; 5(11):875-85. Review. Whitman M, Kaplan DR, Schaffhausen B, Cantley L, Roberts TM. Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature. 1985; 315(6016):239-42. Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev. 1999; 79(1):143-80. Review. Wiseman BS, Werb Z. Stromal effects on mammary gland development and breast cancer. Science. 2002; 296(5570):1046-9. Wood LD, Parsons DW, Jones S, Lin J, Sjöblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, Silliman N, Szabo S, Dezso Z, Ustyanksky V, Nikolskaya T, Nikolsky Y, Karchin R, Wilson PA, Kaminker JS, Zhang Z, Croshaw R, Willis J, Dawson D, Shipitsin M, Willson JK, Sukumar S, Polyak K, Park BH, Pethiyagoda CL, Pant PV, Ballinger DG, Sparks AB, Hartigan J, Smith DR, Suh E, Papadopoulos N, Buckhaults P, Markowitz SD, Parmigiani G, Kinzler KW, Velculescu VE, Vogelstein B. The genomic landscapes of human breast and colorectal cancers. Science. 2007; 318(5853):1108-13. Wunderlich W, Fialka I, Teis D, Alpi A, Pfeifer A, Parton RG, Lottspeich F, Huber LA. A novel 14kilodalton protein interacts with the mitogen-activated protein kinase scaffold mp1 on a late endosomal/lysosomal compartment. J Cell Biol. 2001; 152(4):765-76. 191 Y: Yigzaw Y, Cartin L, Pierre S, Scholich K, Patel TB. The C terminus of sprouty is important for modulation of cellular migration and proliferation. J Biol Chem. 2001; 276(25):22742-7. Yigzaw Y, Poppleton HM, Sreejayan N, Hassid A, Patel TB. Protein-tyrosine phosphatase-1B (PTP1B) mediates the anti-migratory actions of Sprouty. J Biol Chem. 2003; 278(1):284-8. Yeung K, Janosch P, McFerran B, Rose DW, Mischak H, Sedivy JM, Kolch W. Mechanism of suppression of the Raf/MEK/extracellular signal-regulated kinase pathway by the raf kinase inhibitor protein. Mol Cell Biol. 2000; 20(9):3079-85. Yuen ST, Davies H, Chan TL, Ho JW, Bignell GR, Cox C, Stephens P, Edkins S, Tsui WW, Chan AS, Futreal PA, Stratton MR, Wooster R, Leung SY. Similarity of the phenotypic patterns associated with BRAF and KRAS mutations in colorectal neoplasia. Cancer Res. 2002; 62(22):6451-5. Yun C, Cho H, Kim SJ, Lee JH, Park SY, Chan GK, Cho H. Mitotic aberration coupled with centrosome amplification is induced by hepatitis B virus X oncoprotein via the Ras-mitogen-activated protein/extracellular signal-regulated kinase-mitogen-activated protein pathway. Mol Cancer Res. 2004; 2(3):159-69. Yusoff P, Lao DH, Ong SH, Wong ES, Lim J, Lo TL, Leong HF, Fong CW, Guy GR. Sprouty2 inhibits the Ras/MAP kinase pathway by inhibiting the activation of Raf. J Biol Chem. 2002; 277(5):3195-201. Z: Zhang BH, Tang ED, Zhu T, Greenberg ME, Vojtek AB, Guan KL. Serum- and glucocorticoidinducible kinase SGK phosphorylates and negatively regulates B-Raf. J Biol Chem. 2001; 276(34):31620-6. Zhang C, Chaturvedi D, Jaggar L, Magnuson D, Lee JM, Patel TB. Regulation of vascular smooth muscle cell proliferation and migration by human sprouty 2. Arterioscler Thromb Vasc Biol. 2005; 25(3):533-8. Zhang S, Lin Y, Itaranta P, Yagi A, Vainio S. Expression of Sprouty genes 1, and during mouse organogenesis. Mech Dev. 2001; 109(2):367-70. Zhu W, Eicher A, Leber B, Andrews DW. At the onset of transformation polyomavirus middle-T recruits shc and src to a perinuclear compartment coincident with condensation of endosomes. Oncogene. 1998; 17(5):565-76. Zwick E, Bange J, Ullrich A. Receptor tyrosine kinases as targets for anticancer drugs. Trends Mol Med. 2002; 8(1):17-23. Review. 192 PUBLICATIONS LIST Lo TL, Yusoff P, Fong CW, Guo K, McCaw BJ, Phillips WA, Yang H, Wong ES, Leong HF, Zeng Q, Putti TC, Guy GR. The ras/mitogen-activated protein kinase pathway inhibitor and likely tumor suppressor proteins, sprouty and sprouty are deregulated in breast cancer. Cancer Res. 2004; 64(17):6127-36. Lo TL, Fong CW, Yusoff P, McKie AB, Chua MS, Leung HY, Guy GR. Sprouty and cancer: the first terms report. Cancer Lett. 2006; 242(2):141-50. Review. Fong CW, Chua MS, McKie AB, Ling SH, Mason V, Li R, Yusoff P, Lo TL, Leung HY, So SK, Guy GR. Sprouty 2, an inhibitor of mitogen-activated protein kinase signaling, is downregulated in hepatocellular carcinoma. Cancer Res. 2006; 66(4):2048-58. Yusoff P, Lao DH, Ong SH, Wong ES, Lim J, Lo TL, Leong HF, Fong CW, Guy GR. Sprouty2 inhibits the Ras/MAP kinase pathway by inhibiting the activation of Raf. J Biol Chem. 2002; 277(5):3195-201. Guy GR, Wong ES, Yusoff P, Chandramouli S, Lo TL, Lim J, Fong CW. Sprouty: how does the branch manager work? J Cell Sci. 2003; 116(Pt 15):3061-8. Review. [...]... guanine methyl transferase min minute MKP MAP kinase phosphatase ml milliliter MLH1 mutL homolog 1 mM millimolar Mnk MAPK interacting serine/threonine kinase Mnk1 MAPK interacting serine/threonine kinase 1 MP-1 MEK partner 1 N or Asn asparagine NaCl sodium chloride XV NF1 neurofibromin1 N-terminal amino (NH2)-terminal OD optical density P or Pro proline PBS phosphate-buffered saline PCR polymerase chain... 1995), which in turn function as docking sites for cytoplasmic signalling proteins containing Src homology 2 (SH2)- and phosphotyrosine-binding (PTB) domain containing proteins such as Shc, Grb2, Src, Cbl or phospholipase Cγ (PLCγ) These proteins then recruit additional effector molecules containing SH2, SH3, PTB and pleckstrinhomology (PH) domains to the activated receptor, which results in the assembly... represented in red, that mediates binding to Raf1 (Raf1-binding domain, RBD) The N-terminal half of the Spry proteins is more divergent, however, except for the presence of an invariant tyrosine residue (Y) located in a short, conserved motif, indicated in yellow Many of the inhibitory functions of the Spry proteins are dependent on this residue (B) Amino acid sequence alignment of regions containing the invariant... and scaffold proteins Adaptor and scaffolding proteins are important components of Ras/ERK signalling in eukaryotic cells These proteins play a role in intracellular signalling by both recruiting various proteins to specific locations and by assembling networks of proteins particular to a cascade Adaptor proteins, through protein-protein interactions via specific motifs, provide a link between molecules... PDVF polyvinylidene difluoride PGR progesterone receptor PH pleckstrin homology PI3K phosphatidylinositol 3-kinase PKC protein kinase C PLCγ phospholipase Cγ PP2A protein phosphatase 2A PTB phosphotyrosine-binding PtdIns (4) P phosphatidylinositol 4-triphosphate PtdIns (4,5) P phosphatidylinositol 4,5-triphosphate PtdIns (3,4,5) P phosphatidylinositol 3,4,5-triphosphate PTP1B protein tyrosine phosphatase... minute XVI RPMI Roswell Park Memorial Institute RSK ribosomal protein S6 kinase RTK receptor tyrosine kinase S or Ser serine SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis Sef similar expression to FGF SEM standard error of mean SGK serum/glucocorticoid inducible kinase SH2 src homology2 SH3 src homology3 Shc SH2 domain-containing transforming protein C Shp2 SH2 domain-containing... phosphorylated tyrosine Q or Gln glutamine R or Arg arginine Raf rapidly growing fibrosarcoma RalGDS ral GDP dissociation stimulator RALT/Mig-6 receptor-associated late transducer/mitogen inducible gene-6 RAR retinoic acid receptor Ras rat sarcoma RASSF1 ras association (ralGDS/AF-6) domain family 1 RB retinoblastoma RBD raf binding domain RIN ras and rab interactor 1 RKIP raf kinase inhibitor protein rpm revolutions... invariant N-terminal tyrosine residues of mouse Sprouty proteins Conserved residues are indicated in red and boxed (Figure adapted from Mason et al., 2006) 13 1.4.2 Structure of Sproutys Drosophila Spry is a 591-amino-acid (63-kDa) protein with a unique 124-residue cysteinerich C-terminal domain, flanked by cysteine-free regions that contain many stretches of repeated or alternating amino acids (Hacohen... independent of Ras Therefore, Spry is able to inhibit ERK activity through a Ras-independent pathway Spry4 binds to the catalytic domain of Raf1 through its carboxyl-terminal cysteine-rich domain (Raf-binding domain) and this binding is necessary for inhibitory activity of Spry4 Lee et al (2001) also discovered that Spry4 inhibited FGF and VEGF-induced MAPK phosphorylation in HUVEC (endothelial) cells However,... of a signalling cascade and proteins such as RTKs These adapter proteins often contain a variety of motifs that mediate protein-protein interactions An example of an adapter protein is Grb2 It contains both SH2 and SH3 sequences and its function is to recruit cytoplasmic proteins via its SH3 domain to an activated RTK via SH2 domains-binding to phosphorylated residues of the receptors In the Ras/ERK . MAPK interacting serine/threonine kinase Mnk1 MAPK interacting serine/threonine kinase 1 MP-1 MEK partner 1 N or Asn asparagine NaCl sodium chloride XV NF1 neurofibromin1 N-terminal. domain family 1 RB retinoblastoma RBD raf binding domain RIN ras and rab interactor 1 RKIP raf kinase inhibitor protein rpm revolutions per minute XVI RPMI Roswell Park Memorial Institute. SGK serum/glucocorticoid inducible kinase SH2 src homology2 SH3 src homology3 Shc SH2 domain-containing transforming protein C Shp2 SH2 domain-containing protein tyrosine phosphatase-2 SOS

Ngày đăng: 12/09/2015, 08:20